1
|
Yung MC, Ma J, Salemi MR, Phinney BS, Bowman GR, Jiao Y. Shotgun proteomic analysis unveils survival and detoxification strategies by Caulobacter crescentus during exposure to uranium, chromium, and cadmium. J Proteome Res 2014; 13:1833-47. [PMID: 24555639 DOI: 10.1021/pr400880s] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ubiquitous bacterium Caulobacter crescentus holds promise to be used in bioremediation applications due to its ability to mineralize U(VI) under aerobic conditions. Here, cell free extracts of C. crescentus grown in the presence of uranyl nitrate [U(VI)], potassium chromate [Cr(VI)], or cadmium sulfate [Cd(II)] were used for label-free proteomic analysis. Proteins involved in two-component signaling and amino acid metabolism were up-regulated in response to all three metals, and proteins involved in aerobic oxidative phosphorylation and chemotaxis were down-regulated under these conditions. Clustering analysis of proteomic enrichment revealed that the three metals also induce distinct patterns of up- or down-regulated expression among different functional classes of proteins. Under U(VI) exposure, a phytase enzyme and an ABC transporter were up-regulated. Heat shock and outer membrane responses were found associated with Cr(VI), while efflux pumps and oxidative stress proteins were up-regulated with Cd(II). Experimental validations were performed on select proteins. We found that a phytase plays a role in U(VI) and Cr(VI) resistance and detoxification and that a Cd(II)-specific transporter confers Cd(II) resistance. Interestingly, analysis of promoter regions in genes associated with differentially expressed proteins suggests that U(VI) exposure affects cell cycle progression.
Collapse
Affiliation(s)
- Mimi C Yung
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | | | | | | | | | | |
Collapse
|
2
|
Lee CF, Paull TT, Person MD. Proteome-wide detection and quantitative analysis of irreversible cysteine oxidation using long column UPLC-pSRM. J Proteome Res 2013; 12:4302-15. [PMID: 23964713 DOI: 10.1021/pr400201d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) play an important role in normal biological functions and pathological processes. ROS is one of the driving forces for oxidizing proteins, especially on cysteine thiols. The labile, transient, and dynamic nature of oxidative modifications poses enormous technical challenges for both accurate modification site determination and quantitation of cysteine thiols. The present study describes a mass spectrometry-based approach that allows effective discovery and quantification of irreversible cysteine modifications. The utilization of a long reverse phase column provides high-resolution chromatography to separate different forms of modified cysteine thiols from protein complexes or cell lysates. This Fourier transform mass spectrometry (FT-MS) approach enabled detection and quantitation of ataxia telangiectasia mutated (ATM) complex cysteine sulfoxidation states using Skyline MS1 filtering. When we applied the long column ultra high pressure liquid chromatography (UPLC)-MS/MS analysis, 61 and 44 peptides from cell lysates and cells were identified with cysteine modifications in response to in vitro and in vivo H2O2 oxidation, respectively. Long column ultra high pressure liquid chromatography pseudo selected reaction monitoring (UPLC-pSRM) was then developed to monitor the oxidative level of cysteine thiols in cell lysate under varying concentrations of H2O2 treatment. From UPLC-pSRM analysis, the dynamic conversion of sulfinic (S-O2H) and sulfonic acid (S-O3H) was observed within nucleoside diphosphate kinase (Nm23-H1) and heat shock 70 kDa protein 8 (Hsc70). These methods are suitable for proteome-wide studies, providing a highly sensitive, straightforward approach to identify proteins containing redox-sensitive cysteine thiols in biological systems.
Collapse
Affiliation(s)
- Chia-Fang Lee
- Proteomics Facility, College of Pharmacy, ‡the Howard Hughes Medical Institute, the Department of Molecular Genetics & Microbiology, and the Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, Texas 78712, United States
| | | | | |
Collapse
|
3
|
Dykstra AB, Rodriguez M, Raman B, Cook KD, Hettich RL. Characterizing the Range of Extracellular Protein Post-Translational Modifications in a Cellulose-Degrading Bacteria Using a Multiple Proteolyic Digestion/Peptide Fragmentation Approach. Anal Chem 2013; 85:3144-51. [DOI: 10.1021/ac3032838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew B. Dykstra
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Miguel Rodriguez
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Babu Raman
- Dow AgroSciences, Indianapolis,
Indiana 46268, United States
| | - Kelsey D. Cook
- University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Robert L. Hettich
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
4
|
Tai SK, Wu G, Yuan S, Li KC. Genome-wide expression links the electron transfer pathway of Shewanella oneidensis to chemotaxis. BMC Genomics 2010; 11:319. [PMID: 20492688 PMCID: PMC2886065 DOI: 10.1186/1471-2164-11-319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 05/21/2010] [Indexed: 12/25/2022] Open
Abstract
Background By coupling the oxidation of organic substrates to a broad range of terminal electron acceptors (such as nitrate, metals and radionuclides), Shewanella oneidensis MR-1 has the ability to produce current in microbial fuel cells (MFCs). omcA, mtrA, omcB (also known as mtrC), mtrB, and gspF are some known genes of S. oneidensis MR-1 that participate in the process of electron transfer. How does the cell coordinate the expression of these genes? To shed light on this problem, we obtain the gene expression datasets of MR-1 that are recently public-accessible in Gene Expression Omnibus. We utilize the novel statistical method, liquid association (LA), to investigate the complex pattern of gene regulation. Results Through a web of information obtained by our data analysis, a network of transcriptional regulatory relationship between chemotaxis and electron transfer pathways is revealed, highlighting the important roles of the chemotaxis gene cheA-1, the magnesium transporter gene mgtE-1, and a triheme c-type cytochrome gene SO4572. Conclusion We found previously unknown relationship between chemotaxis and electron transfer using LA system. The study has the potential of helping researchers to overcome the intrinsic metabolic limitation of the microorganisms for improving power density output of an MFC.
Collapse
Affiliation(s)
- Shang-Kai Tai
- Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
5
|
Chang IF, Curran A, Woolsey R, Quilici D, Cushman JC, Mittler R, Harmon A, Harper JF. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 2009; 9:2967-85. [PMID: 19452453 DOI: 10.1002/pmic.200800445] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In eukaryotes, 14-3-3 dimers regulate hundreds of functionally diverse proteins (clients), typically in phosphorylation-dependent interactions. To uncover new clients, 14-3-3 omega (At1g78300) from Arabidopsis was engineered with a "tandem affinity purification" tag and expressed in transgenic plants. Purified complexes were analyzed by tandem MS. Results indicate that 14-3-3 omega can dimerize with at least 10 of the 12 14-3-3 isoforms expressed in Arabidopsis. The identification here of 121 putative clients provides support for in vivo 14-3-3 interactions with a diverse array of proteins, including those involved in: (i) Ion transport, such as a K(+) channel (GORK), a Cl(-) channel (CLCg), Ca(2+) channels belonging to the glutamate receptor family (1.2, 2.1, 2.9, 3.4, 3.7); (ii) hormone signaling, such as ACC synthase (isoforms ACS-6, -7 and -8 involved in ethylene synthesis) and the brassinolide receptors BRI1 and BAK1; (iii) transcription, such as 7 WRKY family transcription factors; (iv) metabolism, such as phosphoenol pyruvate carboxylase; and (v) lipid signaling, such as phospholipase D (beta and gamma). More than 80% (101) of these putative clients represent previously unidentified 14-3-3 interactors. These results raise the number of putative 14-3-3 clients identified in plants to over 300.
Collapse
Affiliation(s)
- Ing-Feng Chang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Chourey K, Thompson MR, Shah M, Zhang B, VerBerkmoes NC, Thompson DK, Hettich RL. Comparative Temporal Proteomics of a Response Regulator (SO2426)-Deficient Strain and Wild-Type Shewanella oneidensis MR-1 During Chromate Transformation. J Proteome Res 2009; 8:59-71. [DOI: 10.1021/pr800776d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karuna Chourey
- Environmental Sciences Division, Graduate School of Genome Science and Technology, ORNL-UTK, Chemical Sciences Division, Biosciences Division, Oak Ridge National Laboratory, Tennessee 37831, Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37232, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Melissa R. Thompson
- Environmental Sciences Division, Graduate School of Genome Science and Technology, ORNL-UTK, Chemical Sciences Division, Biosciences Division, Oak Ridge National Laboratory, Tennessee 37831, Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37232, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Manesh Shah
- Environmental Sciences Division, Graduate School of Genome Science and Technology, ORNL-UTK, Chemical Sciences Division, Biosciences Division, Oak Ridge National Laboratory, Tennessee 37831, Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37232, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Bing Zhang
- Environmental Sciences Division, Graduate School of Genome Science and Technology, ORNL-UTK, Chemical Sciences Division, Biosciences Division, Oak Ridge National Laboratory, Tennessee 37831, Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37232, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Nathan C. VerBerkmoes
- Environmental Sciences Division, Graduate School of Genome Science and Technology, ORNL-UTK, Chemical Sciences Division, Biosciences Division, Oak Ridge National Laboratory, Tennessee 37831, Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37232, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Dorothea K. Thompson
- Environmental Sciences Division, Graduate School of Genome Science and Technology, ORNL-UTK, Chemical Sciences Division, Biosciences Division, Oak Ridge National Laboratory, Tennessee 37831, Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37232, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Robert L. Hettich
- Environmental Sciences Division, Graduate School of Genome Science and Technology, ORNL-UTK, Chemical Sciences Division, Biosciences Division, Oak Ridge National Laboratory, Tennessee 37831, Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37232, and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
7
|
Gupta N, Benhamida J, Bhargava V, Goodman D, Kain E, Kerman I, Nguyen N, Ollikainen N, Rodriguez J, Wang J, Lipton MS, Romine M, Bafna V, Smith RD, Pevzner PA. Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes. Genome Res 2008; 18:1133-42. [PMID: 18426904 DOI: 10.1101/gr.074344.107] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent proliferation of low-cost DNA sequencing techniques will soon lead to an explosive growth in the number of sequenced genomes and will turn manual annotations into a luxury. Mass spectrometry recently emerged as a valuable technique for proteogenomic annotations that improves on the state-of-the-art in predicting genes and other features. However, previous proteogenomic approaches were limited to a single genome and did not take advantage of analyzing mass spectrometry data from multiple genomes at once. We show that such a comparative proteogenomics approach (like comparative genomics) allows one to address the problems that remained beyond the reach of the traditional "single proteome" approach in mass spectrometry. In particular, we show how comparative proteogenomics addresses the notoriously difficult problem of "one-hit-wonders" in proteomics, improves on the existing gene prediction tools in genomics, and allows identification of rare post-translational modifications. We therefore argue that complementing DNA sequencing projects by comparative proteogenomics projects can be a viable approach to improve both genomic and proteomic annotations.
Collapse
Affiliation(s)
- Nitin Gupta
- Bioinformatics Program, University of California San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gaucher SP, Redding AM, Mukhopadhyay A, Keasling JD, Singh AK. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins. J Proteome Res 2008; 7:2320-31. [PMID: 18416566 DOI: 10.1021/pr700772s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent developments in shotgun proteomics have enabled high-throughput studies of a variety of microorganisms at a proteome level and provide experimental validation for predicted open reading frames in the corresponding genome. More importantly, advances in mass spectrometric data analysis now allow mining of large proteomics data sets for the presence of post-translational modifications (PTMs). Although PTMs are a critical aspect of cellular activity, such information eludes cell-wide studies conducted at the transcript level. Here, we analyze several mass spectrometric data sets acquired using two-dimensional liquid chromatography tandem mass spectrometry, 2D-LC/MS/MS, for the sulfate reducing bacterium, Desulfovibrio vulgaris Hildenborough. Our searches of the raw spectra led us to discover several post-translationally modified peptides in D. vulgaris. Of these, several peptides containing a lysine with a +42 Da modification were found reproducibly across all data sets. Both acetylation and trimethylation have the same nominal +42 Da mass, and are therefore candidates for this modification. Several spectra were identified having markers for trimethylation, while one is consistent with an acetylation. Surprisingly, these modified peptides predominantly mapped to proteins involved in sulfate respiration. Other highly expressed proteins in D. vulgaris, such as enzymes involved in electron transport and other central metabolic processes, did not contain this modification. Decoy database searches were used to control for random spectrum/sequence matches. Additional validation for these modifications was provided by alternate workflows, for example, two-dimensional gel electrophoresis followed by mass spectrometry analysis of the dissimilatory sulfite reductase gamma-subunit (DsrC) protein. MS data for DsrC in this alternate workflow also contained the +42 Da modification at the same loci. Furthermore, the DsrC homologue in another sulfate reducing bacterium, Desulfovibrio desulfuricans G20, also showed similar +42 Da modifications in the same pathway. Here, we discuss our methods and implications of potential trimethylation in the D. vulgaris sulfate reduction pathway.
Collapse
Affiliation(s)
- Sara P Gaucher
- Sandia National Laboratory, Livermore, California 94550, USA
| | | | | | | | | |
Collapse
|