1
|
Neoh CF, Chen SCA, Lanternier F, Tio SY, Halliday CL, Kidd SE, Kong DCM, Meyer W, Hoenigl M, Slavin MA. Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections. Clin Microbiol Rev 2024; 37:e0000423. [PMID: 38551323 PMCID: PMC11237582 DOI: 10.1128/cmr.00004-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYAlthough Scedosporium species and Lomentospora prolificans are uncommon causes of invasive fungal diseases (IFDs), these infections are associated with high mortality and are costly to treat with a limited armamentarium of antifungal drugs. In light of recent advances, including in the area of new antifungals, the present review provides a timely and updated overview of these IFDs, with a focus on the taxonomy, clinical epidemiology, pathogenesis and host immune response, disease manifestations, diagnosis, antifungal susceptibility, and treatment. An expansion of hosts at risk for these difficult-to-treat infections has emerged over the last two decades given the increased use of, and broader population treated with, immunomodulatory and targeted molecular agents as well as wider adoption of antifungal prophylaxis. Clinical presentations differ not only between genera but also across the different Scedosporium species. L. prolificans is intrinsically resistant to most currently available antifungal agents, and the prognosis of immunocompromised patients with lomentosporiosis is poor. Development of, and improved access to, diagnostic modalities for early detection of these rare mold infections is paramount for timely targeted antifungal therapy and surgery if indicated. New antifungal agents (e.g., olorofim, fosmanogepix) with novel mechanisms of action and less cross-resistance to existing classes, availability of formulations for oral administration, and fewer drug-drug interactions are now in late-stage clinical trials, and soon, could extend options to treat scedosporiosis/lomentosporiosis. Much work remains to increase our understanding of these infections, especially in the pediatric setting. Knowledge gaps for future research are highlighted in the review.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital universitaire Necker-Enfants malades, Paris, France
- National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Shio Yen Tio
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Catriona L Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| | - Sarah E Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| | - David C M Kong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Waurn Ponds, Geelong, Australia
| | - Wieland Meyer
- The University of Sydney, Sydney, Australia
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Monica A Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Aor AC, Sangenito LS, Mello TP, Joffe LS, Rizzo J, Veiga VF, da Silva RN, Pereira MD, Fonseca BB, Rozental S, Haido RMT, Rodrigues ML, Branquinha MH, Santos ALS. Extracellular Vesicles from Scedosporium apiospermum Mycelial Cells: Implication for Fungal-Host Interplays. J Fungi (Basel) 2024; 10:277. [PMID: 38667948 PMCID: PMC11051067 DOI: 10.3390/jof10040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The release of extracellular vesicles (EVs) has been implicated as an alternative transport mechanism for the passage of macromolecules through the fungal cell wall, a phenomenon widely reported in yeasts but poorly explored in mycelial cells. In the present work, we have purified and characterized the EVs released by mycelia of the emerging, opportunistic, widespread and multidrug-resistant filamentous fungus Scedosporium apiospermum. Transmission electron microscopy images and light scattering measurements revealed the fungal EVs, which were observed individually or grouped with heterogeneous morphology, size and electron density. The mean diameter of the EVs, evaluated by the light scattering technique, was 179.7 nm. Overall, the structural stability of S. apiospermum EVs was preserved during incubation under various storage conditions. The lipid, carbohydrate and protein contents were quantified, and the EVs' protein profile was evidenced by SDS-PAGE, revealing proteins with molecular masses ranging from 20 to 118 kDa. Through immunoblotting, ELISA and immunocytochemistry assays, antigenic molecules were evidenced in EVs using a polyclonal serum (called anti-secreted molecules) from a rabbit inoculated with conditioned cell-free supernatant obtained from S. apiospermum mycelial cells. By Western blotting, several antigenic proteins were identified. The ELISA assay confirmed that the anti-secreted molecules exhibited a positive reaction up to a serum dilution of 1:3200. Despite transporting immunogenic molecules, S. apiospermum EVs slightly induced an in vitro cytotoxicity effect after 48 h of contact with either macrophages or lung epithelial cells. Interestingly, the pretreatment of both mammalian cells with purified EVs significantly increased the association index with S. apiospermum conidia. Furthermore, EVs were highly toxic to Galleria mellonella, leading to larval death in a typically dose- and time-dependent manner. Collectively, the results represent the first report of detecting EVs in the S. apiospermum filamentous form, highlighting a possible implication in fungal pathogenesis.
Collapse
Affiliation(s)
- Ana Carolina Aor
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Departamento de Microbiologia e Parasitologia (MIP), Instituto Biomédico (CMB), Universidade Federal Fluminense (UFF), Niterói 24210-130, RJ, Brazil
| | - Leandro S. Sangenito
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Campus Nilópolis, Rio de Janeiro 26530-060, RJ, Brazil
| | - Thaís P. Mello
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
| | - Luna S. Joffe
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
| | - Juliana Rizzo
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, RJ, Brazil (S.R.)
| | - Venício F. Veiga
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
| | - Renata N. da Silva
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil; (R.N.d.S.); (M.D.P.)
| | - Marcos D. Pereira
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil; (R.N.d.S.); (M.D.P.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Beatriz B. Fonseca
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, RJ, Brazil (S.R.)
| | - Sonia Rozental
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, RJ, Brazil (S.R.)
| | - Rosa Maria T. Haido
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, RJ, Brazil;
| | - Marcio L. Rodrigues
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba 81310-020, PR, Brazil
| | - Marta H. Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - André L. S. Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil; (R.N.d.S.); (M.D.P.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
3
|
Mello TP, Barcellos IC, Aor AC, Branquinha MH, Santos ALS. Extracellularly Released Molecules by the Multidrug-Resistant Fungal Pathogens Belonging to the Scedosporium Genus: An Overview Focused on Their Ecological Significance and Pathogenic Relevance. J Fungi (Basel) 2022; 8:1172. [PMID: 36354939 PMCID: PMC9693033 DOI: 10.3390/jof8111172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2024] Open
Abstract
The multidrug-resistant species belonging to the Scedosporium genus are well recognized as saprophytic filamentous fungi found mainly in human impacted areas and that emerged as human pathogens in both immunocompetent and immunocompromised individuals. It is well recognized that some fungi are ubiquitous organisms that produce an enormous amount of extracellular molecules, including enzymes and secondary metabolites, as part of their basic physiology in order to satisfy their several biological processes. In this context, the molecules secreted by Scedosporium species are key weapons for successful colonization, nutrition and maintenance in both host and environmental sites. These biologically active released molecules have central relevance on fungal survival when colonizing ecological places contaminated with hydrocarbons, as well as during human infection, particularly contributing to the invasion/evasion of host cells and tissues, besides escaping from the cellular and humoral host immune responses. Based on these relevant premises, the present review compiled the published data reporting the main secreted molecules by Scedosporium species, which operate important physiopathological events associated with pathogenesis, diagnosis, antimicrobial activity and bioremediation of polluted environments.
Collapse
Affiliation(s)
- Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Iuri C. Barcellos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Ana Carolina Aor
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
4
|
Kanjanapruthipong T, Sukphopetch P, Reamtong O, Isarangkul D, Muangkaew W, Thiangtrongjit T, Sansurin N, Fongsodsri K, Ampawong S. Cytoskeletal Alteration Is an Early Cellular Response in Pulmonary Epithelium Infected with Aspergillus fumigatus Rather than Scedosporium apiospermum. MICROBIAL ECOLOGY 2022; 83:216-235. [PMID: 33890146 DOI: 10.1007/s00248-021-01750-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Invasive aspergillosis and scedosporiosis are life-threatening fungal infections with similar clinical manifestations in immunocompromised patients. Contrarily, Scedosporium apiospermum is susceptible to some azole derivative but often resistant to amphotericin B. Histopathological examination alone cannot diagnose these two fungal species. Pathogenesis studies could contribute to explore candidate protein markers for new diagnosis and treatment methods leading to a decrease in mortality. In the present study, proteomics was conducted to identify significantly altered proteins in A549 cells infected with or without Aspergillus fumigatus and S. apiospermum as measured at initial invasion. Protein validation was performed with immunogold labelling alongside immunohistochemical techniques in infected A549 cells and lungs from murine models. Further, cytokine production was measured, using the Bio-Plex-Multiplex immunoassay. The cytoskeletal proteins HSPA9, PA2G4, VAT1, PSMA2, PEX1, PTGES3, KRT1, KRT9, CLIP1 and CLEC20A were mainly changed during A. fumigatus infection, while the immunologically activated proteins WNT7A, GAPDH and ANXA2 were principally altered during S. apiospermum infection. These proteins are involved in fungal internalisation and structural destruction leading to pulmonary disorders. Interleukin (IL)-21, IL-1α, IL-22, IL-2, IL-8, IL-12, IL-17A, interferon-γ and tumour necrosis factor-α were upregulated in both aspergillosis and scedosporiosis, although more predominately in the latter, in accordance with chitin synthase-1 and matrix metalloproteinase levels. Our results demonstrated that during invasion, A. fumigatus primarily altered host cellular integrity, whereas S. apiospermum chiefly induced and extensively modulated host immune responses.
Collapse
Affiliation(s)
- Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Nichapa Sansurin
- Northeast Laboratory Animal Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
5
|
Martin-Souto L, Buldain I, Areitio M, Aparicio-Fernandez L, Antoran A, Bouchara JP, Martin-Gomez MT, Rementeria A, Hernando FL, Ramirez-Garcia A. ELISA Test for the Serological Detection of Scedosporium/ Lomentospora in Cystic Fibrosis Patients. Front Cell Infect Microbiol 2020; 10:602089. [PMID: 33324582 PMCID: PMC7726441 DOI: 10.3389/fcimb.2020.602089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
The detection and diagnosis of the opportunistic fungi Scedosporium spp. and Lomentospora prolificans still relies mainly on low-sensitive culture-based methods. This fact is especially worrying in Cystic Fibrosis (CF) patients in whom these fungal species are frequently isolated and may increase the risk of suffering from an infection or other health problems. Therefore, with the purpose of developing a serologic detection method for Scedosporium/Lomentospora, four different Scedosporium boydii protein extracts (whole cell protein extract, secretome, total cell surface and conidial surface associated proteins) were studied by ELISA to select the most useful for IgG detection in sera from CF patients. The four extracts were able to discriminate the Scedosporium/Lomentospora-infected from Aspergillus-infected and non-infected patients. However, the whole cell protein extract was the one selected, as it was the one with the highest output in terms of protein concentration per ml of fungal culture used, and its discriminatory capacity was the best. The ELISA test developed was then assayed with 212 sera from CF patients and it showed to be able to detect Scedosporium spp. and Lomentospora prolificans with very high sensitivity and specificity, 86%–100% and 93%–99%, respectively, depending on the cut-off value chosen (four values were proposed A450nm= 0.5837, A450nm= 0.6042, A450nm= 0.6404, and A450nm= 0.7099). Thus, although more research is needed to reach a standardized method, this ELISA platform offers a rapid, low-cost and easy solution to detect these elusive fungi through minimally invasive sampling, allowing the monitoring of the humoral response to fungal presence.
Collapse
Affiliation(s)
- Leire Martin-Souto
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maialen Areitio
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Leire Aparicio-Fernandez
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitziber Antoran
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jean-Philippe Bouchara
- Groupe d'Etude des Interactions Hôte-Pathogène (EA 3142), SFR ICAT 4208, Institut de Biologie en Santé-IRIS, Centre Hospitalier Universitaire, Angers, France
| | | | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando L Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
6
|
Areitio M, Martin-Vicente A, Arbizu A, Antoran A, Aparicio-Fernandez L, Buldain I, Martin-Souto L, Rementeria A, Capilla J, Hernando FL, Ramirez-Garcia A. Identification of Mucor circinelloides antigens recognized by sera from immunocompromised infected mice. Rev Iberoam Micol 2020; 37:81-86. [PMID: 33168341 DOI: 10.1016/j.riam.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Mucor circinelloides is an opportunistic fungus capable of causing mucormycosis, a highly aggressive infection of quick spreading. Besides, it also has a high mortality rate due to late diagnosis and difficult treatment. AIMS In this study we have identified the most immunoreactive proteins of the secretome and the total protein extract of M. circinelloides using sera from immunocompromised infected mice. METHODS The proteins of the secretome and the total extract were analyzed by two-dimensional electrophoresis and the most immunoreactive antigens were detected by Western Blot, facing the sera of immunocompromised infected mice to the proteins obtained in both extracts of M. circinelloides. RESULTS Seven antigens were detected in the secretome extract, and two in the total extract, all of them corresponding only to three proteins. The enzyme enolase was detected in both extracts, while triosephosphate isomerase was detected in the secretome, and heat shock protein HSS1 in the total extract. CONCLUSIONS In this work the most immunoreactive antigens of the secretome and the total extract of M. circinelloides were identified. The identified proteins are well known fungal antigens and, therefore, these findings can be useful for future research into alternatives for the diagnosis and treatment of mucormycosis.
Collapse
Affiliation(s)
- Maialen Areitio
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adela Martin-Vicente
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain; Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aitana Arbizu
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitziber Antoran
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Leire Aparicio-Fernandez
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Leire Martin-Souto
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Javier Capilla
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Fernando L Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
7
|
Ramos LS, Oliveira SSC, Braga-Silva LA, Branquinha MH, Santos ALS. Secreted aspartyl peptidases by the emerging, opportunistic and multidrug-resistant fungal pathogens comprising the Candida haemulonii complex. Fungal Biol 2020; 124:700-707. [PMID: 32690251 DOI: 10.1016/j.funbio.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/12/2023]
Abstract
The opportunistic pathogens comprising the Candida haemulonii complex (C. haemulonii, C. duobushaemulonii and C. haemulonii var. vulnera) are notable for their intrinsic resistance to different antifungal classes. Little is known about the virulence attributes in this emerging fungal complex. However, it is well-recognized that enzymes play important roles in virulence/pathogenesis of candidiasis. Herein, we aimed to identify aspartyl-type peptidases in 12 clinical isolates belonging to the C. haemulonii complex. All isolates were able to grow in a chemically defined medium containing albumin as the sole nitrogen source, and a considerable consumption of this protein occurred after 72-96 h. C. haemulonii var. vulnera isolates showed the lowest albumin degradation capability and the poorest growth rate. The measurement of secreted aspartyl peptidase (Sap) activity, using the cathepsin D fluorogenic substrate, varied from 91.6 to 413.3 arbitrary units and the classic aspartyl peptidase inhibitor, pepstatin A, significantly blocked the Sap released by C. haemulonii complex. No differences were observed in the Sap activity among the three fungal species. Flow cytometry, using a polyclonal antibody against Sap1-3 of C. albicans, detected homologous proteins at the surface of C. haemulonii complex (anti-Sap1-3-labeled cells ranged from 24.6 to 79.1%). Additionally, the immunoblotting assay, conducted with the same Sap1-3 antibody, recognized a protein of ∼50 kDa in all fungal isolates. A glimpse in the genome of these fungi revealed several potential proteins containing Sap1-3-like conserved domain. Altogether, our results demonstrated the potential of C. haemulonii species complex to produce Saps, an important virulence factor of Candida spp.
Collapse
Affiliation(s)
- Lívia S Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simone S C Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lys A Braga-Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Study of Humoral Responses against Lomentospora/ Scedosporium spp. and Aspergillus fumigatus to Identify L. prolificans Antigens of Interest for Diagnosis and Treatment. Vaccines (Basel) 2019; 7:vaccines7040212. [PMID: 31835471 PMCID: PMC6963885 DOI: 10.3390/vaccines7040212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
The high mortality rates of Lomentospora prolificans infections are due, above all, to the tendency of the fungus to infect weakened hosts, late diagnosis and a lack of effective therapeutic treatments. To identify proteins of significance for diagnosis, therapy or prophylaxis, immunoproteomics-based studies are especially important. Consequently, in this study murine disseminated infections were carried out using L. prolificans, Scedosporium aurantiacum, Scedosporium boydii and Aspergillus fumigatus, and their sera used to identify the most immunoreactive proteins of L. prolificans total extract and secreted proteins. The results showed that L. prolificans was the most virulent species and its infections were characterized by a high fungal load in several organs, including the brain. The proteomics study showed a high cross-reactivity between Scedosporium/Lomentospora species, but not with A. fumigatus. Among the antigens identified were, proteasomal ubiquitin receptor, carboxypeptidase, Vps28, HAD-like hydrolase, GH16, cerato-platanin and a protein of unknown function that showed no or low homology with humans. Finally, Hsp70 deserves a special mention as it was the main antigen recognized by Scedosporium/Lomentospora species in both secretome and total extract. In conclusion, this study identifies antigens of L. prolificans that can be considered as potential candidates for use in diagnosis and as therapeutic targets and the production of vaccines.
Collapse
|
9
|
Mello TP, Bittencourt VCB, Liporagi-Lopes LC, Aor AC, Branquinha MH, Santos AL. Insights into the social life and obscure side of Scedosporium/Lomentospora species: ubiquitous, emerging and multidrug-resistant opportunistic pathogens. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Ramirez-Garcia A, Pellon A, Rementeria A, Buldain I, Barreto-Bergter E, Rollin-Pinheiro R, de Meirelles JV, Xisto MIDS, Ranque S, Havlicek V, Vandeputte P, Govic YL, Bouchara JP, Giraud S, Chen S, Rainer J, Alastruey-Izquierdo A, Martin-Gomez MT, López-Soria LM, Peman J, Schwarz C, Bernhardt A, Tintelnot K, Capilla J, Martin-Vicente A, Cano-Lira J, Nagl M, Lackner M, Irinyi L, Meyer W, de Hoog S, Hernando FL. Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med Mycol 2018. [PMID: 29538735 DOI: 10.1093/mmy/myx113] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Species of Scedosporium and Lomentospora are considered as emerging opportunists, affecting immunosuppressed and otherwise debilitated patients, although classically they are known from causing trauma-associated infections in healthy individuals. Clinical manifestations range from local infection to pulmonary colonization and severe invasive disease, in which mortality rates may be over 80%. These unacceptably high rates are due to the clinical status of patients, diagnostic difficulties, and to intrinsic antifungal resistance of these fungi. In consequence, several consortia have been founded to increase research efforts on these orphan fungi. The current review presents recent findings and summarizes the most relevant points, including the Scedosporium/Lomentospora taxonomy, environmental distribution, epidemiology, pathology, virulence factors, immunology, diagnostic methods, and therapeutic strategies.
Collapse
Affiliation(s)
- Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aize Pellon
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | | | | | | | - Stephane Ranque
- Laboratoire de Parasitologie-Mycologie, AP-HM / CHU Timone, Marseille, France
| | - Vladimir Havlicek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Patrick Vandeputte
- Laboratoire de Parasitologie-Mycologie, CHU, Angers, France.,Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Yohann Le Govic
- Laboratoire de Parasitologie-Mycologie, CHU, Angers, France.,Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Jean-Philippe Bouchara
- Laboratoire de Parasitologie-Mycologie, CHU, Angers, France.,Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Sandrine Giraud
- Host-Pathogen Interaction Study Group (EA 3142), UNIV Angers, UNIV Brest, Angers, France
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Westmead Hospital, The University of Sydney, New South Wales, Australia
| | - Johannes Rainer
- Institute of Microbiology, Leopold-Franzens University Innsbruck, Austria
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology. Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | | | | | - Javier Peman
- Microbiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carsten Schwarz
- Cystic Fibrosis Centre Berlin/Charité-Universitätsmedizin Berlin, Germany
| | - Anne Bernhardt
- Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Kathrin Tintelnot
- Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Javier Capilla
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Adela Martin-Vicente
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain.,Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN USA
| | - Jose Cano-Lira
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Markus Nagl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School - Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Fernando L Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
11
|
Palmeira VF, Goulart FRV, Granato MQ, Alviano DS, Alviano CS, Kneipp LF, Santos ALS. Fonsecaea pedrosoi Sclerotic Cells: Secretion of Aspartic-Type Peptidase and Susceptibility to Peptidase Inhibitors. Front Microbiol 2018; 9:1383. [PMID: 30008700 PMCID: PMC6033999 DOI: 10.3389/fmicb.2018.01383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/06/2018] [Indexed: 02/05/2023] Open
Abstract
Fonsecaea pedrosoi is a dematiaceous fungus and the main causative agent of chromoblastomycosis that is a chronic disease usually affecting the human skin and subcutaneous tissues, which causes deformations and incapacities, being frequently refractory to available therapies. A typical globe-shaped, multiseptated and pigmented cells, known as sclerotic cells, are found in the lesions of infected individuals. In the present work, we have investigated the production of aspartic-type peptidase in F. pedrosoi sclerotic cells as well as the effect of peptidase inhibitors (PIs) on its enzymatic activity and viability. Our data showed that sclerotic cells are able to secrete pepstatin A-sensible aspartic peptidase when grown under chemically defined conditions. In addition, aspartic PIs (ritonavir, nelfinavir, indinavir, and saquinavir), which are clinically used in the HIV chemotherapy, significantly decreased the fungal peptidase activity, varying from 55 to 99%. Moreover, sclerotic cell-derived aspartic peptidase hydrolyzed human albumin, an important serum protein, as well as laminin, an extracellular matrix component, but not immunoglobulin G and fibronectin. It is well-known that aspartic peptidases play important physiological roles in fungal cells. With this task in mind, the effect of pepstatin A, a classical aspartic peptidase inhibitor, on the F. pedrosoi proliferation was evaluated. Pepstatin A inhibited the fungal viability in both cellular density- and drug-concentration manners. Moreover, HIV-PIs at 10 μM powerfully inhibited the viability (>65%) of F. pedrosoi sclerotic cells. The detection of aspartic peptidase produced by sclerotic cells, the parasitic form of F. pedrosoi, may contribute to reveal new virulence markers and potential targets for chromoblastomycosis therapy.
Collapse
Affiliation(s)
- Vanila F Palmeira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fatima R V Goulart
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Q Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Daniela S Alviano
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celuta S Alviano
- Laboratório de Estrutura de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucimar F Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
de Oliveira AR, Oliveira LN, Chaves EGA, Weber SS, Bailão AM, Parente-Rocha JA, Baeza LC, de Almeida Soares CM, Borges CL. Characterization of extracellular proteins in members of the Paracoccidioides complex. Fungal Biol 2018; 122:738-751. [PMID: 30007425 DOI: 10.1016/j.funbio.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/11/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022]
Abstract
Paracoccidioides is a thermodimorphic fungus that causes Paracoccidioidomycosis (PCM) - an endemic systemic mycosis in Latin America. The genus comprises several phylogenetic species which present some genetic and serological differences. The diversity presented among isolates of the same genus has been explored in several microorganisms. There have also been attempts to clarify differences that might be related to virulence existing in isolates that cause the same disease. In this work, we analyzed the secretome of two isolates in the Paracoccidioides genus, isolates Pb01 and PbEpm83, and performed infection assays in macrophages to evaluate the influence of the secretomes of those isolates upon an in vitro model of infection. The use of a label-free proteomics approach (LC-MSE) allowed us to identify 92 proteins that are secreted by those strains. Of those proteins, 35 were differentially secreted in Pb01, and 36 in PbEpm83. According to the functional annotation, most of the identified proteins are related to adhesion and virulence processes. These results provide evidence that different members of the Paracoccidioides complex can quantitatively secrete different proteins, which may influence the characteristics of virulence, as well as host-related processes.
Collapse
Affiliation(s)
- Amanda Rodrigues de Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Programa de Pós-graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Edilânia Gomes Araújo Chaves
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Simone Schneider Weber
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Amazonas, Brazil; Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lilian Cristiane Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
13
|
Trichosporon asahii secretes a 30-kDa aspartic peptidase. Microbiol Res 2017; 205:66-72. [DOI: 10.1016/j.micres.2017.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023]
|
14
|
Proteomics as a Tool to Identify New Targets Against Aspergillus and Scedosporium in the Context of Cystic Fibrosis. Mycopathologia 2017; 183:273-289. [PMID: 28484941 DOI: 10.1007/s11046-017-0139-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/25/2017] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis (CF) is a genetic disorder that increases the risk of suffering microbial, including fungal, infections. In this paper, proteomics-based information was collated relating to secreted and cell wall proteins with potential medical applications from the most common filamentous fungi in CF, i.e., Aspergillus and Scedosporium/Lomentospora species. Among the Aspergillus fumigatus secreted allergens, β-1,3-endoglucanase, the alkaline protease 1 (Alp1/oryzin), Asp f 2, Asp f 13/15, chitinase, chitosanase, dipeptidyl-peptidase V (DppV), the metalloprotease Asp f 5, mitogillin/Asp f 1, and thioredoxin reductase receive a special mention. In addition, the antigens β-glucosidase 1, catalase, glucan endo-1,3-β-glucosidase EglC, β-1,3-glucanosyltransferases Gel1 and Gel2, and glutaminase A were also identified in secretomes of other Aspergillus species associated with CF: Aspergillus flavus, Aspergillus niger, Aspergillus nidulans, and Aspergillus terreus. Regarding cell wall proteins, cytochrome P450 and eEF-3 were proposed as diagnostic targets, and alkaline protease 2 (Alp2), Asp f 3 (putative peroxiredoxin pmp20), probable glycosidases Asp f 9/Crf1 and Crf2, GPI-anchored protein Ecm33, β-1,3-glucanosyltransferase Gel4, conidial hydrophobin Hyp1/RodA, and secreted aspartyl protease Pep2 as protective vaccines in A. fumigatus. On the other hand, for Scedosporium/Lomentospora species, the heat shock protein Hsp70 stands out as a relevant secreted and cell wall antigen. Additionally, the secreted aspartyl proteinase and an ortholog of Asp f 13, as well as the cell wall endo-1,3-β-D-glucosidase and 1,3-β-glucanosyl transferase, were also found to be significant proteins. In conclusion, proteins mentioned in this review may be promising candidates for developing innovative diagnostic and therapeutic tools for fungal infections in CF patients.
Collapse
|
15
|
Han Z, Kautto L, Nevalainen H. Secretion of Proteases by an Opportunistic Fungal Pathogen Scedosporium aurantiacum. PLoS One 2017; 12:e0169403. [PMID: 28060882 PMCID: PMC5218550 DOI: 10.1371/journal.pone.0169403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/16/2016] [Indexed: 01/31/2023] Open
Abstract
Scedosporium aurantiacum is an opportunistic filamentous fungus increasingly isolated from the sputum of cystic fibrosis patients, and is especially prevalent in Australia. At the moment, very little is known about the infection mechanism of this fungus. Secreted proteases have been shown to contribute to fungal virulence in several studies with other fungi. Here we have compared the profiles of proteases secreted by a clinical isolate Scedosporium aurantiacum (WM 06.482) and an environmental strain (WM 10.136) grown on a synthetic cystic fibrosis sputum medium supplemented with casein or mucin. Protease activity was assessed using class-specific substrates and inhibitors. Subtilisin-like and trypsin-like serine protease activity was detected in all cultures. The greatest difference in the secretion of proteases between the two strains occurred in mucin-supplemented medium, where the activities of the elastase-like, trypsin-like and aspartic proteases were, overall, 2.5–75 fold higher in the clinical strain compared to the environmental strain. Proteases secreted by the two strains in the mucin-supplemented medium were further analyzed by mass spectrometry. Six homologs of fungal proteases were identified from the clinical strain and five from the environmental strain. Of these, three were common for both strains including a subtilisin peptidase, a putative leucine aminopeptidase and a PA-SaNapH-like protease. Trypsin-like protease was identified by mass spectrometry only in the clinical isolate even though trypsin-like activity was present in all cultures. In contrast, high elastase-like activity was measured in the culture supernatant of the clinical strain but could not be identified by mass spectrometry searching against other fungi in the NCBI database. Future availability of an annotated genome will help finalise identification of the S. aurantiacum proteases.
Collapse
Affiliation(s)
- Zhiping Han
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- Biomolecular Frontiers Research Centre, Macquarie University, Sydney, Australia
- * E-mail:
| | - Liisa Kautto
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- Biomolecular Frontiers Research Centre, Macquarie University, Sydney, Australia
| | - Helena Nevalainen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- Biomolecular Frontiers Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
16
|
Buldain I, Ramirez-Garcia A, Pellon A, Antoran A, Sevilla MJ, Rementeria A, Hernando FL. Cyclophilin and enolase are the most prevalent conidial antigens of Lomentospora prolificans recognized by healthy human salivary IgA and cross-react with Aspergillus fumigatus. Proteomics Clin Appl 2016; 10:1058-1067. [PMID: 27485921 DOI: 10.1002/prca.201600080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 11/09/2022]
Abstract
PURPOSE The study of the immunocompetent airways immune response may provide important information to improve the therapeutic efficacy against Lomentospora (Scedosporium) prolificans. So, this study aimed to identify the most prevalent conidial antigens of this multiresistant fungus recognized by healthy human salivary immunoglobulin A, and to study their expression and cross-reactivity with other fungal species. EXPERIMENTAL DESIGN Twenty saliva from immunocompetent donors were used to detect and identify the immunoreactive proteins by 2D immunoblotting and LC-MS/MS. Moreover, anti-Aspergillus antibodies were purified to study their cross-reactivity. RESULTS Ten proteins of L. prolificans conidia showed reactivity with more than 50% of the saliva samples. Among them, cyclophilin and enolase were the most prevalent antigens recognized by 85 and 80% of the samples, respectively. These enzymes were also identified on the cell wall surface of L. prolificans and on the immunomes of Scedosporium apiospermum and Scedosporium aurantiacum. Additionally, they showed cross-reactivity with the most common pathogenic filamentous fungus Aspergillus fumigatus. CONCLUSION AND CLINICAL RELEVANCE These results show that the immunocompetent immune response might offer a pan-fungal recognition of conserved antigens such as enolase and cyclophilins, making them potential candidates for study as therapeutic targets.
Collapse
Affiliation(s)
- Idoia Buldain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Aize Pellon
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitziber Antoran
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maria Jesus Sevilla
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando L Hernando
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
17
|
Pellon A, Ramirez-Garcia A, Buldain I, Antoran A, Rementeria A, Hernando FL. Immunoproteomics-Based Analysis of the Immunocompetent Serological Response to Lomentospora prolificans. J Proteome Res 2016; 15:595-607. [PMID: 26732945 DOI: 10.1021/acs.jproteome.5b00978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The filamentous fungus Lomentospora prolificans is an emerging pathogen causing severe infections mainly among the immunocompromised population. These diseases course with high mortality rates due to great virulence of the fungus, its inherent resistance to available antifungals, and absence of specific diagnostic tools. Despite being widespread in humanized environments, L. prolificans rarely causes infections in immunocompetent individuals likely due to their developed protective immune response. In this study, conidial and hyphal immunomes against healthy human serum IgG were analyzed, identifying immunodominant antigens and establishing their prevalence among the immunocompetent population. Thirteen protein spots from each morph were detected as reactive against at least 70% of serum samples, and identified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Hence, the most seroprevalent antigens were WD40 repeat 2 protein, malate dehydrogenase, and DHN1, in conidia, and heat shock protein (Hsp) 70, Hsp90, ATP synthase β subunit, and glyceraldehyde-3-phosphate dehydrogenase, in hyphae. More interestingly, the presence of some of these seroprevalent antigens was determined on the cell surface, as Hsp70, enolase, or Hsp90. Thus, we have identified a diverse set of antigenic proteins, both in the entire proteome and cell surface subproteome, which may be used as targets to develop innovative therapeutic or diagnostic tools.
Collapse
Affiliation(s)
- Aize Pellon
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Aitziber Antoran
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Fernando L Hernando
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| |
Collapse
|
18
|
Ghamrawi S, Gastebois A, Zykwinska A, Vandeputte P, Marot A, Mabilleau G, Cuenot S, Bouchara JP. A Multifaceted Study of Scedosporium boydii Cell Wall Changes during Germination and Identification of GPI-Anchored Proteins. PLoS One 2015; 10:e0128680. [PMID: 26038837 PMCID: PMC4454578 DOI: 10.1371/journal.pone.0128680] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/29/2015] [Indexed: 12/02/2022] Open
Abstract
Scedosporium boydii is a pathogenic filamentous fungus that causes a wide range of human infections, notably respiratory infections in patients with cystic fibrosis. The development of new therapeutic strategies targeting S. boydii necessitates a better understanding of the physiology of this fungus and the identification of new molecular targets. In this work, we studied the conidium-to-germ tube transition using a variety of techniques including scanning and transmission electron microscopy, atomic force microscopy, two-phase partitioning, microelectrophoresis and cationized ferritin labeling, chemical force spectroscopy, lectin labeling, and nanoLC-MS/MS for cell wall GPI-anchored protein analysis. We demonstrated that the cell wall undergoes structural changes with germination accompanied with a lower hydrophobicity, electrostatic charge and binding capacity to cationized ferritin. Changes during germination also included a higher accessibility of some cell wall polysaccharides to lectins and less CH3/CH3 interactions (hydrophobic adhesion forces mainly due to glycoproteins). We also extracted and identified 20 GPI-anchored proteins from the cell wall of S. boydii, among which one was detected only in the conidial wall extract and 12 only in the mycelial wall extract. The identified sequences belonged to protein families involved in virulence in other fungi like Gelp/Gasp, Crhp, Bglp/Bgtp families and a superoxide dismutase. These results highlighted the cell wall remodeling during germination in S. boydii with the identification of a substantial number of cell wall GPI-anchored conidial or hyphal specific proteins, which provides a basis to investigate the role of these molecules in the host-pathogen interaction and fungal virulence.
Collapse
Affiliation(s)
- Sarah Ghamrawi
- L'UNAM Université, Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, EA 3142, Angers, France
- * E-mail:
| | - Amandine Gastebois
- L'UNAM Université, Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, EA 3142, Angers, France
| | - Agata Zykwinska
- L'UNAM Université, Université de Nantes, Institut des Matériaux Jean Rouxel, Nantes, France
| | - Patrick Vandeputte
- L'UNAM Université, Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, EA 3142, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Agnès Marot
- L'UNAM Université, Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, EA 3142, Angers, France
| | - Guillaume Mabilleau
- L'UNAM Université, Service Commun d'Imageries et Analyses microscopiques, Angers, France
| | - Stéphane Cuenot
- L'UNAM Université, Université de Nantes, Institut des Matériaux Jean Rouxel, Nantes, France
| | - Jean-Philippe Bouchara
- L'UNAM Université, Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, EA 3142, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
19
|
Pellon A, Ramirez-Garcia A, Antoran A, Fernandez-Molina JV, Abad-Diaz-de-Cerio A, Montañez D, Sevilla MJ, Rementeria A, Hernando FL. Scedosporium prolificans immunomes against human salivary immunoglobulin A. Fungal Biol 2014; 118:94-105. [DOI: 10.1016/j.funbio.2013.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 11/25/2022]
|
20
|
Silva BMA, Prados-Rosales R, Espadas-Moreno J, Wolf JM, Luque-Garcia JL, Gonçalves T, Casadevall A. Characterization of Alternaria infectoria extracellular vesicles. Med Mycol 2013; 52:202-10. [PMID: 24576997 DOI: 10.1093/mmy/myt003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many fungi use membrane vesicles to transport complex molecules across their cell walls. Like mammalian exosomes, fungal vesicles contain lipids, proteins, and polysaccharides, many of which are associated with virulence. Here we identify and characterize extracellular vesicles (EVs) in Alternaria infectoria, a ubiquitous, environmental filamentous fungus that is also an opportunistic human pathogen. Examination of the A. infectoria EVs revealed a morphology similar to that of vesicles described in other fungal species. Of note, proteomic analysis detected a reduced number of vesicle-associated proteins. There were two prevalent categories among the 20 identified proteins, including the polysaccharide metabolism group, probably related to plant host invasion or biosynthesis/degradation of cell wall components, and the nuclear proteins, especially DNA repair enzymes. We also found enzymes related to pigment synthesis, adhesion to the host cell, and trafficking of vesicles/organelles/molecules. This is the first time EV secretions have been identified in a filamentous fungus. We believe that these vesicles might have a role in virulence.
Collapse
Affiliation(s)
- Branca M A Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
21
|
Chang YC, Deng TS, Pang KL, Hsiao CJ, Chen YY, Tang SJ, Lee TH. Polyketides from the littoral plant associated fungus Pseudallescheria boydii. JOURNAL OF NATURAL PRODUCTS 2013; 76:1796-1800. [PMID: 23964677 DOI: 10.1021/np400192q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Four previously unreported chemical entities, boydone A (1), boydone B (2), botryorhodine F (3), and botryorhodine G (4), along with five known compounds, fusidilactone A (5), (R)-(-)-mevalonolactone (6), (R)-(-)-lactic acid (7), ovalicin (8), and botryorhodine C (9), were isolated from the ethyl acetate extracts of the fermented broths of the fungal strain Pseudallescheria boydii NTOU2362. The structures of 1-9 were characterized on the basis of their spectroscopic data analyses. The absolute configurations of 1 and 2 were established by comparison with the literature and the modified Mosher's method. The growth inhibitory activities of 1-9 against the A549 non-small-cell lung cancer cell line were evaluated, and 2 and 8 exhibited moderate to potent bioactivities with GI₅₀ values of 41.3 and 4.1 μM, respectively, in comparison with fluorouracil (GI₅₀ = 3.6 μM).
Collapse
Affiliation(s)
- Ya-Chih Chang
- School of Pharmacy, Taipei Medical University , Taipei, Taiwan 110
| | | | | | | | | | | | | |
Collapse
|
22
|
|