1
|
Darville LNF, Lockhart JH, Putty Reddy S, Fang B, Izumi V, Boyle TA, Haura EB, Flores ER, Koomen JM. A Fast-Tracking Sample Preparation Protocol for Proteomics of Formalin-Fixed Paraffin-Embedded Tumor Tissues. Methods Mol Biol 2024; 2823:193-223. [PMID: 39052222 PMCID: PMC11648944 DOI: 10.1007/978-1-0716-3922-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Archived tumor specimens are routinely preserved by formalin fixation and paraffin embedding. Despite the conventional wisdom that proteomics might be ineffective due to the cross-linking and pre-analytical variables, these samples have utility for both discovery and targeted proteomics. Building on this capability, proteomics approaches can be used to maximize our understanding of cancer biology and clinical relevance by studying preserved tumor tissues annotated with the patients' medical histories. Proteomics of formalin-fixed paraffin-embedded (FFPE) tissues also integrates with histological evaluation and molecular pathology strategies, so that additional collection of research biopsies or resected tumor aliquots is not needed. The acquisition of data from the same tumor sample also overcomes concerns about biological variation between samples due to intratumoral heterogeneity. However, the protein extraction and proteomics sample preparation from FFPE samples can be onerous, particularly for small (i.e., limited or precious) samples. Therefore, we provide a protocol for a recently introduced kit-based EasyPep method with benchmarking against a modified version of the well-established filter-aided sample preparation strategy using laser-capture microdissected lung adenocarcinoma tissues from a genetically engineered mouse model. This model system allows control over the tumor preparation and pre-analytical variables while also supporting the development of methods for spatial proteomics to examine intratumoral heterogeneity. Data are posted in ProteomeXchange (PXD045879).
Collapse
Affiliation(s)
| | | | | | - Bin Fang
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | - John M Koomen
- H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Molecular Oncology/Pathology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
2
|
Taylor AH, Konje JC, Ayakannu T. Identification of Potentially Novel Molecular Targets of Endometrial Cancer Using a Non-Biased Proteomic Approach. Cancers (Basel) 2023; 15:4665. [PMID: 37760635 PMCID: PMC10527058 DOI: 10.3390/cancers15184665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The present study was aimed at identifying novel proteins in endometrial cancer (EC), employing proteomic analysis of tissues obtained after surgery. A differential MS-based proteomic analysis was conducted from whole tissues dissected from biopsies from post-menopausal women, histologically confirmed as endometrial cancer (two endometrioid and two serous; n = 4) or normal atrophic endometrium (n = 4), providing 888 differentially expressed proteins with 246 of these previously documented elsewhere as expressed in EC and 372 proteins not previously demonstrated to be expressed in EC but associated with other types of cancer. Additionally, 33 proteins not recorded previously in PubMed as being expressed in any forms of cancer were also identified, with only 26 of these proteins having a publication associated with their expression patterns or putative functions. The putative functions of the 26 proteins (GRN, APP, HEXA, CST3, CAD, QARS, SIAE, WARS, MYH8, CLTB, GOLIM4, SCARB2, BOD1L1, C14orf142, C9orf142, CCDC13, CNPY4, FAM169A, HN1L, PIGT, PLCL1, PMFBP1, SARS2, SCPEP1, SLC25A24 and ZC3H4) in other tissues point towards and provide a basis for further investigation of these previously unrecognised novel EC proteins. The developmental biology, disease, extracellular matrix, homeostatic, immune, metabolic (both RNA and protein), programmed cell death, signal transduction, molecular transport, transcriptional networks and as yet uncharacterised pathways indicate that these proteins are potentially involved in endometrial carcinogenesis and thus may be important in EC diagnosis, prognostication and treatment and thus are worthy of further investigation.
Collapse
Affiliation(s)
- Anthony H. Taylor
- Reproductive Sciences Section, Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Justin C. Konje
- Reproductive Sciences Section, Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- Weill Cornell Medicine-Qatar, Al Rayyan, Doha P.O. Box 24144, Qatar
| | - Thangesweran Ayakannu
- Reproductive Sciences Section, Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Department of Obstetrics & Gynaecology, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
- Sunway Medical Centre, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
3
|
Weke K, Kote S, Faktor J, Al Shboul S, Uwugiaren N, Brennan PM, Goodlett DR, Hupp TR, Dapic I. DIA-MS proteome analysis of formalin-fixed paraffin-embedded glioblastoma tissues. Anal Chim Acta 2022; 1204:339695. [DOI: 10.1016/j.aca.2022.339695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/11/2022]
|
4
|
Evaluation of Fast and Sensitive Proteome Profiling of FF and FFPE Kidney Patient Tissues. Molecules 2022; 27:molecules27031137. [PMID: 35164409 PMCID: PMC8838561 DOI: 10.3390/molecules27031137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
The application of proteomics to fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) human tissues is an important development spurred on by requests from stakeholder groups in clinical fields. One objective is to complement current diagnostic methods with new specific molecular information. An important goal is to achieve adequate and consistent protein recovery across and within large-scale studies. Here, we describe development of several protocols incorporating mass spectrometry compatible detergents, including Rapigest, PPS, and ProteaseMax. Methods were applied on 4 and 15 μm thick FF tissues, and 4 μm thick FFPE tissues. We evaluated sensitivity and repeatability of the methods and found that the protocol containing Rapigest enabled detection of 630 proteins from FF tissue of 1 mm2 and 15 μm thick, whereas 498 and 297 proteins were detected with the protocols containing ProteaseMax and PPS, respectively. Surprisingly, PPS-containing buffer showed good extraction of the proteins from 4 μm thick FFPE tissue with the average of 270 protein identifications (1 mm2), similar to the results on 4 μm thick FF. Moreover, we found that temperature increases during incubation with urea on 4 μm thick FF tissue revealed a decrease in the number of identified proteins and increase in the number of the carbamylated peptides.
Collapse
|
5
|
Chen TT, Yuan MM, Tao YM, Ren XY, Li S. Engineering of Self-assembly Polymers Encapsulated with Dual Anticancer Drugs for the Treatment of Endometrial Cancer. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Yen TY, Wong R, Pizzo D, Thein M, Macher BA, Timpe LC. Over-Expression of RNA Processing, Heat Shock, and DNA Repair Proteins in Breast Tumor Compared to Normal Tissue. Proteomics 2020; 20:e2000044. [PMID: 32663359 PMCID: PMC7855622 DOI: 10.1002/pmic.202000044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/16/2020] [Indexed: 01/04/2023]
Abstract
This study identifies the main changes in protein expression in human breast tumors compared to normal breast tissue. Malignant tumors (32) and normal breast tissue samples (23), from formaldehyde-fixed, paraffin-embedded specimens are subjected to discovery proteomics using liquid chromatography/tandem mass spectrometry, with spectral counts for quantitation. The dataset contains 1406 proteins. Differential expression is measured using a method that takes advantage of estimates of the percentage of tumor on a slide. This analysis shows that the major classes of proteins over-expressed by tumors are RNA-binding, heat shock and DNA repair proteins. RNA-binding proteins, including heterogeneous nuclear ribonucleoproteins (HNRNPs), SR splice factors (SRSF) and elongation factors form the largest group. Comparison with results from another study demonstrates that the RNA-binding proteins are associated specifically with malignant transformation, rather than with cell proliferation. HNRNP and SRSF proteins help define splice sites in normal cells. Their over-expression may dysregulate splicing, which in turn has the potential to promote malignant transformation.
Collapse
Affiliation(s)
- Ten-Yang Yen
- San Francisco State University - Department of Chemistry and Biochemistry
| | - Richard Wong
- University of California San Diego - Department of Pathology
| | - Don Pizzo
- University of California San Diego - Department of Pathology
| | - Moe Thein
- San Francisco State University - Department of Chemistry and Biochemistry
| | - Bruce A. Macher
- San Francisco State University - Department of Chemistry and Biochemistry
| | - Leslie C. Timpe
- San Francisco State University - Department of Biology, 1600 Holloway Ave., San Francisco, California 94132, United States
| |
Collapse
|
7
|
Marchione DM, Ilieva I, Devins K, Sharpe D, Pappin DJ, Garcia BA, Wilson JP, Wojcik JB. HYPERsol: High-Quality Data from Archival FFPE Tissue for Clinical Proteomics. J Proteome Res 2020; 19:973-983. [PMID: 31935107 DOI: 10.1021/acs.jproteome.9b00686] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Massive formalin-fixed, paraffin-embedded (FFPE) tissue archives exist worldwide, representing an invaluable resource for clinical proteomics research. However, current protocols for FFPE proteomics lack standardization, efficiency, reproducibility, and scalability. Here we present high-yield protein extraction and recovery by direct solubilization (HYPERsol), an optimized workflow using ultrasonication and S-Trap sample processing that enables proteome coverage and quantification from FFPE samples comparable to that achieved from flash-frozen tissue (average R = 0.936). When applied to archival samples, HYPERsol resulted in high-quality data from FFPE specimens in storage for up to 17 years, and may enable the discovery of new immunohistochemical markers.
Collapse
Affiliation(s)
- Dylan M Marchione
- Epigenetics Institute, Department of Biochemistry & Biophysics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Ilyana Ilieva
- Department of Pathology and Laboratory Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Kyle Devins
- Department of Pathology and Laboratory Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Danielle Sharpe
- Department of Pathology and Laboratory Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory , Cold Spring Harbor , New York 11724 , United States.,ProtiFi, LLC , Huntington , New York 11743 , United States
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry & Biophysics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - John P Wilson
- ProtiFi, LLC , Huntington , New York 11743 , United States
| | - John B Wojcik
- Department of Pathology and Laboratory Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
8
|
Prieto DA, Blonder J. Tissue sample preparation for proteomic analysis. PROTEOMIC AND METABOLOMIC APPROACHES TO BIOMARKER DISCOVERY 2020:39-52. [DOI: 10.1016/b978-0-12-818607-7.00003-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Dapic I, Baljeu-Neuman L, Uwugiaren N, Kers J, Goodlett DR, Corthals GL. Proteome analysis of tissues by mass spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:403-441. [PMID: 31390493 DOI: 10.1002/mas.21598] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Tissues and biofluids are important sources of information used for the detection of diseases and decisions on patient therapies. There are several accepted methods for preservation of tissues, among which the most popular are fresh-frozen and formalin-fixed paraffin embedded methods. Depending on the preservation method and the amount of sample available, various specific protocols are available for tissue processing for subsequent proteomic analysis. Protocols are tailored to answer various biological questions, and as such vary in lysis and digestion conditions, as well as duration. The existence of diverse tissue-sample protocols has led to confusion in how to choose the best protocol for a given tissue and made it difficult to compare results across sample types. Here, we summarize procedures used for tissue processing for subsequent bottom-up proteomic analysis. Furthermore, we compare protocols for their variations in the composition of lysis buffers, digestion procedures, and purification steps. For example, reports have shown that lysis buffer composition plays an important role in the profile of extracted proteins: the most common are tris(hydroxymethyl)aminomethane, radioimmunoprecipitation assay, and ammonium bicarbonate buffers. Although, trypsin is the most commonly used enzyme for proteolysis, in some protocols it is supplemented with Lys-C and/or chymotrypsin, which will often lead to an increase in proteome coverage. Data show that the selection of the lysis procedure might need to be tissue-specific to produce distinct protocols for individual tissue types. Finally, selection of the procedures is also influenced by the amount of sample available, which range from biopsies or the size of a few dozen of mm2 obtained with laser capture microdissection to much larger amounts that weight several milligrams.
Collapse
Affiliation(s)
- Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | | | - Naomi Uwugiaren
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - David R Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- University of Maryland, 20N. Pine Street, Baltimore, MD 21201
| | - Garry L Corthals
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Föll MC, Fahrner M, Oria VO, Kühs M, Biniossek ML, Werner M, Bronsert P, Schilling O. Reproducible proteomics sample preparation for single FFPE tissue slices using acid-labile surfactant and direct trypsinization. Clin Proteomics 2018. [PMID: 29527141 PMCID: PMC5838928 DOI: 10.1186/s12014-018-9188-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Proteomic analyses of clinical specimens often rely on human tissues preserved through formalin-fixation and paraffin embedding (FFPE). Minimal sample consumption is the key to preserve the integrity of pathological archives but also to deal with minimal invasive core biopsies. This has been achieved by using the acid-labile surfactant RapiGest in combination with a direct trypsinization (DTR) strategy. A critical comparison of the DTR protocol with the most commonly used filter aided sample preparation (FASP) protocol is lacking. Furthermore, it is unknown how common histological stainings influence the outcome of the DTR protocol. Methods Four single consecutive murine kidney tissue specimens were prepared with the DTR approach or with the FASP protocol using both 10 and 30 k filter devices and analyzed by label-free, quantitative liquid chromatography–tandem mass spectrometry (LC–MS/MS). We compared the different protocols in terms of proteome coverage, relative label-free quantitation, missed cleavages, physicochemical properties and gene ontology term annotations of the proteins. Additionally, we probed compatibility of the DTR protocol for the analysis of common used histological stainings, namely hematoxylin & eosin (H&E), hematoxylin and hemalaun. These were proteomically compared to an unstained control by analyzing four human tonsil FFPE tissue specimens per condition. Results On average, the DTR protocol identified 1841 ± 22 proteins in a single, non-fractionated LC–MS/MS analysis, whereas these numbers were 1857 ± 120 and 1970 ± 28 proteins for the FASP 10 and 30 k protocol. The DTR protocol showed 15% more missed cleavages, which did not adversely affect quantitation and intersample comparability. Hematoxylin or hemalaun staining did not adversely impact the performance of the DTR protocol. A minor perturbation was observed for H&E staining, decreasing overall protein identification by 13%. Conclusions In essence, the DTR protocol can keep up with the FASP protocol in terms of qualitative and quantitative reproducibility and performed almost as well in terms of proteome coverage and missed cleavages. We highlight the suitability of the DTR protocol as a viable and straightforward alternative to the FASP protocol for proteomics-based clinical research. Electronic supplementary material The online version of this article (10.1186/s12014-018-9188-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melanie Christine Föll
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,2Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Matthias Fahrner
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,2Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,3Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Victor Oginga Oria
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,2Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,3Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Markus Kühs
- 4Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,5Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Lothar Biniossek
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Martin Werner
- 4Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,5Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany.,7German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Bronsert
- 4Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,5Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany.,7German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Schilling
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,7German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,8BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
11
|
Bateman NW, Conrads TP. Recent advances and opportunities in proteomic analyses of tumour heterogeneity. J Pathol 2018; 244:628-637. [PMID: 29344964 DOI: 10.1002/path.5036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 01/27/2023]
Abstract
Solid tumour malignancies comprise a highly variable admixture of tumour and non-tumour cellular populations, forming a complex cellular ecosystem and tumour microenvironment. This tumour heterogeneity is not incidental, and is known to correlate with poor patient prognosis for many cancer types. Indeed, non-malignant cell populations, such as vascular endothelial and immune cells, are known to play key roles supporting and, in some cases, driving aggressive tumour biology, and represent targets of emerging therapeutics, such as antiangiogenesis and immune checkpoint inhibitors. The biochemical interplay between these cellular populations and how they contribute to molecular tumour heterogeneity remains enigmatic, particularly from the perspective of the tumour proteome. This review focuses on recent advances in proteomic methods, namely imaging mass spectrometry, single-cell proteomic techniques, and preanalytical sample processing, that are uniquely positioned to enable detailed analysis of discrete cellular populations within tumours to improve our understanding of tumour proteomic heterogeneity. This review further emphasizes the opportunity afforded by the application of these techniques to the analysis of tumour heterogeneity in formalin-fixed paraffin-embedded archival tumour tissues, as these represent an invaluable resource for retrospective analyses that is now routinely accessible, owing to recent technological and methodological advances in tumour tissue proteomics. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA.,The John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA.,The John P. Murtha Cancer Center, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA.,Inova Schar Cancer Institute, Inova Center for Personalized Health, Falls Church, VA, USA
| |
Collapse
|
12
|
Gianazza E, Miller I, Guerrini U, Palazzolo L, Parravicini C, Eberini I. Gender proteomics II. Which proteins in sexual organs. J Proteomics 2017; 178:18-30. [PMID: 28988880 DOI: 10.1016/j.jprot.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023]
Abstract
In continuity with the review dealing with differences by gender in non-sexual organs [1], this review collects data on the proteomes of the sexual organs as involved in human reproduction, under both physiological and pathological conditions. It also collects data on the tissue structures and biological fluids typical of pregnancy, such as placenta and amniotic fluid, as well as what may be tested on preimplantation embryos during medically assisted reproduction. The review includes as well mention to all fluids and secretions connected with sex organs and/or reproduction, including sperm and milk, to exemplify two distinctive items in male and female physiology. SIGNIFICANCE The causes of infertility are only incompletely understood; the same holds for the causes, and even the early markers, of the most frequent complications of pregnancy. To these established medical challenges, present day practice adds new issues connected with medically assisted reproduction. Omics approaches, including proteomics, are building the database for basic knowledge to possibly translate into clinical testing and eventually into medical routine in this critical branch of health care.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy.
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| |
Collapse
|
13
|
Dapic I, Uwugiaren N, Jansen PJ, Corthals GL. Fast and Simple Protocols for Mass Spectrometry-Based Proteomics of Small Fresh Frozen Uterine Tissue Sections. Anal Chem 2017; 89:10769-10775. [PMID: 28910098 PMCID: PMC5647562 DOI: 10.1021/acs.analchem.7b01937] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Human
tissues are an important link between organ-specific spatial
molecular information, patient pathology, and patient treatment options.
However, patient tissues are uniquely obtained by time and location,
and limited in their availability and size. Currently, little knowledge
exists about appropriate and simplified protocols for routine MS-based
analysis of the various types and sizes of tissues. Following standard
procedures used in pathology, we selected small fresh frozen uterine
tissue samples to investigate how the tissue preparation protocol
affected the subsequent proteomics analysis. First, we observed that
protein extraction with 0.1% SDS followed by extraction with a 30%
ACN/urea resulted in a decrease in the number of identified proteins,
when compared to extraction with 30% ACN/urea only. The decrease in
the number of proteins was approximately 55% and 20%, for 10 and 16
μm thick tissue, respectively. Interestingly, the relative abundance
of the proteins shared between the two methods was higher when SDS/ACN/urea
was used, compared to the 30% ACN/urea extraction, indicating the
role of SDS to be beneficial for protein solubility. Second, the influence
of tissue thickness was investigated by comparing the results obtained
for 10, 16, and 20 μm thick (1 mm2) tissue using
urea/30% ACN. We observed an increase in the number of identified
proteins and corresponding quantity with an increase in the tissue
thickness. Finally, by analyzing very small amounts of tissues (∼0.2
mm2) of 10, 16, and 20 μm thickness, we observed
that the increase in tissue thickness resulted in a higher number
of protein identifications and corresponding quantitative values.
Collapse
Affiliation(s)
- Irena Dapic
- University of Amsterdam, Van 't Hoff Institute for Molecular Sciences (HIMS) , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Naomi Uwugiaren
- University of Amsterdam, Van 't Hoff Institute for Molecular Sciences (HIMS) , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Petra J Jansen
- University of Amsterdam, Van 't Hoff Institute for Molecular Sciences (HIMS) , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Garry L Corthals
- University of Amsterdam, Van 't Hoff Institute for Molecular Sciences (HIMS) , Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
14
|
Pedersen MH, Hood BL, Beck HC, Conrads TP, Ditzel HJ, Leth-Larsen R. Downregulation of antigen presentation-associated pathway proteins is linked to poor outcome in triple-negative breast cancer patient tumors. Oncoimmunology 2017. [PMID: 28638726 DOI: 10.1080/2162402x.2017.1305531] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype with varying disease outcomes. Tumor-infiltrating lymphocytes (TILs) are frequent in TNBC and have been shown to correlate with outcome, suggesting an immunogenic component in this subtype. However, other factors intrinsic to the cancer cells may also influence outcome. To identify proteins and molecular pathways associated with recurrence in TNBC, 34 formalin-fixed paraffin-embedded (FFPE) primary TNBC tumors were investigated by global proteomic profiling using mass spectrometry. Approximately, half of the patients were lymph node-negative and remained free of local or distant metastasis within 10 y follow-up, while the other half developed distant metastasis. Proteomic profiling identified >4,000 proteins, of which 63 exhibited altered expression in primary tumors of recurrence versus recurrence-free patients. Importantly, downregulation of proteins in the major histocompatibility complex (MHC) class I antigen presentation pathways were enriched, including TAP1, TAP2, CALR, HLA-A, ERAP1 and TAPBP, and were associated with significantly shorter recurrence-free and overall survival. In addition, proteins involved in cancer cell proliferation and growth, including GBP1, RAD23B, WARS and STAT1, also exhibited altered expression in primary tumors of recurrence versus recurrence-free patients. The association between the antigen-presentation pathway and outcome were validated in a second sample set of 10 primary TNBC tumors and corresponding metastases using proteomics and in a large public gene expression database of 249 TNBC and 580 basal-like breast cancer cases. Our study demonstrates that downregulation of antigen presentation is a key mechanism for TNBC cells to avoid immune surveillance, allowing continued growth and spread.
Collapse
Affiliation(s)
- Martin H Pedersen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Brian L Hood
- Womens Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Henry Jackson Foundation for the Advancement of Military Medicine, Annandale, VA, USA
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Thomas P Conrads
- Womens Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Henry Jackson Foundation for the Advancement of Military Medicine, Annandale, VA, USA
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Oncology, Odense University Hospital, Odense C, Denmark
| | - Rikke Leth-Larsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
15
|
Rizzo DG, Prentice BM, Moore JL, Norris JL, Caprioli RM. Enhanced Spatially Resolved Proteomics Using On-Tissue Hydrogel-Mediated Protein Digestion. Anal Chem 2017; 89:2948-2955. [DOI: 10.1021/acs.analchem.6b04395] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David G. Rizzo
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Boone M. Prentice
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jessica L. Moore
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jeremy L. Norris
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Richard M. Caprioli
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
16
|
Ostasiewicz P, Wiśniewski J. A Protocol for Large-Scale Proteomic Analysis of Microdissected Formalin Fixed and Paraffin Embedded Tissue. Methods Enzymol 2017; 585:159-176. [DOI: 10.1016/bs.mie.2016.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Conrads TP, Petricoin EF. The Obama Administration's Cancer Moonshot: A Call for Proteomics. Clin Cancer Res 2016; 22:4556-8. [PMID: 27199492 DOI: 10.1158/1078-0432.ccr-16-0688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/25/2016] [Indexed: 11/16/2022]
Abstract
The Cancer Moonshot Program has been launched and represents a potentially paradigm-shifting initiative with the goal to implement a focused national effort to double the rate of progress against cancer. The placement of precision medicine, immunotherapy, genomics, and combination therapies was placed at the central nexus of this initiative. Although we are extremely enthusiastic about the goals of the program, it is time we meet this revolutionary project with equally bold and cutting-edge ideas: it is time we move firmly into the postgenome era and provide the necessary resources to propel and seize on innovative recent gains in the field of proteomics required for it to stand on equal footing in this narrative as a combined, synergistic engine for molecular profiling. After all, although the genome is the information archive, it is the proteins that actually do the work of the cell and represent the structural cellular machinery. It is the proteins that comprise most of the biomarkers that are measured to detect cancers, constitute the antigens that drive immune response and inter- and intracellular communications, and it is the proteins that are the drug targets for nearly every targeted therapy that is being evaluated in cancer trials today. We believe that a combined systems biology view of the tumor microenvironment that orients cancer studies back to the functional proteome, phosphoproteome, and biochemistry of the cell will be essential to deliver on the promise of the Cancer Moonshot Program. Clin Cancer Res; 22(18); 4556-8. ©2016 AACR.
Collapse
Affiliation(s)
- Thomas P Conrads
- Inova Schar Cancer Institute, Inova Center for Personalized Health, Falls Church, Virginia. Gynecologic Cancer Center of Excellence, Annandale, Virginia. The Inova-George Mason University Center for Clinical Proteomics, Manassas, Virginia.
| | - Emanuel F Petricoin
- The Inova-George Mason University Center for Clinical Proteomics, Manassas, Virginia. Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, Virginia.
| |
Collapse
|
18
|
Analysis of formalin-fixed, paraffin-embedded (FFPE) tissue via proteomic techniques and misconceptions of antigen retrieval. Biotechniques 2016; 60:229-38. [DOI: 10.2144/000114414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/20/2016] [Indexed: 11/23/2022] Open
Abstract
Since emerging in the late 19th century, formaldehyde fixation has become a standard method for preservation of tissues from clinical samples. The advantage of formaldehyde fixation is that fixed tissues can be stored at room temperature for decades without concern for degradation. This has led to the generation of huge tissue banks containing thousands of clinically significant samples. Here we review techniques for proteomic analysis of formalin-fixed, paraffin-embedded (FFPE) tissue samples with a specific focus on the methods used to extract and break formaldehyde crosslinks. We also discuss an error-of-interpretation associated with the technique known as “antigen retrieval.” We have discovered that this term has been mistakenly applied to two disparate molecular techniques; therefore, we argue that a terminology change is needed to ensure accurate reporting of experimental results. Finally, we suggest that more investigation is required to fully understand the process of formaldehyde fixation and its subsequent reversal.
Collapse
|
19
|
Gau DM, Lesnock JL, Hood BL, Bhargava R, Sun M, Darcy K, Luthra S, Chandran U, Conrads TP, Edwards RP, Kelley JL, Krivak TC, Roy P. BRCA1 deficiency in ovarian cancer is associated with alteration in expression of several key regulators of cell motility - A proteomics study. Cell Cycle 2016; 14:1884-92. [PMID: 25927284 DOI: 10.1080/15384101.2015.1036203] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Functional loss of expression of breast cancer susceptibility gene 1(BRCA1) has been implicated in genomic instability and cancer progression. There is emerging evidence that BRCA1 gene product (BRCA1) also plays a role in cancer cell migration. We performed a quantitative proteomics study of EOC patient tumor tissues and identified changes in expression of several key regulators of actin cytoskeleton/cell adhesion and cell migration (CAPN1, 14-3-3, CAPG, PFN1, SPTBN1, CFN1) associated with loss of BRCA1 function. Gene expression analyses demonstrate that several of these proteomic hits are differentially expressed between early and advanced stage EOC thus suggesting clinical relevance of these proteins to disease progression. By immunohistochemistry of ovarian tumors with BRCA1(+/+) and BRCA1(null) status, we further verified our proteomic-based finding of elevated PFN1 expression associated with BRCA1 deficiency. Finally, we established a causal link between PFN1 and BRCA1-induced changes in cell migration thus uncovering a novel mechanistic basis for BRCA1-dependent regulation of ovarian cancer cell migration. Overall, findings of this study open up multiple avenues by which BRCA1 can potentially regulate migration and metastatic phenotype of EOC cells.
Collapse
Key Words
- BRCA1
- BRCA1, Breast cancer susceptibility gene 1
- BRCA2, Breast cancer susceptibility gene 2
- CAPG, Macrophage capping protein
- CAPN1, Calpain-1
- CFN1, Cofilin-1
- EOC, Epithelial Ovarian Cancer
- ERM, Ezrin-Radixin-Moesin
- FFPE, Formalin-fixed paraffin-embedded
- HYOU1, Hypoxia upregulated protein 1
- ID1, Inhibitor of differentiation-1
- IHC, Immunohistochemistry
- LC MS-MS, Liquid chromatography tandem mass spectrometry
- Luc, luciferase
- PFN1, Profilin-1
- PP2A, Protein phosphatase 2A
- SPTBN1, Non-erythrocytic spectrin β Chain-1
- WT, Wild-type
- cell Motility
- ovarian cancer
- profilin-1
Collapse
Affiliation(s)
- David M Gau
- a Department of Bioengineering; University of Pittsburgh ; Pittsburgh , PA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Proteomic analysis of neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer's disease brain tissue. Sci Rep 2015; 5:15456. [PMID: 26487484 PMCID: PMC4614382 DOI: 10.1038/srep15456] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022] Open
Abstract
The vast majority of human tissue specimens are formalin-fixed, paraffin embedded (FFPE) archival samples, making this type of tissue a potential gold mine for medical research. It is now accepted that proteomics can be done using FFPE tissue and can generate similar results as snap-frozen tissue. However, the current methodology requires a large amount of starting protein, limiting the questions that can be answered in these types of proteomics studies and making cell-type specific proteomics studies difficult. Cell-type specific proteomics has the potential to greatly enhance understanding of cell functioning in both normal and disease states. Therefore, here we describe a new method that allows localized proteomics on individual cell populations isolated from FFPE tissue sections using laser capture microdissection. To demonstrate this technique we microdissected neurons from archived tissue blocks of the temporal cortex from patients with Alzheimer’s disease. Using this method we identified over 400 proteins in microdissected neurons; on average 78% that were neuronal and 50% that were associated with Alzheimer’s disease. Therefore, this technique is able to provide accurate and meaningful data and has great potential for any future study that wishes to perform localized proteomics using very small amounts of archived FFPE tissue.
Collapse
|
21
|
Hood BL, Liu B, Alkhas A, Shoji Y, Challa R, Wang G, Ferguson S, Oliver J, Mitchell D, Bateman NW, Zahn CM, Hamilton CA, Payson M, Lessey B, Fazleabas AT, Maxwell GL, Conrads TP, Risinger JI. Proteomics of the Human Endometrial Glandular Epithelium and Stroma from the Proliferative and Secretory Phases of the Menstrual Cycle1. Biol Reprod 2015; 92:106. [DOI: 10.1095/biolreprod.114.127217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/16/2015] [Indexed: 01/04/2023] Open
|
22
|
Gustafsson OJR, Arentz G, Hoffmann P. Proteomic developments in the analysis of formalin-fixed tissue. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:559-80. [PMID: 25315853 DOI: 10.1016/j.bbapap.2014.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/22/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Retrospective proteomic studies, including those which aim to elucidate the molecular mechanisms driving cancer, require the assembly and characterization of substantial patient tissue cohorts. The difficulty of maintaining and accessing native tissue archives has prompted the development of methods to access archives of formalin-fixed tissue. Formalin-fixed tissue archives, complete with patient meta data, have accumulated for decades, presenting an invaluable resource for these retrospective studies. This review presents the current knowledge concerning formalin-fixed tissue, with descriptions of the mechanisms of formalin fixation, protein extraction, top-down proteomics, bottom-up proteomics, quantitative proteomics, phospho- and glycoproteomics as well as imaging mass spectrometry. Particular attention has been given to the inclusion of proteomic investigations of archived tumour tissue. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Ove J R Gustafsson
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005
| | - Georgia Arentz
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005
| | - Peter Hoffmann
- Adelaide Proteomics Centre, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia 5005.
| |
Collapse
|
23
|
Longuespée R, Fléron M, Pottier C, Quesada-Calvo F, Meuwis MA, Baiwir D, Smargiasso N, Mazzucchelli G, De Pauw-Gillet MC, Delvenne P, De Pauw E. Tissue Proteomics for the Next Decade? Towards a Molecular Dimension in Histology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:539-52. [DOI: 10.1089/omi.2014.0033] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rémi Longuespée
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Maximilien Fléron
- Mammalian Cell Culture Laboratory, GIGA-Research, Department of Biomedical and Preclinical Sciences, University of Liège, Liège, Belgium
| | - Charles Pottier
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Florence Quesada-Calvo
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, University of Liège, Liège, Belgium
| | - Marie-Alice Meuwis
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- GIGA-R, GIGA Proteomic Facilities, University of Liège, Liège, Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Marie-Claire De Pauw-Gillet
- Mammalian Cell Culture Laboratory, GIGA-Research, Department of Biomedical and Preclinical Sciences, University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| |
Collapse
|
24
|
Accessing microenvironment compartments in formalin-fixed paraffin-embedded tissues by protein expression analysis. Bioanalysis 2014; 5:2647-59. [PMID: 24180505 DOI: 10.4155/bio.13.222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Formalin-fixed paraffin-embedded (FFPE) samples are an outstanding source of new information regarding disease evolvements. Current research on new biomarkers and diseases features has recently invested resources in FFPE-related projects. RESULTS In order to initiate clinical protein-expression studies using minute amount of biological material, a workflow based on the combination of filter-assisted sample preparation with MS analysis and label-free quantification was developed. Xenograft lung tumor tissue was investigated as a model system. The workflow was optimized and characterized in terms of its reproducibility from a quantitative and qualitative point of view. We proposed a modification of the original filter-assisted sample preparation protocol to improve reproducibility and highlight its potential for the investigation of hydrophobic proteins. CONCLUSIONS Altogether the presented workflow allows analysis of FFPE samples with improvements in the analytical time and performance, and we show its application for lung cancer xenograft tissue samples.
Collapse
|
25
|
Tanca A, Abbondio M, Pisanu S, Pagnozzi D, Uzzau S, Addis MF. Critical comparison of sample preparation strategies for shotgun proteomic analysis of formalin-fixed, paraffin-embedded samples: insights from liver tissue. Clin Proteomics 2014; 11:28. [PMID: 25097466 PMCID: PMC4115481 DOI: 10.1186/1559-0275-11-28] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/03/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The growing field of formalin-fixed paraffin-embedded (FFPE) tissue proteomics holds promise for improving translational research. Direct tissue trypsinization (DT) and protein extraction followed by in solution digestion (ISD) or filter-aided sample preparation (FASP) are the most common workflows for shotgun analysis of FFPE samples, but a critical comparison of the different methods is currently lacking. EXPERIMENTAL DESIGN DT, FASP and ISD workflows were compared by subjecting to the same label-free quantitative approach three independent technical replicates of each method applied to FFPE liver tissue. Data were evaluated in terms of method reproducibility and protein/peptide distribution according to localization, MW, pI and hydrophobicity. RESULTS DT showed lower reproducibility, good preservation of high-MW proteins, a general bias towards hydrophilic and acidic proteins, much lower keratin contamination, as well as higher abundance of non-tryptic peptides. Conversely, FASP and ISD proteomes were depleted in high-MW proteins and enriched in hydrophobic and membrane proteins; FASP provided higher identification yields, while ISD exhibited higher reproducibility. CONCLUSIONS These results highlight that diverse sample preparation strategies provide significantly different proteomic information, and present typical biases that should be taken into account when dealing with FFPE samples. When a sufficient amount of tissue is available, the complementary use of different methods is suggested to increase proteome coverage and depth.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Marcello Abbondio
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Salvatore Pisanu
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy ; Dipartimento di Scienze Biomediche, Università di Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| |
Collapse
|
26
|
Gross ND, Bauman JE, Gooding WE, Denq W, Thomas SM, Wang L, Chiosea S, Hood BL, Flint MS, Sun M, Conrads TP, Ferris RL, Johnson JT, Kim S, Argiris A, Wirth L, Nikiforova MN, Siegfried JM, Grandis JR. Erlotinib, erlotinib-sulindac versus placebo: a randomized, double-blind, placebo-controlled window trial in operable head and neck cancer. Clin Cancer Res 2014; 20:3289-98. [PMID: 24727329 DOI: 10.1158/1078-0432.ccr-13-3360] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE The EGF receptor (EGFR) and COX2 pathways are upregulated in head and neck squamous cell carcinoma (HNSCC). Preclinical models indicate synergistic antitumor activity from dual blockade. We conducted a randomized, double-blind, placebo-controlled window trial of erlotinib, an EGFR inhibitor; erlotinib plus sulindac, a nonselective COX inhibitor; versus placebo. EXPERIMENTAL DESIGN Patients with untreated, operable stage II-IVb HNSCC were randomized 5:5:3 to erlotinib, erlotinib-sulindac, or placebo. Tumor specimens were collected before and after seven to 14 days of treatment. The primary endpoint was change in Ki67 proliferation index. We hypothesized an ordering effect in Ki67 reduction: erlotinib-sulindac > erlotinib > placebo. We evaluated tissue microarrays by immunohistochemistry for pharmacodynamic modulation of EGFR and COX2 signaling intermediates. RESULTS From 2005-2009, 47 patients were randomized for the target 39 evaluable patients. Thirty-four tumor pairs were of sufficient quality to assess biomarker modulation. Ki67 was significantly decreased by erlotinib or erlotinib-sulindac (omnibus comparison, two-sided Kruskal-Wallis, P = 0.04). Wilcoxon pairwise contrasts confirmed greater Ki67 effect in both erlotinib groups (erlotinib-sulindac vs. placebo, P = 0.043; erlotinib vs. placebo, P = 0.027). There was a significant trend in ordering of Ki67 reduction: erlotinib-sulindac > erlotinib > placebo (two-sided exact Jonckheere-Terpstra, P = 0.0185). Low baseline pSrc correlated with greater Ki67 reduction (R(2) = 0.312, P = 0.024). CONCLUSIONS Brief treatment with erlotinib significantly decreased proliferation in HNSCC, with additive effect from sulindac. Efficacy studies of dual EGFR-COX inhibition are justified. pSrc is a potential resistance biomarker for anti-EGFR therapy, and warrants investigation as a molecular target.
Collapse
Affiliation(s)
- Neil D Gross
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Julie E Bauman
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - William E Gooding
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - William Denq
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Sufi M Thomas
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, MinnesotaAuthors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Lin Wang
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Simion Chiosea
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, MinnesotaAuthors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Brian L Hood
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, MinnesotaAuthors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Melanie S Flint
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Mai Sun
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Thomas P Conrads
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, MinnesotaAuthors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Robert L Ferris
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Jonas T Johnson
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Seungwon Kim
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Athanassios Argiris
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, MinnesotaAuthors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Lori Wirth
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Marina N Nikiforova
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Jill M Siegfried
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, MinnesotaAuthors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Jennifer R Grandis
- Authors' Affiliations: Division of Head and Neck Surgery, Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon; Division of Hematology/Oncology, Department of Internal Medicine; Department of Pharmacology and Chemical Biology;Biostatistics Facility, University of Pittsburgh, University of Pittsburgh Cancer Institute; Departments of Otolaryngology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas; Women's Health Integrated Research Center, Gynecologic Cancer Center of Excellence, Annandale, Virginia; Division of Hematology/Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
27
|
Fowler CB, O'Leary TJ, Mason JT. Toward improving the proteomic analysis of formalin-fixed, paraffin-embedded tissue. Expert Rev Proteomics 2014; 10:389-400. [PMID: 23992421 DOI: 10.1586/14789450.2013.820531] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Archival formalin-fixed, paraffin-embedded (FFPE) tissue and their associated diagnostic records represent an invaluable source of retrospective proteomic information on diseases for which the clinical outcome and response to treatment are known. However, analysis of archival FFPE tissues by high-throughput proteomic methods has been hindered by the adverse effects of formaldehyde fixation and subsequent tissue histology. This review examines recent methodological advances for extracting proteins from FFPE tissue suitable for proteomic analysis. These methods, based largely upon heat-induced antigen retrieval techniques borrowed from immunohistochemistry, allow at least a qualitative analysis of the proteome of FFPE archival tissues. The authors also discuss recent advances in the proteomic analysis of FFPE tissue; including liquid-chromatography tandem mass spectrometry, reverse phase protein microarrays and imaging mass spectrometry.
Collapse
Affiliation(s)
- Carol B Fowler
- Laboratory of Proteomics and Protein Science, Washington DC Veterans Affairs Medical Center, Washington, DC, USA.
| | | | | |
Collapse
|
28
|
Blackler AR, Morgan NY, Gao B, Olano LR, Armani MD, Romantseva E, Kakareka JW, Bonner RF, Mukherjee S, Xiao B, Tran K, Pohida TJ, Emmert-Buck MR, Tangrea MA, Markey SP. Proteomic analysis of nuclei dissected from fixed rat brain tissue using expression microdissection. Anal Chem 2013; 85:7139-45. [PMID: 23799655 DOI: 10.1021/ac400691k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Expression microdissection (xMD) is a high-throughput, operator-independent technology that enables the procurement of specific cell populations from tissue specimens. In this method, histological sections are first stained for cellular markers via either chemical or immuno-guided methods, placed in close contact with an ethylene vinyl acetate (EVA) film, and exposed to a light source. The focal, transient heating of the stained cells or subcellular structures melts the EVA film selectively to the targets for procurement. In this report, we introduce a custom-designed flashcube system that permits consistent and reproducible microdissection of nuclei across an FFPE rat brain tissue section in milliseconds. In addition, we present a method to efficiently recover and combine captured proteins from multiple xMD films. Both light and scanning electron microscopy demonstrated captured nuclear structures. Shotgun proteomic analysis of the samples showed a significant enrichment in nuclear localized proteins, with an average 25% of recovered proteins localized to the nucleus, versus 15% for whole tissue controls (p < 0.001). Targeted mass spectrometry using multiple reaction monitoring (MRM) showed more impressive data, with a 3-fold enrichment in histones, and a concurrent depletion of proteins localized to the cytoplasm, cytoskeleton, and mitochondria. These data demonstrate that the flashcube-xMD technology is applicable to the proteomic study of a broad range of targets in molecular pathology.
Collapse
Affiliation(s)
- A R Blackler
- National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Vincenti DC, Murray GI. The proteomics of formalin-fixed wax-embedded tissue. Clin Biochem 2013; 46:546-51. [DOI: 10.1016/j.clinbiochem.2012.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/06/2012] [Accepted: 10/01/2012] [Indexed: 01/16/2023]
|
30
|
Shi SR, Taylor CR, Fowler CB, Mason JT. Complete solubilization of formalin-fixed, paraffin-embedded tissue may improve proteomic studies. Proteomics Clin Appl 2013; 7:264-72. [PMID: 23339100 DOI: 10.1002/prca.201200031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 10/12/2012] [Accepted: 11/06/2012] [Indexed: 02/01/2023]
Abstract
Tissue-based proteomic approaches (tissue proteomics) are essential for discovering and evaluating biomarkers for personalized medicine. In any proteomics study, the most critical issue is sample extraction and preparation. This problem is especially difficult when recovering proteins from formalin-fixed, paraffin-embedded (FFPE) tissue sections. However, improving and standardizing protein extraction from FFPE tissue is a critical need because of the millions of archival FFPE tissues available in tissue banks worldwide. Recent progress in the application of heat-induced antigen retrieval principles for protein extraction from FFPE tissue has resulted in a number of published FFPE tissue proteomics studies. However, there is currently no consensus on the optimal protocol for protein extraction from FFPE tissue or accepted standards for quantitative evaluation of the extracts. Standardization is critical to ensure the accurate evaluation of FFPE protein extracts by proteomic methods such as reverse phase protein arrays, which is now in clinical use. In our view, complete solubilization of FFPE tissue samples is the best way to achieve the goal of standardizing the recovery of proteins from FFPE tissues. However, further studies are recommended to develop standardized protein extraction methods to ensure quantitative and qualitative reproducibility in the recovery of proteins from FFPE tissues.
Collapse
Affiliation(s)
- Shan-Rong Shi
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | |
Collapse
|
31
|
Ye X, Prieto DA, Chan KC, Wei BR, Blonder J. Tissue Sample Preparation for Proteomic Analysis. PROTEOMIC AND METABOLOMIC APPROACHES TO BIOMARKER DISCOVERY 2013:39-50. [DOI: 10.1016/b978-0-12-394446-7.00003-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Rao UNM, Hood BL, Jones-Laughner JM, Sun M, Conrads TP. Distinct profiles of oxidative stress-related and matrix proteins in adult bone and soft tissue osteosarcoma and desmoid tumors: a proteomics study. Hum Pathol 2012; 44:725-33. [PMID: 23063503 DOI: 10.1016/j.humpath.2012.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/12/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022]
Abstract
Osteosarcomas rarely occur in older adults. Proteomics has not been reported to date in osteosarcoma occurring in the older adult population. This proteomic investigation was conducted to identify differentially expressed proteins in osteosarcoma occurring in various backgrounds from older adults. Desmoid tumors, known to recur locally but not metastasize, were also analyzed. Protein digests isolated from formalin-fixed, paraffin-embedded tumor tissue specimen representing 14 primary osteosarcomas of soft tissue and bone and 18 desmoid tumors were analyzed by high-resolution liquid chromatography-tandem mass spectrometry for protein identification and relative quantification by spectral counting. Elevated abundance levels of several proteins including heat shock protein 90 (HSP90), elastin microfibril interface-located protein 1, and clusterin were identified in osteosarcoma with slight differences in proteomic profiles. Desmoids had an abundance of collagen II and periostin only. The findings were confirmed by immunohistochemical staining for HSP90 and clusterin in the experimental samples and additionally in 16 posttherapy conventional osteosarcomas in tissue microarrays constructed from heterogeneous sarcomas and benign lesions. All osteosarcomas were positive for HSP90 and clusterin to a variable extent. One case of well-differentiated parosteal osteosarcoma was negative. Thirty of 75 other high-grade sarcomas including cases of chondrosarcoma were positive for HSP90. Low-grade and benign lesions and scars and 18 desmoid tumors had little or no expression of these proteins. HSP90 and clusterin represent candidate markers of aggressiveness in osteosarcoma occurring in older adults and may be indicative of drug resistance.
Collapse
Affiliation(s)
- Uma N M Rao
- Department of Pathology, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian/Shadyside Hospitals, Pittsburgh, PA 15232, USA.
| | | | | | | | | |
Collapse
|
33
|
Comparability of differential proteomics data generated from paired archival fresh-frozen and formalin-fixed samples by GeLC-MS/MS and spectral counting. J Proteomics 2012; 77:561-76. [PMID: 23043969 DOI: 10.1016/j.jprot.2012.09.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/17/2012] [Accepted: 09/22/2012] [Indexed: 11/22/2022]
Abstract
In this study, a Veterinary Department repository composed by paired formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FrFr) sets of the same tissues, routinely archived in the typical conditions of a clinical setting, was exploited to perform a comparative evaluation of the results generated by GeLC-MS/MS (1-DE followed by in-gel digestion and LC-MS/MS) and spectral counting with the two types of archival samples. Therefore, two parallel differential proteomic studies were performed using 3 canine mammary carcinomas and 3 normal controls in a paired fashion (6 FrFr and 6 FFPE in total). As a result, the FrFr and FFPE differential proteomic datasets exhibited fair consistency in differential expression trends, according to protein molecular function, cellular localization, networks, and pathways. However, FFPE samples were globally slightly less informative, especially concerning the high-MW subproteome. As a further investigation, new insights into the molecular aspects of protein fixation and retrieval were obtained. In conclusion, archival FFPE samples can be reliably used for differential proteomics studies employing a spectral counting GeLC-MS/MS approach, although some typical biases need to be taken into account, and FrFr specimens (when available) should still be considered as the gold standard for clinical proteomics.
Collapse
|
34
|
Shapiro JP, Biswas S, Merchant AS, Satoskar A, Taslim C, Lin S, Rovin BH, Sen CK, Roy S, Freitas MA. A quantitative proteomic workflow for characterization of frozen clinical biopsies: laser capture microdissection coupled with label-free mass spectrometry. J Proteomics 2012; 77:433-40. [PMID: 23022584 DOI: 10.1016/j.jprot.2012.09.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/28/2012] [Accepted: 09/17/2012] [Indexed: 12/24/2022]
Abstract
This paper describes a simple, highly efficient and robust proteomic workflow for routine liquid-chromatography tandem mass spectrometry analysis of Laser Microdissection Pressure Catapulting (LMPC) isolates. Highly efficient protein recovery was achieved by optimization of a "one-pot" protein extraction and digestion allowing for reproducible proteomic analysis on as few as 500 LMPC isolated cells. The method was combined with label-free spectral count quantitation to characterize proteomic differences from 3000-10,000 LMPC isolated cells. Significance analysis of spectral count data was accomplished using the edgeR tag-count R package combined with hierarchical cluster analysis. To illustrate the capability of this robust workflow, two examples are presented: 1) analysis of keratinocytes from human punch biopsies of normal skin and a chronic diabetic wound and 2) comparison of glomeruli from needle biopsies of patients with kidney disease. Differentially expressed proteins were validated by use of immunohistochemistry. These examples illustrate that tissue proteomics carried out on limited clinical material can obtain informative proteomic signatures for disease pathogenesis and demonstrate the suitability of this approach for biomarker discovery.
Collapse
Affiliation(s)
- John P Shapiro
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Braakman RBH, Tilanus-Linthorst MMA, Liu NQ, Stingl C, Dekker LJM, Luider TM, Martens JWM, Foekens JA, Umar A. Optimized nLC-MS workflow for laser capture microdissected breast cancer tissue. J Proteomics 2012; 75:2844-54. [PMID: 22296676 DOI: 10.1016/j.jprot.2012.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/12/2012] [Accepted: 01/15/2012] [Indexed: 10/14/2022]
Abstract
Reliable sample preparation is of utmost importance for comparative proteome analysis, particularly when investigating minute amounts of clinical specimens, such as laser capture microdissected tumor tissue. In this study, we present an optimized nanoLC-MS workflow specifically for the analysis of laser capture microdissected breast cancer tissue. Analytical performance of different laser capture microdissection (LCM) functions available on the PALM system, time dependent trypsin digestion efficiency, effect of sample preparation and digestion time on peptide modification, semi-tryptic peptides and missed cleavages were evaluated. Our results show that microdissection from uncoated glass slides results in protein degradation; that protease and phosphatase inhibitors do not result in detectable improvement in number of peptides or semi-tryptic peptides; and that digestion time longer than four hours drastically reduces the number of missed cleavages, but also increases the number of unexpectedly modified peptides. Overalkylation was the most dominant side-reaction, which significantly increased overnight (P=0.05). The latter effect could almost completely be reverted by the use of a quenching agent (P=0.001). Taken together, our results show that it is of importance to carefully control sample handling steps so that reliable protein identification and quantitation can be performed within comparative proteomics studies using LCM. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- René B H Braakman
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|