1
|
Liu Z, Jiang S, Hao B, Xie S, Liu Y, Huang Y, Xu H, Luo C, Huang M, Tan M, Xu JY. A proteomic landscape of pharmacologic perturbations for functional relevance. J Pharm Anal 2024; 14:128-139. [PMID: 38352953 PMCID: PMC10859532 DOI: 10.1016/j.jpha.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 02/16/2024] Open
Abstract
Pharmacological perturbation studies based on protein-level signatures are fundamental for drug discovery. In the present study, we used a mass spectrometry (MS)-based proteomic platform to profile the whole proteome of the breast cancer MCF7 cell line under stress induced by 78 bioactive compounds. The integrated analysis of perturbed signal abundance revealed the connectivity between phenotypic behaviors and molecular features in cancer cells. Our data showed functional relevance in exploring the novel pharmacological activity of phenolic xanthohumol, as well as the noncanonical targets of clinically approved tamoxifen, lovastatin, and their derivatives. Furthermore, the rational design of synergistic inhibition using a combination of histone methyltransferase and topoisomerase was identified based on their complementary drug fingerprints. This study provides rich resources for the proteomic landscape of drug responses for precision therapeutic medicine.
Collapse
Affiliation(s)
- Zhiwei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shangwen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shuyu Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yingluo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Heng Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China
| |
Collapse
|
2
|
Yang X, Huang Q, Xu J, Gao Z, Jiang X, Wu Y, Ye W, Liang Y. Transcriptome reveals BCAAs biosynthesis pathway is influenced by lovastatin and can act as a potential control target in Phytophthora sojae. J Appl Microbiol 2022; 133:3585-3595. [PMID: 36000236 DOI: 10.1111/jam.15792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022]
Abstract
AIMS Lovastatin has been indicated to impair growth and development of Phytophthora sojae. Therefore, this study was performed to understand the inhibitory mechanism of lovastatin and investigate the metabolic pathway potentially serviced as a new control target for this plant pathogen. METHODS AND RESULTS Whole transcriptome analysis of lovastatin-treated P. sojae was performed by RNA-sequencing. The results revealed that 84 genes were upregulated and 58 were downregulated with more than four-fold changes under treatment. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the branched-chain amino acids (BCAAs) biosynthesis pathway was abundantly enriched. All enzymes in the BCAAs biosynthesis pathway were identified in the P. sojae genome. Moreover, the study found that the herbicide flumetsulam targeting acetohydroxyacid synthase (AHAS) of the BCAAs biosynthesis pathway could effectively inhibit mycelial growth of P. sojae. CONCLUSIONS Lovastatin treatment significantly influences the BCAAs biosynthesis pathway in P. sojae. Moreover, the herbicide flumetsulam targets AHAS and inhibits growth of P. sojae. SIGNIFICANCE AND IMPACT OF STUDY The present study revealed that BCAAs biosynthesis pathway was influenced by lovastatin treatment and its key enzyme AHAS was identified as a potential new control target, which provides clues for exploring more oomycides to control plant diseases caused by P. sojae.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Qifeng Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jitao Xu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhen Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xue Jiang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Wenwu Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Technological advances and proteomic applications in drug discovery and target deconvolution: identification of the pleiotropic effects of statins. Drug Discov Today 2017; 22:848-869. [PMID: 28284830 DOI: 10.1016/j.drudis.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 01/05/2023]
Abstract
Proteomic-based techniques provide a powerful tool for identifying the full spectrum of protein targets of a drug, elucidating its mechanism(s) of action, and identifying biomarkers of its efficacy and safety. Herein, we outline the technological advancements in the field, and illustrate the contribution of proteomics to the definition of the pharmacological profile of statins, which represent the cornerstone of the prevention and treatment of cardiovascular diseases (CVDs). Statins act by inhibiting 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, thus reducing cholesterol biosynthesis and consequently enhancing the clearance of low-density lipoproteins from the blood; however, HMG-CoA reductase inhibition can result in a multitude of additional effects beyond lipid lowering, known as 'pleiotropic effects'. The case of statins highlights the unique contribution of proteomics to the target profiling of a drug molecule.
Collapse
|
4
|
Xiao Y, Wang Y. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:601-19. [PMID: 25376990 PMCID: PMC5609854 DOI: 10.1002/mas.21447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 05/11/2023]
Abstract
Nucleotide-binding proteins, such as protein kinases, ATPases and GTP-binding proteins, are among the most important families of proteins that are involved in a number of pivotal cellular processes. However, global study of the structure, function, and expression level of nucleotide-binding proteins as well as protein-nucleotide interactions can hardly be achieved with the use of conventional approaches owing to enormous diversity of the nucleotide-binding protein family. Recent advances in mass spectrometry (MS) instrumentation, coupled with a variety of nucleotide-binding protein enrichment methods, rendered MS-based proteomics a powerful tool for the comprehensive characterizations of the nucleotide-binding proteome, especially the kinome. Here, we review the recent developments in the use of mass spectrometry, together with general and widely used affinity enrichment approaches, for the proteome-wide capture, identification and quantification of nucleotide-binding proteins, including protein kinases, ATPases, GTPases, and other nucleotide-binding proteins. The working principles, advantages, and limitations of each enrichment platform in identifying nucleotide-binding proteins as well as profiling protein-nucleotide interactions are summarized. The perspectives in developing novel MS-based nucleotide-binding protein detection platform are also discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:601-619, 2016.
Collapse
Affiliation(s)
| | - Yinsheng Wang
- Correspondence to: Yinsheng Wang, Department of Chemistry, University of California, Riverside, CA 92521-0403.
| |
Collapse
|
5
|
Novikova SE, Zgoda VG. [Transcriptomics and proteomics in studies of induced differentiation of leukemia cells]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:529-44. [PMID: 26539862 DOI: 10.18097/pbmc20156105529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Induced differentiation of leukemia cells is in the focus of basic and applied biomedical studies medicine and biology for more than 30 years. During this period specific regulatory molecules involved in the maturation process have been identified by biochemical and molecular biological methods. Recent developments of high-throughput transcriptomic and proteomic techniques made it possible to analyze large sets of mRNA and proteins; this resulted in identification of functionally important signal transduction pathways and networks of molecular interactions, and thus extent existing knowledge on the molecular mechanisms of induced differentiation. Despite significant advances in mechanisms of induced differentiation, many problems related to the molecular mechanism of cell maturation, a phenomenon of therapeutic resistance of leukemic cells need better understanding and thus require further detailed study. Transcriptomics and proteomics methods provide a suitable methodological platform for the implementation of such studies. This review highlights the use of transcriptomic and proteomic methods in studies aimed at various aspects of the induced differentiation. Special attention is paid to the employment of the systems approach for investigation of various aspects of cell maturation. The use of the systems approach in studies of induced differentiation is an important step for the transition from the formal data accumulation on expression of mRNA and proteins towards creating models of biological processes in silico.
Collapse
Affiliation(s)
- S E Novikova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
6
|
Proteomic profile of aminoglutethimide-induced apoptosis in HL-60 cells: Role of myeloperoxidase and arylamine free radicals. Chem Biol Interact 2015; 239:129-38. [DOI: 10.1016/j.cbi.2015.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 05/26/2015] [Accepted: 06/18/2015] [Indexed: 12/12/2022]
|
7
|
Xiao H, Chen W, Tang GX, Smeekens JM, Wu R. Systematic Investigation of Cellular Response and Pleiotropic Effects in Atorvastatin-Treated Liver Cells by MS-Based Proteomics. J Proteome Res 2015; 14:1600-11. [DOI: 10.1021/pr501277g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haopeng Xiao
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Weixuan Chen
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - George X. Tang
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Johanna M. Smeekens
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Kanugula AK, Dhople VM, Völker U, Ummanni R, Kotamraju S. Fluvastatin mediated breast cancer cell death: a proteomic approach to identify differentially regulated proteins in MDA-MB-231 cells. PLoS One 2014; 9:e108890. [PMID: 25268751 PMCID: PMC4182601 DOI: 10.1371/journal.pone.0108890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/04/2014] [Indexed: 01/12/2023] Open
Abstract
Statins are increasingly being recognized as anti-cancer agents against various cancers including breast cancer. To understand the molecular pathways targeted by fluvastatin and its differential sensitivity against metastatic breast cancer cells, we analyzed protein alterations in MDA-MB-231 cells treated with fluvastatin using 2-DE in combination with LC-MS/MS. Results revealed dys-regulation of 39 protein spots corresponding to 35 different proteins. To determine the relevance of altered protein profiles with breast cancer cell death, we mapped these proteins to major pathways involved in the regulation of cell-to-cell signaling and interaction, cell cycle, Rho GDI and proteasomal pathways using IPA analysis. Highly interconnected sub networks showed that vimentin and ERK1/2 proteins play a central role in controlling the expression of altered proteins. Fluvastatin treatment caused proteolysis of vimentin, a marker of epithelial to mesenchymal transition. This effect of fluvastatin was reversed in the presence of mevalonate, a downstream product of HMG-CoA and caspase-3 inhibitor. Interestingly, fluvastatin neither caused an appreciable cell death nor did modulate vimentin expression in normal mammary epithelial cells. In conclusion, fluvastatin alters levels of cytoskeletal proteins, primarily targeting vimentin through increased caspase-3- mediated proteolysis, thereby suggesting a role for vimentin in statin-induced breast cancer cell death.
Collapse
Affiliation(s)
| | - Vishnu M. Dhople
- Interfacultary Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfacultary Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ramesh Ummanni
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- * E-mail: (SK); (RU)
| | - Srigiridhar Kotamraju
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- * E-mail: (SK); (RU)
| |
Collapse
|
9
|
Guo L, Xiao Y, Wang Y. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts. Toxicol Appl Pharmacol 2014; 277:21-9. [PMID: 24625837 DOI: 10.1016/j.taap.2014.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/23/2014] [Accepted: 02/28/2014] [Indexed: 12/18/2022]
Abstract
Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ~6500 unique proteins quantified, ~300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content.
Collapse
Affiliation(s)
- Lei Guo
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403, United States
| | - Yongsheng Xiao
- Department of Chemistry, University of California, Riverside, CA 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403, United States; Department of Chemistry, University of California, Riverside, CA 92521-0403, United States.
| |
Collapse
|
10
|
Procedures for the biochemical enrichment and proteomic analysis of the cytoskeletome. Anal Biochem 2013; 446:102-7. [PMID: 24161902 DOI: 10.1016/j.ab.2013.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 12/17/2022]
Abstract
The cell cytoskeleton is composed of microtubules, intermediate filaments, and actin that provide a rigid support structure important for cell shape. However, it is also a dynamic signaling scaffold that receives and transmits complex mechanosensing stimuli that regulate normal physiological and aberrant pathophysiological processes. Studying cytoskeletal functions in the cytoskeleton's native state is inherently difficult due to its rigid and insoluble nature. This has severely limited detailed proteomic analyses of the complex protein networks that regulate the cytoskeleton. Here, we describe a purification method that enriches for the cytoskeleton and its associated proteins in their native state that is also compatible with current mass spectrometry-based protein detection methods. This method can be used for biochemical, fluorescence, and large-scale proteomic analyses of numerous cell types. Using this approach, 2346 proteins were identified in the cytoskeletal fraction of purified mouse embryonic fibroblasts, of which 635 proteins were either known cytoskeleton proteins or cytoskeleton-interacting proteins. Functional annotation and network analyses using the Ingenuity Knowledge Database of the cytoskeletome revealed important nodes of interconnectivity surrounding well-established regulators of the actin cytoskeleton and focal adhesion complexes. This improved cytoskeleton purification method will aid our understanding of how the cytoskeleton controls normal and diseased cell functions.
Collapse
|
11
|
Lovastatin in Aspergillus terreus: fermented rice straw extracts interferes with methane production and gene expression in Methanobrevibacter smithii. BIOMED RESEARCH INTERNATIONAL 2013; 2013:604721. [PMID: 23710454 PMCID: PMC3655455 DOI: 10.1155/2013/604721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 12/26/2022]
Abstract
Lovastatin, a natural byproduct of some fungi, is able to inhibit HMG-CoA (3-hydroxy-3methyl glutaryl CoA) reductase. This is a key enzyme involved in isoprenoid synthesis and essential for cell membrane formation in methanogenic Archaea. In this paper, experiments were designed to test the hypothesis that lovastatin secreted by Aspergillus terreus in fermented rice straw extracts (FRSE) can inhibit growth and CH4 production in Methanobrevibacter smithii (a test methanogen). By HPLC analysis, 75% of the total lovastatin in FRSE was in the active hydroxyacid form, and in vitro studies confirmed that this had a stronger effect in reducing both growth and CH4 production in M. smithii compared to commercial lovastatin. Transmission electron micrographs revealed distorted morphological divisions of lovastatin- and FRSE-treated M. smithii cells, supporting its role in blocking normal cell membrane synthesis. Real-time PCR confirmed that both commercial lovastatin and FRSE increased (P < 0.01) the expression of HMG-CoA reductase gene (hmg). In addition, expressions of other gene transcripts in M. smithii. with a key involvement in methanogenesis were also affected. Experimental confirmation that CH4 production is inhibited by lovastatin in A. terreus-fermented rice straw paves the way for its evaluation as a feed additive for mitigating CH4 production in ruminants.
Collapse
|
12
|
Xiao Y, Guo L, Jiang X, Wang Y. Proteome-wide discovery and characterizations of nucleotide-binding proteins with affinity-labeled chemical probes. Anal Chem 2013; 85:3198-206. [PMID: 23413923 DOI: 10.1021/ac303383c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nucleotide-binding proteins play pivotal roles in many cellular processes including cell signaling. However, targeted studies of the subproteome of nucleotide-binding proteins, especially protein kinases and GTP-binding proteins, remain challenging. Here, we report a general strategy in using affinity-labeled chemical probes to enrich, identify, and quantify ATP- and GTP-binding proteins in the entire human proteome. Our results revealed that the ATP/GTP affinity probes facilitated the identification of 100 GTP-binding proteins and 206 kinases with the use of low milligram quantities of lysate of HL-60 cells. In combination with the use of the stable isotope labeling by amino acids in cell culture-based quantitative proteomics method, we assessed the ATP/GTP binding selectivities of nucleotide-binding proteins at the global proteome scale. Our results confirmed known and, more importantly, unveiled new ATP/GTP-binding preferences of hundreds of nucleotide-binding proteins. Additionally, our strategy led to the identification of three and one unique nucleotide-binding motifs for kinases and GTP-binding proteins, respectively, and the characterizations of the nucleotide-binding selectivities of individual motifs. Our strategy for capturing and characterizing ATP/GTP-binding proteins should be generally applicable for those proteins that can interact with other nucleotides.
Collapse
Affiliation(s)
- Yongsheng Xiao
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | | | | | | |
Collapse
|
13
|
Prins JM, Wang Y. Quantitative proteomic analysis revealed N'-nitrosonornicotine-induced down-regulation of nonmuscle myosin II and reduced cell migration in cultured human skin fibroblast cells. J Proteome Res 2013; 12:1282-8. [PMID: 23305604 DOI: 10.1021/pr3009397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The association of tobacco smoke with decreased cell motility and wound healing is well documented; however, the cellular mechanisms and specific toxic tobacco constituents responsible for this effect are not well understood. Tobacco-specific N-nitrosamines (TSNAs) are among the most important classes of carcinogens found in tobacco products. The TSNA N'-nitrosonornicotine (NNN) is present at relatively high levels in tobacco and its smoke, as well as second- and third-hand smoke. To investigate the cellular pathways that are perturbed upon NNN exposure, we employed a quantitative proteomic approach, utilizing stable isotope labeling by amino acids in cell culture and mass spectrometry, to assess the NNN-induced alteration of protein expression in GM00637 human skin fibroblast cells. With this approach, we were able to quantify 2599 proteins, 191 of which displayed significantly changed expression following NNN exposure. One of the main findings from our proteomic analysis was the down-regulation of six different subunits of myosin, particularly nonmuscle myosin II heavy chain, isoforms A, B, and C. In addition, we found the altered expression of several extracellular matrix proteins and proteins involved in cellular adhesion. Together, our quantitative proteomic results suggested that NNN exposure may interfere with fibroblast motility. An in vitro scratch wound assay result supported that NNN exposure reduced the ability of dermal fibroblast to migrate into the scratched area. The results from the present study offer novel insights into the cellular mechanisms of NNN toxicity and identify NNN as a specific tobacco constituent that contributes to decreased fibroblast migration.
Collapse
Affiliation(s)
- John M Prins
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | | |
Collapse
|