1
|
Pollaris L, Decaesteker T, Van den Broucke S, Jonckheere AC, Cremer J, Verbeken E, Maes T, Devos FC, Vande Velde G, Nemery B, Hoet PHM, Vanoirbeek JAJ. Involvement of Innate Lymphoid Cells and Dendritic Cells in a Mouse Model of Chemical-induced Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:295-311. [PMID: 33474863 PMCID: PMC7840869 DOI: 10.4168/aair.2021.13.2.295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Exposure to low concentrations of toluene diisocyanate (TDI) leads to immune-mediated chemical-induced asthma. The role of the adaptive immune system has already been thoroughly investigated; nevertheless, the involvement of innate immune cells in the pathophysiology of chemical-induced asthma is still unresolved. The aim of the study is to investigate the role of innate lymphoid cells (ILCs) and dendritic cells (DCs) in a mouse model for chemical-induced asthma. METHODS On days 1 and 8, BALB/c mice were dermally treated (20 μL/ear) with 0.5% TDI or the vehicle acetone olive oil (AOO; 2:3). On days 15, 17, 19, 22 and 24, the mice received an oropharyngeal challenge with 0.01% TDI or AOO (1:4). One day after the last challenge, airway hyperreactivity (AHR) to methacholine was assessed, followed by an evaluation of pulmonary inflammation and immune-related parameters, including the cytokine pattern in bronchoalveolar lavage fluid, lymphocyte subpopulations of the lymph nodes and their ex vivo cytokine production profile, blood immunoglobulins and DC and ILC subpopulations in the lungs. RESULTS Both DC and ILC2 were recruited to the lungs after multiple airway exposures to TDI, regardless of the prior dermal sensitization. However, prior dermal sensitization with TDI alone results in AHR and predominant eosinophilic airway inflammation, accompanied by a typical type 2 helper T (Th2) cytokine profile. CONCLUSIONS TDI-induced asthma is mediated by a predominant type 2 immune response, with the involvement of adaptive Th2 cells. However, from our study we suggest that the innate ILC2 cells are important additional players in the development of TDI-induced asthma.
Collapse
Affiliation(s)
- Lore Pollaris
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Tatjana Decaesteker
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, University of Leuven, Leuven, Belgium
| | - Sofie Van den Broucke
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Anne Charlotte Jonckheere
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, University of Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, University of Leuven, Leuven, Belgium
| | - Erik Verbeken
- Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Fien C Devos
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI, University of Leuven, Leuven, Belgium
| | - Benoit Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Peter H M Hoet
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Jeroen A J Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Lin CC, Law BF, Siegel PD, Hettick JM. Circulating miRs-183-5p, -206-3p and -381-3p may serve as novel biomarkers for 4,4'-methylene diphenyl diisocyanate exposure. Biomarkers 2018; 24:76-90. [PMID: 30074411 DOI: 10.1080/1354750x.2018.1508308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Occupational exposure to the most widely used diisocyanate, 4,4'-methylene diphenyl diisocyanate (MDI), is a cause of occupational asthma (OA). Early recognition of MDI exposure and sensitization is essential for the prevention of MDI-OA. OBJECTIVE Identify circulating microRNAs (miRs) as novel biomarkers for early detection of MDI exposure and prevention of MDI-OA. MATERIALS AND METHODS Female BALB/c mice were exposed to one of three exposure regimens: dermal exposure to 1% MDI in acetone; nose-only exposure to 4580 ± 1497 μg/m3 MDI-aerosol for 60 minutes; or MDI dermal exposure/sensitization followed by MDI-aerosol inhalation challenge. Blood was collected and miRCURY™ miRs qPCR Profiling Service was used to profile circulate miRs from dermally exposed mice. Candidate miRs were identified and verified from mice exposed to three MDI-exposure regimens by TaqMan® miR assays. RESULTS Up/down-regulation patterns of circulating mmu-miRs-183-5p, -206-3p and -381-3p were identified and verified. Circulating mmu-miR-183-5p was upregulated whereas mmu-miRs-206-3p and -381-3p were downregulated in mice exposed via all three MDI exposure regimens. DISCUSSION AND CONCLUSION Upregulation of circulating miR-183-5p along with downregulation of circulating miRs-206-3p and -381-3p may serve as putative biomarkers of MDI exposure and may be considered as potential candidates for validation in exposed human worker populations.
Collapse
Affiliation(s)
- Chen-Chung Lin
- a Allergy and Clinical Immunology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , 26505 , USA
| | - Brandon F Law
- a Allergy and Clinical Immunology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , 26505 , USA
| | - Paul D Siegel
- a Allergy and Clinical Immunology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , 26505 , USA
| | - Justin M Hettick
- a Allergy and Clinical Immunology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , 26505 , USA
| |
Collapse
|
3
|
Developing a framework for assessing chemical respiratory sensitization: A workshop report. Regul Toxicol Pharmacol 2016; 80:295-309. [PMID: 27396307 DOI: 10.1016/j.yrtph.2016.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/29/2022]
Abstract
Respiratory tract sensitization can have significant acute and chronic health implications. While induction of respiratory sensitization is widely recognized for some chemicals, validated standard methods or frameworks for identifying and characterizing the hazard are not available. A workshop on assessment of respiratory sensitization was held to discuss the current state of science for identification and characterization of respiratory sensitizer hazard, identify information facilitating development of validated standard methods and frameworks, and consider the regulatory and practical risk management needs. Participants agreed on a predominant Th2 immunological mechanism and several steps in respiratory sensitization. Some overlapping cellular events in respiratory and skin sensitization are well understood, but full mechanism(s) remain unavailable. Progress on non-animal approaches to skin sensitization testing, ranging from in vitro systems, -omics, in silico profiling, and structural profiling were acknowledged. Addressing both induction and elicitation phases remains challenging. Participants identified lack of a unifying dose metric as increasing the difficulty of interpreting dosimetry across exposures. A number of research needs were identified, including an agreed list of respiratory sensitizers and other asthmagens, distinguishing between adverse effects from immune-mediated versus non-immunological mechanisms. A number of themes emerged from the discussion regarding future testing strategies, particularly the need for a tiered framework respiratory sensitizer assessment. These workshop present a basis for moving towards a weight-of-evidence assessment.
Collapse
|
4
|
Proteomic Alterations in B Lymphocytes of Sensitized Mice in a Model of Chemical-Induced Asthma. PLoS One 2015; 10:e0138791. [PMID: 26398101 PMCID: PMC4580316 DOI: 10.1371/journal.pone.0138791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION AND AIM The role of B-lymphocytes in chemical-induced asthma is largely unknown. Recent work demonstrated that transferring B lymphocytes from toluene diisocyanate (TDI)-sensitized mice into naïve mice, B cell KO mice and SCID mice, triggered an asthma-like response in these mice after a subsequent TDI-challenge. We applied two-dimensional difference gel electrophoresis (2D-DIGE) to describe the "sensitized signature" of B lymphocytes comparing TDI-sensitized mice with control mice. RESULTS Sixteen proteins were identified that were significantly up- or down-regulated in B lymphocytes of sensitized mice. Particularly differences in the expression of cyclophilin A, cofilin 1 and zinc finger containing CCHC domain protein 11 could be correlated to the function of B lymphocytes as initiators of T lymphocyte independent asthma-like responses. CONCLUSION This study revealed important alterations in the proteome of sensitized B cells in a mouse model of chemical-induced asthma, which will have an important impact on the B cell function.
Collapse
|
5
|
Haenen S, Clynen E, Nemery B, Hoet PH, Vanoirbeek JA. Biomarker discovery in asthma and COPD: Application of proteomics techniques in human and mice. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Wiktorowicz JE, Jamaluddin M. Proteomic analysis of the asthmatic airway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 795:221-32. [PMID: 24162912 DOI: 10.1007/978-1-4614-8603-9_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteomic investigations in general utilize varied technologies for sample preparation, separations, quantification, protein identification, and biological rationalization. Their applications range from pure discovery and mechanistic studies to biomarker discovery/verification/validation. In each specific case, the analytical strategy to be implemented is tailored to the type of sample that serves as the target of the investigations. Proteomic investigations take into consideration sample complexity, the cellular heterogeneity (particularly from tissues), the potential dynamic range of the protein and peptide abundance within the sample, the likelihood of posttranslational modifications (PTM), and other important factors that might influence the final output of the study. We describe the sample types typically used for proteomic investigations into the biology of asthma and review the most recent related publications with special attention to those that deal with the unique airway samples such as bronchoalveolar lavage fluids (BALF), epithelial lining fluid and cells (ELF), induced sputum (IS), and exhaled breath condensate (EBC). Finally, we describe the newest proteomics approaches to sample preparation of the unique airway samples, BALF and IS.
Collapse
Affiliation(s)
- John E Wiktorowicz
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 2.208A Basic Science Bldg, 301 University Blvd, Galveston, TX, 77555-0635, USA,
| | | |
Collapse
|
7
|
Haenen S, Clynen E, De Vooght V, Schoofs L, Nemery B, Hoet PHM, Vanoirbeek JAJ. Proteome changes in auricular lymph nodes and serum after dermal sensitization to toluene diisocyanate in mice. Proteomics 2012; 12:3548-58. [PMID: 23038679 DOI: 10.1002/pmic.201200264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/17/2012] [Accepted: 09/10/2012] [Indexed: 12/30/2022]
Abstract
Some reactive chemicals, such as diisocyanates, are capable of initiating an allergic response, which can lead to occupational asthma after a latency period. Clinical symptoms such as cough, wheezing, and dyspnea occur only late, making it difficult to intervene at an early stage. So far, most studies using proteomics in lung research have focused on comparisons of healthy versus diseased subjects. Here, using 2D-DIGE, we explored proteome changes in the local draining lymph nodes and serum of mice dermally sensitized once or twice with toluene-2,4-diisocyanate (TDI) before asthma is induced. In the lymph nodes, we found 38 and 58 differentially expressed proteins after one and two treatments, respectively, between TDI-treated and vehicle-treated mice. In serum, seven and 16 differentially expressed proteins were detected after one and two treatments, respectively. We identified 80-85% of the differentially expressed proteins by MS. Among them, lymphocyte-specific protein-1, coronin 1a, and hemopexin were verified by Western blotting or ELISA in an independent group of mice. This study revealed alterations in the proteomes early during sensitization in a mouse model before the onset of chemical-induced asthma. If validated in humans, these changes could lead to earlier diagnosis of TDI-exposed workers.
Collapse
Affiliation(s)
- Steven Haenen
- Occupational, Environmental and Insurance Medicine, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
8
|
Induced sputum proteome in healthy subjects and asthmatic patients. J Allergy Clin Immunol 2011; 128:1176-1184.e6. [PMID: 21906793 DOI: 10.1016/j.jaci.2011.07.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/22/2011] [Accepted: 07/27/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Asthma is a heterogeneous disease characterized by abnormal airway pathophysiology and susceptibility to different stimuli, as exemplified by a subset of patients with exercise-induced bronchoconstriction. Induced sputum provides a noninvasive method to sample airway biofluids that are enriched in proteins. OBJECTIVE We hypothesized that novel mechanisms in the pathogenesis of asthma might be revealed by studying the patterns of protein expression in induced sputum. METHODS We used shotgun proteomics to analyze induced sputum from 5 healthy subjects and 10 asthmatic patients, including 5 with exercise-induced bronchoconstriction. Differential protein expression among asthmatic patients, asthma subphenotypes, and control subjects was determined by using spectral counting and computational methods. RESULTS Using Gene Ontology analysis, we defined the functional landscape of the induced sputum proteome and applied network analysis to construct a protein interaction map for this airway compartment. Shotgun proteomics analysis identified a number of proteins the differential enrichment or depletion of which robustly distinguished asthmatic patients from healthy control subjects and captured the effects of exercise on induced sputum proteome. Functional and network analysis identified key processes, including proteolytic activity, that are known contributors to airway remodeling. Importantly, this approach highlighted previously unrecognized roles for differentially expressed proteins in pathways implicated in asthma, such as modulation of phospholipase A(2) by secretoglobin, a putative role for S100A8/9 in human asthma, and selective upregulation of complement component 3a in response to exercise in asthmatic patients. CONCLUSION Computationally intensive analysis of induced sputum proteome is a powerful approach to understanding the pathophysiology of asthma and a promising methodology to investigating other diseases of the airways.
Collapse
|
9
|
Wisnewski AV, Hettick JM, Siegel PD. Toluene diisocyanate reactivity with glutathione across a vapor/liquid interface and subsequent transcarbamoylation of human albumin. Chem Res Toxicol 2011; 24:1686-93. [PMID: 21806041 DOI: 10.1021/tx2002433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutathione has previously been identified as a reaction target for toluene diisocyanate (TDI) in vitro and in vivo, and has been suggested to contribute to toxic and allergic reactions to exposure. In this study, the reactivity of reduced glutathione (GSH) with TDI in vitro was further investigated using a mixed phase (vapor/liquid) exposure system to model the in vivo biophysics of exposure in the lower respiratory tract. HPLC/MS/MS was used to characterize the observed reaction products. Under the conditions tested, the major reaction products between TDI vapor and GSH were S-linked bis(GSH)-TDI and to a lesser extent mono(GSH)-TDI conjugates (with one N═C═O hydrolyzed). The vapor-phase-generated GSH-TDI conjugates were capable of transcarbamoylating human albumin in a pH-dependent manner, resulting in changes in the self-protein's conformation/charge, on the basis of electrophoretic mobility under native conditions. Specific sites of human albumin-TDI conjugation, mediated by GSH-TDI, were identified (Lys(73), Lys(159), Lys(190), Lys(199), Lys(212), Lys(351), Lys(136/137), Lys(413/414), and Lys(524/525)) along with overlap with those susceptible to direct conjugation by TDI. Together, the data extend the proof-of-principle for GSH to act as a "shuttle" for a reactive form of TDI, which could contribute to clinical responses to exposure.
Collapse
Affiliation(s)
- Adam V Wisnewski
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8057, USA.
| | | | | |
Collapse
|
10
|
Quesada Calvo F, Fillet M, Renaut J, Crahay C, Gueders M, Hacha J, Paulissen G, Foidart JM, Noel A, Rocks N, Leprince P, Cataldo D. Potential therapeutic target discovery by 2D-DIGE proteomic analysis in mouse models of asthma. J Proteome Res 2011; 10:4291-301. [PMID: 21751807 DOI: 10.1021/pr200494n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As asthma physiopathology is complex and not fully understood to date; it is expected that new key mediators are still to be unveiled in this disease. The main objective of this study was to discover potential new target proteins with a molecular weight >20 kDa by using two-dimensional differential in-gel electrophoresis (2D-DIGE) on lung parenchyma extracts from control or allergen-exposed mice (ovalbumin). Two different mouse models leading to the development of acute airway inflammation (5 days allergen exposure) and airway remodeling (10 weeks allergen exposure) were used. This experimental setting allowed the discrimination of 33 protein spots in the acute inflammation model and 31 spots in the remodeling model displaying a differential expression. Several proteins were then identified by MALDI-TOF/TOF MS. Among those differentially expressed proteins, PDIA6, GRP78, Annexin A6, hnRPA3, and Enolase display an increased expression in lung parenchyma from mice exposed to allergen for 5 days. Conversely, Apolipoprotein A1 was shown to be decreased after allergen exposure in the same model. Analysis on lung parenchyma of mice exposed to allergens for 10 weeks showed decreased calreticulin levels. Changes in the levels of those different mediators were confirmed by Western blot and immunohistochemical analysis. Interestingly, alveolar macrophages isolated from lungs in the acute inflammation model displayed enhanced levels of GRP78. Moreover, intratracheal instillation of anti-GRP78 siRNA in allergen-exposed animals led to a decrease in eosinophilic inflammation and bronchial hyperresponsiveness. This study unveils new mediators of potential importance that are up- and down-regulated in asthma. Among up-regulated mediators, GRP-78 appears as a potential new therapeutic target worthy of further investigations.
Collapse
Affiliation(s)
- Florence Quesada Calvo
- GIGA-research, GIGA-I3, GIGA-cancer, and GIGA-Neurosciences, University of Liege, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cardoen D, Ernst UR, Van Vaerenbergh M, Boerjan B, de Graaf DC, Wenseleers T, Schoofs L, Verleyen P. Differential proteomics in dequeened honeybee colonies reveals lower viral load in hemolymph of fertile worker bees. PLoS One 2011; 6:e20043. [PMID: 21698281 PMCID: PMC3115943 DOI: 10.1371/journal.pone.0020043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/11/2011] [Indexed: 11/19/2022] Open
Abstract
The eusocial societies of honeybees, where the queen is the only fertile female among tens of thousands sterile worker bees, have intrigued scientists for centuries. The proximate factors, which cause the inhibition of worker bee ovaries, remain largely unknown; as are the factors which cause the activation of worker ovaries upon the loss of queen and brood in the colony. In an attempt to reveal key players in the regulatory network, we made a proteomic comparison of hemolymph profiles of workers with completely activated ovaries vs. rudimentary ovaries. An unexpected finding of this study is the correlation between age matched worker sterility and the enrichment of Picorna-like virus proteins. Fertile workers, on the other hand, show the upregulation of potential components of the immune system. It remains to be investigated whether viral infections contribute to worker sterility directly or are the result of a weaker immune system of sterile workers.
Collapse
Affiliation(s)
- Dries Cardoen
- Research Group of Functional Genomics and Proteomics, K.U.Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|