1
|
Subramaniam S, Joyce P, Donnellan L, Young C, Wignall A, Hoffmann P, Prestidge CA. Protein adsorption determines pulmonary cell uptake of lipid-based nanoparticles. J Colloid Interface Sci 2023; 641:36-47. [PMID: 36924544 DOI: 10.1016/j.jcis.2023.03.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
The inhalable administration of lipid nanoparticles is an effective strategy for localised delivery of therapeutics against various lung diseases. Of this, improved intracellular delivery of pharmaceuticals for infectious disease and cancer management is of high significance. However, the influence of lipid nanoparticle composition and structure on uptake in pulmonary cell lines, especially in the presence of biologically relevant media is poorly understood. Here, the uptake of lamellar (liposomes) versus non-lamellar (cubosomes) lipid nanoparticles in macrophages and lung epithelial cells was quantified and the influence of bronchoalveolar lavage fluid (BALF), containing native pulmonary protein and surfactant molecules is determined. Cubosome uptake in both macrophages and epithelial cells was strongly mediated by a high percentage of molecular function regulatory and binding proteins present within the protein corona. In contrast, the protein corona did not influence the uptake of liposomes in epithelial cells. In macrophages, the proteins mediated a rapid internalisation, followed by exocytosis of liposomes after 6 h incubation. These findings on the influence of biological fluid in regulating lipid nanoparticle uptake mechanisms may guide future development of optimal intracellular delivery systems for therapeutics via the pulmonary route.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Leigh Donnellan
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Clifford Young
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Anthony Wignall
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Peter Hoffmann
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia.
| |
Collapse
|
2
|
Kim K, Shin D, Lee G, Bae H. Loss of SP-A in the Lung Exacerbates Pulmonary Fibrosis. Int J Mol Sci 2022; 23:ijms23105292. [PMID: 35628104 PMCID: PMC9141401 DOI: 10.3390/ijms23105292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating and common chronic lung disease that is pathologically characterized by the destruction of lung architecture and the accumulation of extracellular matrix in the lung. Previous studies have shown an association between lung surfactant protein (SP) and the pathogenesis of IPF, as demonstrated by mutations and the altered expression of SP in patients with IPF. However, the role of SP in the development of lung fibrosis is poorly understood. In this study, the role of surfactant protein A (SP-A) was explored in experimental lung fibrosis induced with a low or high dose of bleomycin (BLM) and CRISPR/Cas9-mediated genetic deletion of SP-A. Our results showed that lung SP-A deficiency in mice promoted the development of fibrotic damage and exacerbated inflammatory responses to the BLM challenge. In vitro experiments with murine lung epithelial LA-4 cells demonstrated that in response to transforming growth factor-β1 (TGF-β1), LA-4 cells had a decreased protein expression of SP-A. Furthermore, exogenous SP administration to LA-4 cells inhibited the TGF-β1-induced upregulation of fibrotic markers. Overall, these findings suggest a novel antifibrotic mechanism of SP-A in the development of lung fibrosis, which indicates the therapeutic potential of the lung SP-A in preventing the development of IPF.
Collapse
Affiliation(s)
- Kyunghwa Kim
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan 49315, Korea; (K.K.); (G.L.)
| | - Dasom Shin
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea;
| | - Gaheon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan 49315, Korea; (K.K.); (G.L.)
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26-6 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02453, Korea;
- Correspondence:
| |
Collapse
|
3
|
Li X, Liu X, Horvatovich P, Hu Y, Zhang J. Proteomics Landscape of Host-Pathogen Interaction in Acinetobacter baumannii Infected Mouse Lung. Front Genet 2021; 12:563516. [PMID: 34025711 PMCID: PMC8138179 DOI: 10.3389/fgene.2021.563516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Acinetobacter baumannii is an important pathogen of nosocomial infection worldwide, which can primarily cause pneumonia, bloodstream infection, and urinary tract infection. The increasing drug resistance rate of A. baumannii and the slow development of new antibacterial drugs brought great challenges for clinical treatment. Host immunity is crucial to the defense of A. baumannii infection, and understanding the mechanisms of immune response can facilitate the development of new therapeutic strategies. To characterize the system-level changes of host proteome in immune response, we used tandem mass tag (TMT) labeling quantitative proteomics to compare the proteome changes of lungs from A. baumannii infected mice with control mice 6 h after infection. A total of 6,218 proteins were identified in which 6,172 could be quantified. With threshold p < 0.05 and relative expression fold change > 1.2 or < 0.83, we found 120 differentially expressed proteins. Bioinformatics analysis showed that differentially expressed proteins after infection were associated with receptor recognition, NADPH oxidase (NOX) activation and antimicrobial peptides. These differentially expressed proteins were involved in the pathways including leukocyte transendothelial migration, phagocyte, neutrophil degranulation, and antimicrobial peptides. In conclusion, our study showed proteome changes in mouse lung tissue due to A. baumannii infection and suggested the important roles of NOX, neutrophils, and antimicrobial peptides in host response. Our results provide a potential list of protein candidates for the further study of host-bacteria interaction in A. baumannii infection. Data are available via ProteomeXchange with identifier PXD020640.
Collapse
Affiliation(s)
- Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Duvanova OV, Mishankin BN, Romanova LV, Titova SV. VIBRIO CHOLERAE CHITINOLYTIC COMPLEX: THE COMPOSITION AND THE ROLE IN PERSISTANCE. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2016. [DOI: 10.36233/0372-9311-2016-5-94-101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Reviewed the paper are the composition and functions of Vibrio cholerae chitinolytic complex which play an important role in the maintaining and creating new forms of vibrios in the environment, it is better adapted to survive in environmental.
Collapse
|
5
|
Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis. Infect Immun 2015; 84:365-74. [PMID: 26553463 DOI: 10.1128/iai.01168-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/02/2015] [Indexed: 02/03/2023] Open
Abstract
Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague.
Collapse
|
6
|
Petriz BA, Franco OL. Application of Cutting-Edge Proteomics Technologies for Elucidating Host–Bacteria Interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:1-24. [DOI: 10.1016/b978-0-12-800453-1.00001-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Foster MW, Thompson JW, Que LG, Yang IV, Schwartz DA, Moseley MA, Marshall HE. Proteomic analysis of human bronchoalveolar lavage fluid after subsgemental exposure. J Proteome Res 2013; 12:2194-205. [PMID: 23550723 DOI: 10.1021/pr400066g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The analysis of airway fluid, as sampled by bronchoalveolar lavage (BAL), provides a minimally invasive route to interrogate lung biology in health and disease. Here, we used immunodepletion, coupled with gel- and label-free LC-MS/MS, for quantitation of the BAL fluid (BALF) proteome in samples recovered from human subjects following bronchoscopic instillation of saline, lipopolysaccharide (LPS) or house dust mite antigen into three distinct lung subsegments. Among more than 200 unique proteins quantified across nine samples, neutrophil granule-derived and acute phase proteins were most highly enriched in the LPS-exposed lobes. Of these, peptidoglycan response protein 1 was validated and confirmed as a novel marker of neutrophilic inflammation. Compared to a prior transcriptomic analysis of airway cells in this same cohort, the BALF proteome revealed a novel set of response factors. Independent of exposure, the enrichment of tracheal-expressed proteins in right lower lung lobes suggests a potential for constitutive intralobar variability in the BALF proteome; sampling of multiple lung subsegments also appears to aid in the identification of protein signatures that differentiate individuals at baseline. Collectively, this proof-of-concept study validates a robust workflow for BALF proteomics and demonstrates the complementary nature of proteomic and genomic techniques for investigating airway (patho)physiology.
Collapse
Affiliation(s)
- Matthew W Foster
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhang HL, Liu XJ, Zhang BW, Peng XX, Li H. Amphioxus CaVPT and creatine kinase are crucial immune-related molecules in response to bacterial infection and immunization. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1139-1148. [PMID: 22960218 DOI: 10.1016/j.fsi.2012.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/16/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
Although a great progress has been made, our understanding of innate immunity is incomplete. Here, we hypothesize that the innate immune response to pathogens is attributed into a group of functional proteins. The group contains information on host status post bacterial entry (infection or immunity) and bacterial species (Gram-positive or Gram-negative bacteria). Investigation of the group of proteins may result in disclosing of biomarkers identifying the status and species. For this regard, differential proteomics approach coupled with the pattern recognition methods are used to identify biomarkers from the proteins that being specifically regulated during the innate immune response of amphioxus to Gram-positive and Gram-negative bacteria with live or dead status. Four proteins, Calcium vector protein (CaVP), sarcoplasmic calcium-binding protein (SCP), CaVP-target protein (CaVPT) and creatine kinase (CK), are selected as the key biomarkers. Since immunoprotection of CaVP and SCP has been reported, the role of CaVPT and CK are further investigated. Gut CaVPT appears in dying amphioxus, whereas humoral fluid CK downregulates and gut CK keep no change in animals with immunity. The responses are stronger in Gram-negative than Gram-positive bacteria. These results indicate that CaVPT, CK, CaVP and SCP are the most important biomarkers to uncover amphioxus innate immunity to bacteria, and the approach is an efficient way to identify key biomarkers.
Collapse
Affiliation(s)
- Hai-Li Zhang
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510275, PR China
| | | | | | | | | |
Collapse
|