1
|
Fang X, Zhao J, Zhang K, Yang P, Qiao L, Liu B. Polydopamine Grafted Porous Graphene as Biocompatible Nanoreactor for Efficient Identification of Membrane Proteins. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6363-6370. [PMID: 26913964 DOI: 10.1021/acsami.6b00407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Functional nanomaterials, used as nanoreactors, have shown great advantages in a variety of applications in biomedical fields. Herein, we designed a novel nanoreactor system toward the application in membrane proteomics by using polydopamine-coated nanoporous graphene foams (NGFs-PD) prepared by a facile in situ oxidative polymerization. Taking advantage of the unique 3-D structure and surface functionalization, NGFs-PD can quickly adsorb a large amount of hydrophobic membrane proteins dissolved in sodium dodecyl sulfonate (SDS)/methanol and hydrophilic trypsin in aqueous solution, and then confine the proteolysis in the nanoscale domains to fasten the reaction rate. Therefore, the current nanoreactor system combines the multifunctions of highly efficient solubilization, immobilization, and proteolysis of membrane proteins. With the nanoreactor, digestion of standard membrane proteins can be finished in 10 min. 893 membrane proteins were identified from human glioma cells (U251). All these superiorities indicate that the biocompatible NGFs-PD nanoreactor system is of great promise to facilitate high-throughput membrane proteomic analysis.
Collapse
Affiliation(s)
- Xiaoni Fang
- Department of Chemistry, Institute of Biomedical Sciences and State Key Lab of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| | - Jingjing Zhao
- Department of Chemistry, Institute of Biomedical Sciences and State Key Lab of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| | - Kun Zhang
- Department of Chemistry, Institute of Biomedical Sciences and State Key Lab of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| | - Pengyuan Yang
- Department of Chemistry, Institute of Biomedical Sciences and State Key Lab of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| | - Liang Qiao
- Department of Chemistry, Institute of Biomedical Sciences and State Key Lab of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| | - Baohong Liu
- Department of Chemistry, Institute of Biomedical Sciences and State Key Lab of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| |
Collapse
|
2
|
Cao L, Clifton JG, Reutter W, Josic D. Mass spectrometry-based analysis of rat liver and hepatocellular carcinoma Morris hepatoma 7777 plasma membrane proteome. Anal Chem 2013; 85:8112-20. [PMID: 23909495 PMCID: PMC3840720 DOI: 10.1021/ac400774g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gel-based proteomic analysis of plasma membranes from rat liver and chemically induced, malignant hepatocellular carcinoma Morris hepatoma 7777 was systematically optimized to yield the maximum number of proteins containing transmembrane domains (TMDs). Incorporation of plasma membrane proteins into a polyacrylamide "tube gel" followed by in-gel digestion of "tube gel" pieces significantly improved detection by electrospray ionization-liquid chromatography-tandem mass spectrometry. Removal of less hydrophobic proteins by washing isolated plasma membranes with 0.1 M sodium carbonate enables detection of a higher number of hydrophobic proteins containing TMDs in both tissues. Subsequent treatment of plasma membranes by a proteolytic enzyme (trypsin) causes the loss of some of the proteins that are detected after washing with sodium carbonate, but it enables the detection of other hydrophobic proteins containing TMDs. Introduction of mass spectrometers with higher sensitivity, higher mass resolution and mass accuracy, and a faster scan rate significantly improved detection of membrane proteins, but the improved sample preparation is still useful and enables detection of additional hydrophobic proteins. Proteolytic predigestion of plasma membranes enables detection of additional hydrophobic proteins and better sequence coverage of TMD-containing proteins in plasma membranes from both tissues.
Collapse
Affiliation(s)
- Lulu Cao
- Proteomics Core, COBRE Center for Cancer Research Development, Rhode Island Hospital, Providence, RI 02903 USA
| | - James G. Clifton
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02903, USA
| | - Werner Reutter
- Institut für Laboratoriumsmedizin und Klinische Chemie, Charité-Universitätsmedizin Campus Benjamin Franklin, D-14195 Berlin, Germany
| | - Djuro Josic
- Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Department of Biotechnology, University of Rijeka, HR-51000 Rijeka, Croatia
| |
Collapse
|
3
|
Alves G, Yu YK. Improving peptide identification sensitivity in shotgun proteomics by stratification of search space. J Proteome Res 2013; 12:2571-81. [PMID: 23668635 DOI: 10.1021/pr301139y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Because of its high specificity, trypsin is the enzyme of choice in shotgun proteomics. Nonetheless, several publications do report the identification of semitryptic and nontryptic peptides. Many of these peptides are thought to be signaling peptides or to have formed during sample preparation. It is known that only a small fraction of tandem mass spectra from a trypsin-digested protein mixture can be confidently matched to tryptic peptides. If other possibilities such as post-translational modifications and single-amino acid polymorphisms are ignored, this suggests that many unidentified spectra originate from semitryptic and nontryptic peptides. To include them in database searches, however, may not improve overall peptide identification because of the possible sensitivity reduction from search space expansion. To circumvent this issue for E-value-based search methods, we have designed a scheme that categorizes qualified peptides (i.e., peptides whose differences in molecular weight from the parent ion are within a specified error tolerance) into three tiers: tryptic, semitryptic, and nontryptic. This classification allows peptides that belong to different tiers to have different Bonferroni correction factors. Our results show that this scheme can significantly improve retrieval performance compared to those of search strategies that assign equal Bonferroni correction factors to all qualified peptides.
Collapse
Affiliation(s)
- Gelio Alves
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | | |
Collapse
|
4
|
Bendz M, Skwark M, Nilsson D, Granholm V, Cristobal S, Käll L, Elofsson A. Membrane protein shaving with thermolysin can be used to evaluate topology predictors. Proteomics 2013; 13:1467-80. [DOI: 10.1002/pmic.201200517] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/23/2013] [Accepted: 02/25/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Bendz
- Department of Biochemistry and Biophysics; Science for Life Laboratory, Center for Biomembrane Research, Stockholm University; Stockholm Sweden
| | - Marcin Skwark
- Department of Biochemistry and Biophysics; Science for Life Laboratory, Center for Biomembrane Research, Stockholm University; Stockholm Sweden
| | - Daniel Nilsson
- Department of Biochemistry and Biophysics; Science for Life Laboratory, Center for Biomembrane Research, Stockholm University; Stockholm Sweden
| | - Viktor Granholm
- Department of Biochemistry and Biophysics; Science for Life Laboratory, Center for Biomembrane Research, Stockholm University; Stockholm Sweden
| | - Susana Cristobal
- Department of Clinical and Experimental Medicine, Cell Biology; Faculty of Health Science, Linköping University; Linköping Sweden
- IKERBASQUE, Basque Foundation for Science; Department of Physiology, Basque Country Medical School; Bilbao Spain
| | - Lukas Käll
- Science for Life Laboratory, School of Biotechnology; Royal Institute of Technology (KTH); Solna Sweden
| | - Arne Elofsson
- Department of Biochemistry and Biophysics; Science for Life Laboratory, Center for Biomembrane Research, Stockholm University; Stockholm Sweden
| |
Collapse
|
5
|
Method for recovery and immunoaffinity enrichment of membrane proteins illustrated with metastatic ovarian cancer tissues. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:838630. [PMID: 22919487 PMCID: PMC3418661 DOI: 10.1155/2012/838630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/30/2012] [Indexed: 01/12/2023]
Abstract
Integral membrane proteins play key biological roles in cell signaling, transport, and pathogen invasion. However, quantitative clinical assays for this critical class of proteins remain elusive and are generally limited to serum-soluble extracellular fragments. Furthermore, classic proteomic approaches to membrane protein analysis typically involve proteolytic digestion of the soluble pieces, resulting in separation of intra- and extracellular segments and significant informational loss. In this paper, we describe the development of a new method for the quantitative extraction of intact integral membrane proteins (including GPCRs) from solid metastatic ovarian tumors using pressure cycling technology in combination with a new (ProteoSolve-TD) buffer system. This new extraction buffer is compatible with immunoaffinity methods (e.g., ELISA and immunoaffinity chromatography), as well as conventional proteomic techniques (e.g., 2D gels, western blots). We demonstrate near quantitative recovery of membrane proteins EDG2, EDG4, FASLG, KDR, and LAMP-3 by western blots. We have also adapted commercial ELISAs for serum-soluble membrane protein fragments (e.g., sVEGFR2) to measure the tissue titers of their transmembrane progenitors. Finally, we demonstrate the compatibility of the new buffers with immunoaffinity enrichment/mass spectrometric characterization of tissue proteins.
Collapse
|
6
|
Gan J, Zhu J, Yan G, Liu Y, Yang P, Liu B. Periodic mesoporous organosilica as a multifunctional nanodevice for large-scale characterization of membrane proteins. Anal Chem 2012; 84:5809-15. [PMID: 22663254 DOI: 10.1021/ac301146a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A versatile protocol has been developed for large-scale characterization of hydrophobic membrane proteins based on the periodic mesoporous organosilica (PMO) acting as both an extractor for hydrophobic substrate capture and a nanoreactor for efficient in situ digestion. With introduction of organic groups in the pore frameworks and the presence of hydrophilic silanol groups on the surface, PMO can be well-dispersed into not only an organic solution to concentrate the dissolved membrane proteins but also an aqueous solution containing enzymes for sequential rapid proteolysis in the nanopores. The unique amphiphilic property of PMO ensures a facile switch in different solutions to realize the processes of substrate dissolution, enrichment, and digestion effectively. Furthermore, this novel PMO-assisted protocol has been successfully applied for identification of complex membrane proteins extracted from mouse liver as proof of general applicability.
Collapse
Affiliation(s)
- Jinrui Gan
- Department of Chemistry, Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
7
|
Stella R, Cifani P, Peggion C, Hansson K, Lazzari C, Bendz M, Levander F, Sorgato MC, Bertoli A, James P. Relative Quantification of Membrane Proteins in Wild-Type and Prion Protein (PrP)-Knockout Cerebellar Granule Neurons. J Proteome Res 2011; 11:523-36. [DOI: 10.1021/pr200759m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roberto Stella
- Department of Biological Chemistry, University of Padova, Italy
| | - Paolo Cifani
- Department of Immunotechnology and CREATE Health, Lund University, Sweden
| | | | - Karin Hansson
- Department of Immunotechnology and CREATE Health, Lund University, Sweden
| | | | - Maria Bendz
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Fredrik Levander
- Department of Immunotechnology and CREATE Health, Lund University, Sweden
| | | | | | - Peter James
- Department of Immunotechnology and CREATE Health, Lund University, Sweden
| |
Collapse
|
8
|
Rucevic M, Hixson D, Josic D. Mammalian plasma membrane proteins as potential biomarkers and drug targets. Electrophoresis 2011; 32:1549-64. [PMID: 21706493 DOI: 10.1002/elps.201100212] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented.
Collapse
Affiliation(s)
- Marijana Rucevic
- COBRE Center for Cancer Research Development, Rhode Island Hospital, Providence, RI, USA
| | | | | |
Collapse
|
9
|
Gilmore JM, Washburn MP. Advances in shotgun proteomics and the analysis of membrane proteomes. J Proteomics 2010; 73:2078-91. [PMID: 20797458 DOI: 10.1016/j.jprot.2010.08.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 12/24/2022]
Abstract
The emergence of shotgun proteomics has facilitated the numerous biological discoveries made by proteomic studies. However, comprehensive proteomic analysis remains challenging and shotgun proteomics is a continually changing field. This review details the recent developments in shotgun proteomics and describes emerging technologies that will influence shotgun proteomics going forward. In addition, proteomic studies of integral membrane proteins remain challenging due to the hydrophobic nature in integral membrane proteins and their general low abundance levels. However, there have been many strategies developed for enriching, isolating and separating membrane proteins for proteomic analysis that have moved this field forward. In summary, while shotgun proteomics is a widely used and mature technology, the continued pace of improvements in mass spectrometry and proteomic technology and methods indicate that future studies will have an even greater impact on biological discovery.
Collapse
Affiliation(s)
- Joshua M Gilmore
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
10
|
Meyer B, Papasotiriou DG, Karas M. 100% protein sequence coverage: a modern form of surrealism in proteomics. Amino Acids 2010; 41:291-310. [DOI: 10.1007/s00726-010-0680-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/25/2010] [Indexed: 01/11/2023]
|
11
|
Rietschel B, Bornemann S, Arrey TN, Baeumlisberger D, Karas M, Meyer B. Membrane protein analysis using an improved peptic in-solution digestion protocol. Proteomics 2010; 9:5553-7. [PMID: 20017156 DOI: 10.1002/pmic.200900532] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the proteomic analysis of membrane proteins, less-specific proteases have become a promising tool to overcome fundamental limitations of trypsin with its unique specificity for basic residues. Pepsin is well-known to be utilized for specific applications that require acidic conditions, but in terms of membrane protein identification and characterization, it has been disregarded for the most part. This work presents an optimization of an existing peptic digest protocol for the analysis of membrane proteins using bacteriorhodopsin from purple membranes as reference.
Collapse
Affiliation(s)
- Benjamin Rietschel
- Cluster of Excellence Macromolecular Complexes, Institute for Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Bendz M, Möller MC, Arrigoni G, Wåhlander Å, Stella R, Cappadona S, Levander F, Hederstedt L, James P. Quantification of Membrane Proteins Using Nonspecific Protease Digestions. J Proteome Res 2009; 8:5666-73. [DOI: 10.1021/pr900741t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Maria Bendz
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Mirja Carlsson Möller
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Giorgio Arrigoni
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Åsa Wåhlander
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Roberto Stella
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Salvatore Cappadona
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Fredrik Levander
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Lars Hederstedt
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Peter James
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| |
Collapse
|
13
|
Exploring the inner membrane proteome of Escherichia coli: which proteins are eluding detection and why? Trends Microbiol 2009; 17:444-9. [PMID: 19766000 DOI: 10.1016/j.tim.2009.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 07/13/2009] [Accepted: 07/17/2009] [Indexed: 11/22/2022]
Abstract
Proteins embedded in membranes are important for helping the cell adapt to changes in the extracellular milieu and often play key roles in the life cycles of pathogenic microbes. Bioinformatic predictions can provide an estimate of membrane proteins, but experimental approaches of detection are required for a deeper understanding of their functions. To determine the effectiveness of experimental detection approaches, here we collate and discuss data from available proteomic analyses on the inner (or cytoplasmic) membrane of Escherichia coli. We compile a list of proteins that have been experimentally detected and by comparing this to a predicted proteome we identify membrane proteins that have eluded us experimentally. Limitations of current proteomic analyses together with possible solutions are discussed. We also provide a list of proteins for benchmarking the performance of future proteomic studies.
Collapse
|
14
|
Sergeant K, Pinheiro C, Hausman JF, Ricardo CP, Renaut J. Taking advantage of nonspecific trypsin cleavages for the identification of seed storage proteins in cereals. J Proteome Res 2009; 8:3182-90. [PMID: 19382796 DOI: 10.1021/pr801093f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The lack of basic amino acids in seed storage proteins has resulted in the proposal to use chymotrypsin in their study. A comparative study of trypsin and chymotrypsin digestion initially confirmed this preference; however, reanalysis of the trypsin data set defining the specificity as 'semitrypsin' provided enough extra data to bridge the gap between both proteases. Rationale as to why numerous semitryptic peptides are observed in the study of these proteins is provided.
Collapse
Affiliation(s)
- Kjell Sergeant
- Centre de Recherche Public-Gabriel Lippmann, Department 'Environment and Agro-biotechnologies' (EVA), 41, rue du Brill, 4422 Belvaux, Luxembourg.
| | | | | | | | | |
Collapse
|
15
|
Heintz D, Gallien S, Wischgoll S, Ullmann AK, Schaeffer C, Kretzschmar AK, van Dorsselaer A, Boll M. Differential membrane proteome analysis reveals novel proteins involved in the degradation of aromatic compounds in Geobacter metallireducens. Mol Cell Proteomics 2009; 8:2159-69. [PMID: 19497847 DOI: 10.1074/mcp.m900061-mcp200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aromatic compounds comprise a large class of natural and man-made compounds, many of which are of considerable concern for the environment and human health. In aromatic compound-degrading anaerobic bacteria the central intermediate of aromatic catabolism, benzoyl coenzyme A, is attacked by dearomatizing benzoyl-CoA reductases (BCRs). An ATP-dependent BCR has been characterized in facultative anaerobes. In contrast, a previous analysis of the soluble proteome from the obligately anaerobic model organism Geobacter metallireducens identified genes putatively coding for a completely different dearomatizing BCR. The corresponding BamBCDEFGHI complex is predicted to comprise soluble molybdenum or tungsten, selenocysteine, and FeS cluster-containing components. To elucidate key processes involved in the degradation of aromatic compounds in obligately anaerobic bacteria, differential membrane protein abundance levels from G. metallireducens grown on benzoate and acetate were determined by the MS-based spectral counting approach. A total of 931 proteins were identified by combining one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with liquid chromatography-tandem mass spectrometry. Several membrane-associated proteins involved in the degradation of aromatic compounds were newly identified including proteins with similarities to modules of NiFe/heme b-containing and energy-converting hydrogenases, cytochrome bd oxidases, dissimilatory nitrate reductases, and a tungstate ATP-binding cassette transporter system. The transcriptional regulation of differentially expressed genes was analyzed by quantitative reverse transcription-PCR; in addition benzoate-induced in vitro activities of hydrogenase and nitrate reductase were determined. The results obtained provide novel insights into the poorly understood degradation of aromatic compounds in obligately anaerobic bacteria.
Collapse
Affiliation(s)
- Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, Université Louis-Pasteur, 67083 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tran BQ, Loftheim H, Reubsaet L, Lundanes E, Greibrokk T. On-Line multitasking analytical proteomics: How to separate, reduce, alkylate and digest whole proteins in an on-Line multidimensional chromatography system coupled to MS. J Sep Sci 2008; 31:2913-23. [DOI: 10.1002/jssc.200800275] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Cappadona S, Levander F, Jansson M, James P, Cerutti S, Pattini L. Wavelet-based method for noise characterization and rejection in high-performance liquid chromatography coupled to mass spectrometry. Anal Chem 2008; 80:4960-8. [PMID: 18510348 DOI: 10.1021/ac800166w] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a new method for rejecting noise from HPLC-MS data sets. The algorithm reveals peptides at low concentrations by minimizing both the chemical and the random noise. The goal is reached through a systematic approach to characterize and remove the background. The data are represented as two-dimensional maps, in order to optimally exploit the complementary dimensions of separation of the peptides offered by the LC-MS technique. The virtual chromatograms, reconstructed from the spectrographic data, have proved to be more suitable to characterize the noise than the raw mass spectra. By means of wavelet analysis, it was possible to access both the chemical and the random noise, at different scales of the decomposition. The novel approach has proved to efficiently distinguish signal from noise and to selectively reject the background while preserving low-abundance peptides.
Collapse
Affiliation(s)
- Salvatore Cappadona
- Department of Bioengineering, IIT Unit, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|