1
|
Advances in sample preparation for membrane proteome quantification. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:23-29. [PMID: 34906323 DOI: 10.1016/j.ddtec.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
Membrane proteins mediate various biological processes. Most drugs commercially available target proteins on the cell surface. Therefore, proteomics of plasma membrane proteins provides useful information for drug discovery. However, membrane proteins are one of the most difficult biological groups to quantify by proteomics because of their hydrophobicity and low protein content. To obtain unbiased quantitative membrane proteomics data, specific strategies should be followed during sample preparation. This review explores the most recent advances in sample preparation for the quantitative analysis of the membrane proteome, including enrichment by subcellular fractionation and trypsin digestion.
Collapse
|
2
|
Icb-1 expression inhibits growth and fulvestrant response of breast cancer cells and affects survival of breast cancer patients. Arch Gynecol Obstet 2021; 304:203-213. [PMID: 33389102 DOI: 10.1007/s00404-020-05902-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Human gene icb-1 recently has been reported to be part of a gene expression score predicting response to antiestrogen fulvestrant in breast cancer patients. In the present study, we examined to what extent icb-1 expression would affect the response of breast cancer cells to this antiestrogen in vitro and investigated underlying molecular mechanisms. Using open access mRNA data, we elucidated the significance of icb-1 expression for survival of breast cancer patients. METHODS Icb-1 gene expression was knocked down by RNAi. Breast cancer cell growth after treatment with fulvestrant was assessed using the Cell Titer Blue assay. Gene expression was analyzed by Western blot analysis or RT-qPCR. Survival analyses were performed using bioinformatical online tools and data. RESULTS Knockdown of icb-1 in T-47D breast cancer cells significantly increased growth of this cell line and also elevated the growth-stimulatory effect of E2 (p < 0.001). After treatment with different concentrations of fulvestrant, icb-1 knockdown cells exhibited a significantly enhanced response to this drug (p < 0.01). On the molecular level, icb-1 knockdown led to elevated expression of ESR1 and its target gene TFF1 (pS2) and enhanced E2-triggered up-regulation of proliferation genes. Finally, bioinformatical meta-analysis of gene expression data of 3951 breast cancer patients revealed that high icb-1 expression increases their relapse-free survival (HR = 0.87, p < 0.05). CONCLUSION The presented data further support a tumor-suppressive role of icb-1 in breast cancer and suggest an inhibitory effect of this gene on fulvestrant action, which both are suggested to be mediated by suppression of cellular E2 response.
Collapse
|
3
|
Kawashima Y, Watanabe E, Umeyama T, Nakajima D, Hattori M, Honda K, Ohara O. Optimization of Data-Independent Acquisition Mass Spectrometry for Deep and Highly Sensitive Proteomic Analysis. Int J Mol Sci 2019; 20:ijms20235932. [PMID: 31779068 PMCID: PMC6928715 DOI: 10.3390/ijms20235932] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Data-independent acquisition (DIA)-mass spectrometry (MS)-based proteomic analysis overtop the existing data-dependent acquisition (DDA)-MS-based proteomic analysis to enable deep proteome coverage and precise relative quantitative analysis in single-shot liquid chromatography (LC)-MS/MS. However, DIA-MS-based proteomic analysis has not yet been optimized in terms of system robustness and throughput, particularly for its practical applications. We established a single-shot LC-MS/MS system with an MS measurement time of 90 min for a highly sensitive and deep proteomic analysis by optimizing the conditions of DIA and nanoLC. We identified 7020 and 4068 proteins from 200 ng and 10 ng, respectively, of tryptic floating human embryonic kidney cells 293 (HEK293F) cell digest by performing the constructed LC-MS method with a protein sequence database search. The numbers of identified proteins from 200 ng and 10 ng of tryptic HEK293F increased to 8509 and 5706, respectively, by searching the chromatogram library created by gas-phase fractionated DIA. Moreover, DIA protein quantification was highly reproducible, with median coefficients of variation of 4.3% in eight replicate analyses. We could demonstrate the power of this system by applying the proteomic analysis to detect subtle changes in protein profiles between cerebrums in germ-free and specific pathogen-free mice, which successfully showed that >40 proteins were differentially produced between the cerebrums in the presence or absence of bacteria.
Collapse
Affiliation(s)
- Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan; (Y.K.); (D.N.)
| | - Eiichiro Watanabe
- Laboratory for Gut Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; (E.W.); (K.H.)
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Taichi Umeyama
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; (T.U.); (M.H.)
| | - Daisuke Nakajima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan; (Y.K.); (D.N.)
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; (T.U.); (M.H.)
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Kenya Honda
- Laboratory for Gut Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; (E.W.); (K.H.)
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan; (Y.K.); (D.N.)
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
- Correspondence: ; Tel.: +81-438-52-391; Fax: +81-438-52-3914
| |
Collapse
|
4
|
Vit O, Harant K, Klener P, Man P, Petrak J. A three-pronged "Pitchfork" strategy enables an extensive description of the human membrane proteome and the identification of missing proteins. J Proteomics 2019; 204:103411. [PMID: 31176011 DOI: 10.1016/j.jprot.2019.103411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/14/2019] [Accepted: 06/03/2019] [Indexed: 11/28/2022]
Abstract
Integral membrane proteins are under-represented in standard proteomic analyses, mostly because of their low expression and absence of trypsin-cleavage sites in their hydrophobic transmembrane segments. Novel and effective strategies for membrane proteomic analysis aim at soluble N-glycosylated segments of integral membrane proteins (CSC, SPEG, N-glyco-FASP) or selectively target the hydrophobic transmembrane alpha-helical segments employing chemical peptide cleavage by CNBr (hpTC). We combined a solid phase enrichment of glycopeptides (SPEG) with a transmembrane segment-oriented hpTC method and a standard "detergent and trypsin" approach into a three-pronged "Pitchfork" strategy to maximize the membrane proteome coverage in human lymphoma cells. This strategy enabled the identification of >1200 integral membrane proteins from all cellular compartments, including 105 CD antigens, 24 G protein-coupled receptors, and 141 solute carrier transporters. The advantage of the combination lies in the complementarity of the methods. SPEG and hpTC target different sets of membrane proteins. HpTC provided identifications of proteins and peptides with significantly higher hydrophobicity compared to SPEG and detergent-trypsin approaches. Among all identified proteins, we observed 32 so-called "missing proteins". The Pitchfork strategy presented here is universally applicable and enables deep and fast description of membrane proteomes in only 3 LC-MS/MS runs per replicate. SIGNIFICANCE: Integral membrane proteins (IMPs) are encoded by roughly a quarter of human coding genes. Their functions and their specific localization makes IMPs highly attractive drug targets. In fact, roughly half of the currently approved drugs in medicine target IMPs. Our knowledge of membrane proteomes is, however, limited. We present a new strategy for the membrane proteome analysis that combines three complementary methods targeting different features of IMPs. Using the combined strategy, we identified over 1200 IMPs in human lymphoma tissue from all sub-cellular compartments in only 3 LC-MS/MS runs per replicate. The three-pronged "Pitchfork" strategy is universally applicable, and offers a fast way toward a reasonably concise description of membrane proteomes in multiple samples.
Collapse
Affiliation(s)
- Ondrej Vit
- BIOCEV, First Faculty of Medicine, Charles University, Czech Republic
| | - Karel Harant
- Laboratory of Mass Spectrometry - Service Laboratory of Biology Section, BIOCEV, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Czech Republic
| | - Petr Man
- BIOCEV, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Petrak
- BIOCEV, First Faculty of Medicine, Charles University, Czech Republic.
| |
Collapse
|
5
|
Paik YK, Overall CM, Deutsch EW, Hancock WS, Omenn GS. Progress in the Chromosome-Centric Human Proteome Project as Highlighted in the Annual Special Issue IV. J Proteome Res 2018; 15:3945-3950. [PMID: 27809547 DOI: 10.1021/acs.jproteome.6b00803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Young-Ki Paik
- Yonsei Proteome Research Center and Department of Biochemistry, Yonsei University
| | - Christopher M Overall
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, and Biochemistry & Molecular Biology, Faculty of Dentistry, University of British Columbia
| | | | | | - Gilbert S Omenn
- Departments of Computational Medicine & Bioinformatics, Internal Medicine, and Human Genetics and School of Public Health, University of Michigan
| |
Collapse
|
6
|
Gianazza E, Miller I, Guerrini U, Palazzolo L, Parravicini C, Eberini I. Gender proteomics II. Which proteins in sexual organs. J Proteomics 2017; 178:18-30. [PMID: 28988880 DOI: 10.1016/j.jprot.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023]
Abstract
In continuity with the review dealing with differences by gender in non-sexual organs [1], this review collects data on the proteomes of the sexual organs as involved in human reproduction, under both physiological and pathological conditions. It also collects data on the tissue structures and biological fluids typical of pregnancy, such as placenta and amniotic fluid, as well as what may be tested on preimplantation embryos during medically assisted reproduction. The review includes as well mention to all fluids and secretions connected with sex organs and/or reproduction, including sperm and milk, to exemplify two distinctive items in male and female physiology. SIGNIFICANCE The causes of infertility are only incompletely understood; the same holds for the causes, and even the early markers, of the most frequent complications of pregnancy. To these established medical challenges, present day practice adds new issues connected with medically assisted reproduction. Omics approaches, including proteomics, are building the database for basic knowledge to possibly translate into clinical testing and eventually into medical routine in this critical branch of health care.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy.
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| |
Collapse
|
7
|
Segura V, Garin-Muga A, Guruceaga E, Corrales FJ. Progress and pitfalls in finding the 'missing proteins' from the human proteome map. Expert Rev Proteomics 2016; 14:9-14. [PMID: 27885863 DOI: 10.1080/14789450.2017.1265450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The Human Proteome Project was launched with two main goals: the comprehensive and systematic definition of the human proteome map and the development of ready to use analytical tools to measure relevant proteins in their biological context in health and disease. Despite the great progress in this endeavour, there is still a group of reluctant proteins with no, or scarce, experimental evidence supporting their existence. These are called the 'missing proteins' and represent one of the biggest challenges to complete the human proteome map. Areas covered: This review focuses on the description of the missing proteome based on the HUPO standards, the analysis of the reasons explaining the difficulty of detecting missing proteins and the strategies currently used in the search for missing proteins. The present and future of the quest for the missing proteins is critically revised hereafter. Expert commentary: An overarching multidisciplinary effort is currently being done under the HUPO umbrella to allow completion of the human proteome map. It is expected that the detection of missing proteins will grow in the coming years since the methods and the best tissue/cell type sample for their search are already on the table.
Collapse
Affiliation(s)
- Victor Segura
- a Proteomics and Bioinformatics Laboratory, CIMA , University of Navarra , Pamplona , Spain
| | - Alba Garin-Muga
- a Proteomics and Bioinformatics Laboratory, CIMA , University of Navarra , Pamplona , Spain
| | - Elizabeth Guruceaga
- a Proteomics and Bioinformatics Laboratory, CIMA , University of Navarra , Pamplona , Spain
| | - Fernando J Corrales
- a Proteomics and Bioinformatics Laboratory, CIMA , University of Navarra , Pamplona , Spain
| |
Collapse
|
8
|
Vit O, Petrak J. Integral membrane proteins in proteomics. How to break open the black box? J Proteomics 2016; 153:8-20. [PMID: 27530594 DOI: 10.1016/j.jprot.2016.08.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/30/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022]
Abstract
Integral membrane proteins (IMPs) are coded by 20-30% of human genes and execute important functions - transmembrane transport, signal transduction, cell-cell communication, cell adhesion to the extracellular matrix, and many other processes. Due to their hydrophobicity, low expression and lack of trypsin cleavage sites in their transmembrane segments, IMPs have been generally under-represented in routine proteomic analyses. However, the field of membrane proteomics has changed markedly in the past decade, namely due to the introduction of filter assisted sample preparation (FASP), the establishment of cell surface capture (CSC) protocols, and the development of methods that enable analysis of the hydrophobic transmembrane segments. This review will summarize the recent developments in the field and outline the most successful strategies for the analysis of integral membrane proteins. SIGNIFICANCE Integral membrane proteins (IMPs) are attractive therapeutic targets mostly due to their many important functions. However, our knowledge of the membrane proteome is severely limited to effectively exploit their potential. This is mostly due to the lack of appropriate techniques or methods compatible with the typical features of IMPs, namely hydrophobicity, low expression and lack of trypsin cleavage sites. This review summarizes the most recent development in membrane proteomics and outlines the most successful strategies for their large-scale analysis.
Collapse
Affiliation(s)
- O Vit
- BIOCEV, First Faculty of Medicine, Charles University in Prague, Czech Republic.
| | - J Petrak
- BIOCEV, First Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
9
|
Zhao M, Wei W, Cheng L, Zhang Y, Wu F, He F, Xu P. Searching Missing Proteins Based on the Optimization of Membrane Protein Enrichment and Digestion Process. J Proteome Res 2016; 15:4020-4029. [PMID: 27485413 DOI: 10.1021/acs.jproteome.6b00389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A membrane protein enrichment method composed of ultracentrifugation and detergent-based extraction was first developed based on MCF7 cell line. Then, in-solution digestion with detergents and eFASP (enhanced filter-aided sample preparation) with detergents were compared with the time-consuming in-gel digestion method. Among the in-solution digestion strategies, the eFASP combined with RapiGest identified 1125 membrane proteins. Similarly, the eFASP combined with sodium deoxycholate identified 1069 membrane proteins; however, the in-gel digestion characterized 1091 membrane proteins. Totally, with the five digestion methods, 1390 membrane proteins were identified with ≥1 unique peptides, among which 1345 membrane proteins contain unique peptides ≥2. This is the biggest membrane protein data set for MCF7 cell line and even breast cancer tissue samples. Interestingly, we identified 13 unique peptides belonging to 8 missing proteins (MPs). Finally, eight unique peptides were validated by synthesized peptides. Two proteins were confirmed as MPs, and another two proteins were candidate detections.
Collapse
Affiliation(s)
- Mingzhi Zhao
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Wei Wei
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Long Cheng
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology , 27 Tai-Ping Lu Road, Beijing 100850, China
| | - Yao Zhang
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Institute of Microbiology, Chinese Academy of Science , Beijing 100101, China
| | - Feilin Wu
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Life Science College, Southwest Forestry University , Kunming 650224, P. R. China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences , Wuhan 430071, P. R. China.,Anhui Medical University , Hefei 230032, Anhui, P. R. China
| |
Collapse
|
10
|
Guo J, Cui Y, Yan Z, Luo Y, Zhang W, Deng S, Tang S, Zhang G, He QY, Wang T. Phosphoproteome Characterization of Human Colorectal Cancer SW620 Cell-Derived Exosomes and New Phosphosite Discovery for C-HPP. J Proteome Res 2016; 15:4060-4072. [PMID: 27470641 DOI: 10.1021/acs.jproteome.6b00391] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiahui Guo
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yizhi Cui
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ziqi Yan
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yanzhang Luo
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Wanling Zhang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Suyuan Deng
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shengquan Tang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Gong Zhang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Tong Wang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
11
|
Josić D, Andjelković U. The Role of Proteomics in Personalized Medicine. Per Med 2016. [DOI: 10.1007/978-3-319-39349-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Xu S, Zhou R, Ren Z, Zhou B, Lin Z, Hou G, Deng Y, Zi J, Lin L, Wang Q, Liu X, Xu X, Wen B, Liu S. Appraisal of the Missing Proteins Based on the mRNAs Bound to Ribosomes. J Proteome Res 2015; 14:4976-84. [PMID: 26500078 DOI: 10.1021/acs.jproteome.5b00476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Considering the technical limitations of mass spectrometry in protein identification, the mRNAs bound to ribosomes (RNC-mRNA) are assumed to reflect the mRNAs participating in the translational process. The RNC-mRNA data are reasoned to be useful for appraising the missing proteins. A set of the multiomics data including free-mRNAs, RNC-mRNAs, and proteomes was acquired from three liver cancer cell lines. On the basis of the missing proteins in neXtProt (release 2014-09-19), the bioinformatics analysis was carried out in three phases: (1) finding how many neXtProt missing proteins have or do not have RNA-seq and/or MS/MS evidence, (2) analyzing specific physicochemical and biological properties of the missing proteins that lack both RNA-seq and MS/MS evidence, and (3) analyzing the combined properties of these missing proteins. Total of 1501 missing proteins were found by neither RNC-mRNA nor MS/MS in the three liver cancer cell lines. For these missing proteins, some are expected higher hydrophobicity, unsuitable detection, or sensory functions as properties at the protein level, while some are predicted to have nonexpressing chromatin structures on the corresponding gene level. With further integrated analysis, we could attribute 93% of them (1391/1501) to these causal factors, which result in the expression products scarcely detected by RNA-seq or MS/MS.
Collapse
Affiliation(s)
- Shaohang Xu
- BGI-Shenzhen , 11 Build, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Ruo Zhou
- BGI-Shenzhen , 11 Build, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Zhe Ren
- BGI-Shenzhen , 11 Build, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Baojin Zhou
- BGI-Shenzhen , 11 Build, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Zhilong Lin
- BGI-Shenzhen , 11 Build, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Guixue Hou
- BGI-Shenzhen , 11 Build, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , BeiChen West Road, Beijing 100101, China
| | - Yamei Deng
- BGI-Shenzhen , 11 Build, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , BeiChen West Road, Beijing 100101, China
| | - Jin Zi
- BGI-Shenzhen , 11 Build, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Liang Lin
- BGI-Shenzhen , 11 Build, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Quanhui Wang
- BGI-Shenzhen , 11 Build, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , BeiChen West Road, Beijing 100101, China
| | - Xin Liu
- BGI-Shenzhen , 11 Build, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xun Xu
- BGI-Shenzhen , 11 Build, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Bo Wen
- BGI-Shenzhen , 11 Build, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Siqi Liu
- BGI-Shenzhen , 11 Build, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , BeiChen West Road, Beijing 100101, China
| |
Collapse
|
13
|
Kitata RB, Dimayacyac-Esleta BRT, Choong WK, Tsai CF, Lin TD, Tsou CC, Weng SH, Chen YJ, Yang PC, Arco SD, Nesvizhskii AI, Sung TY, Chen YJ. Mining Missing Membrane Proteins by High-pH Reverse-Phase StageTip Fractionation and Multiple Reaction Monitoring Mass Spectrometry. J Proteome Res 2015. [PMID: 26202522 DOI: 10.1021/acs.jproteome.5b00477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite significant efforts in the past decade toward complete mapping of the human proteome, 3564 proteins (neXtProt, 09-2014) are still "missing proteins". Over one-third of these missing proteins are annotated as membrane proteins, owing to their relatively challenging accessibility with standard shotgun proteomics. Using nonsmall cell lung cancer (NSCLC) as a model study, we aim to mine missing proteins from disease-associated membrane proteome, which may be still largely under-represented. To increase identification coverage, we employed Hp-RP StageTip prefractionation of membrane-enriched samples from 11 NSCLC cell lines. Analysis of membrane samples from 20 pairs of tumor and adjacent normal lung tissue was incorporated to include physiologically expressed membrane proteins. Using multiple search engines (X!Tandem, Comet, and Mascot) and stringent evaluation of FDR (MAYU and PeptideShaker), we identified 7702 proteins (66% membrane proteins) and 178 missing proteins (74 membrane proteins) with PSM-, peptide-, and protein-level FDR of 1%. Through multiple reaction monitoring using synthetic peptides, we provided additional evidence of eight missing proteins including seven with transmembrane helix domains. This study demonstrates that mining missing proteins focused on cancer membrane subproteome can greatly contribute to map the whole human proteome. All data were deposited into ProteomeXchange with the identifier PXD002224.
Collapse
Affiliation(s)
- Reta Birhanu Kitata
- Institute of Chemistry, Academia Sinica , No. 128, Academia Road Sec. 2, Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University , 101, Sec 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica , No. 1, Roosevelt Road, Sec. 4, Taipei 10617, Taiwan
| | - Baby Rorielyn T Dimayacyac-Esleta
- Institute of Chemistry, Academia Sinica , No. 128, Academia Road Sec. 2, Taipei 115, Taiwan.,Institute of Chemistry, University of the Philippines , Diliman Quezon City, Philippines
| | - Wai-Kok Choong
- Institute of Information Science, Academia Sinica , 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Chia-Feng Tsai
- Institute of Chemistry, Academia Sinica , No. 128, Academia Road Sec. 2, Taipei 115, Taiwan
| | - Tai-Du Lin
- Institute of Chemistry, Academia Sinica , No. 128, Academia Road Sec. 2, Taipei 115, Taiwan.,Department of Biochemical Sciences, National Taiwan University , 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Chih-Chiang Tsou
- Department of Computational Medicine and Bioinformatics and Department of Pathology, University of Michigan Medical School , 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Shao-Hsing Weng
- Institute of Chemistry, Academia Sinica , No. 128, Academia Road Sec. 2, Taipei 115, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University , 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica , No. 128, Academia Road Sec. 2, Taipei 115, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital , 1 Jen-Ai Road, Section 1, Taipei 10051, Taiwan.,National Taiwan University College of Medicine , No. 1, Section 1, Ren'ai Road, Taipei 100, Taiwan.,Institute of Biomedical Science, Academia Sinica , 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Susan D Arco
- Institute of Chemistry, University of the Philippines , Diliman Quezon City, Philippines
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics and Department of Pathology, University of Michigan Medical School , 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica , 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica , No. 128, Academia Road Sec. 2, Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University , 101, Sec 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica , No. 1, Roosevelt Road, Sec. 4, Taipei 10617, Taiwan
| |
Collapse
|
14
|
Chen Y, Li Y, Zhong J, Zhang J, Chen Z, Yang L, Cao X, He QY, Zhang G, Wang T. Identification of Missing Proteins Defined by Chromosome-Centric Proteome Project in the Cytoplasmic Detergent-Insoluble Proteins. J Proteome Res 2015; 14:3693-709. [DOI: 10.1021/pr501103r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yang Chen
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaxing Li
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiayong Zhong
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Zhang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhipeng Chen
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lijuan Yang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xin Cao
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tong Wang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Wen B, Zhou R, Feng Q, Wang Q, Wang J, Liu S. IQuant: an automated pipeline for quantitative proteomics based upon isobaric tags. Proteomics 2014; 14:2280-5. [PMID: 25069810 DOI: 10.1002/pmic.201300361] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 07/12/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022]
Abstract
Quantitative proteomics technology based on isobaric tags is playing an important role in proteomic investigation. In this paper, we present an automated software, named IQuant, which integrates a postprocessing tool of protein identification and advanced statistical algorithms to process the MS/MS signals generated from the peptides labeled by isobaric tags and aims at proteomics quantification. The software of IQuant, which is freely downloaded at http://sourceforge.net/projects/iquant/, can run from a graphical user interface and a command-line interface, and can work on both Windows and Linux systems.
Collapse
Affiliation(s)
- Bo Wen
- BGI-Shenzhen, Shenzhen, P. R. China
| | | | | | | | | | | |
Collapse
|
16
|
Kume H, Muraoka S, Kuga T, Adachi J, Narumi R, Watanabe S, Kuwano M, Kodera Y, Matsushita K, Fukuoka J, Masuda T, Ishihama Y, Matsubara H, Nomura F, Tomonaga T. Discovery of colorectal cancer biomarker candidates by membrane proteomic analysis and subsequent verification using selected reaction monitoring (SRM) and tissue microarray (TMA) analysis. Mol Cell Proteomics 2014; 13:1471-84. [PMID: 24687888 DOI: 10.1074/mcp.m113.037093] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent advances in quantitative proteomic technology have enabled the large-scale validation of biomarkers. We here performed a quantitative proteomic analysis of membrane fractions from colorectal cancer tissue to discover biomarker candidates, and then extensively validated the candidate proteins identified. A total of 5566 proteins were identified in six tissue samples, each of which was obtained from polyps and cancer with and without metastasis. GO cellular component analysis predicted that 3087 of these proteins were membrane proteins, whereas TMHMM algorithm predicted that 1567 proteins had a transmembrane domain. Differences were observed in the expression of 159 membrane proteins and 55 extracellular proteins between polyps and cancer without metastasis, while the expression of 32 membrane proteins and 17 extracellular proteins differed between cancer with and without metastasis. A total of 105 of these biomarker candidates were quantitated using selected (or multiple) reaction monitoring (SRM/MRM) with stable synthetic isotope-labeled peptides as an internal control. The results obtained revealed differences in the expression of 69 of these proteins, and this was subsequently verified in an independent set of patient samples (polyps (n = 10), cancer without metastasis (n = 10), cancer with metastasis (n = 10)). Significant differences were observed in the expression of 44 of these proteins, including ITGA5, GPRC5A, PDGFRB, and TFRC, which have already been shown to be overexpressed in colorectal cancer, as well as proteins with unknown function, such as C8orf55. The expression of C8orf55 was also shown to be high not only in colorectal cancer, but also in several cancer tissues using a multicancer tissue microarray, which included 1150 cores from 14 cancer tissues. This is the largest verification study of biomarker candidate membrane proteins to date; our methods for biomarker discovery and subsequent validation using SRM/MRM will contribute to the identification of useful biomarker candidates for various cancers. Data are available via ProteomeXchange with identifier PXD000851.
Collapse
Affiliation(s)
- Hideaki Kume
- From the ‡Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka, Japan
| | - Satoshi Muraoka
- From the ‡Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka, Japan
| | - Takahisa Kuga
- From the ‡Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka, Japan
| | - Jun Adachi
- From the ‡Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka, Japan
| | - Ryohei Narumi
- From the ‡Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka, Japan
| | - Shio Watanabe
- From the ‡Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka, Japan
| | - Masayoshi Kuwano
- From the ‡Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka, Japan
| | - Yoshio Kodera
- §Laboratory of Biomolecular Dynamics, Department of Physics, Kitasato University School of Science, Kanagawa, Japan
| | - Kazuyuki Matsushita
- ¶Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan; ‖Clinical Proteomics Research Center, Chiba University Hospital, Chiba, Japan
| | - Junya Fukuoka
- **Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Masuda
- ‡‡Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Yasushi Ishihama
- §§Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hisahiro Matsubara
- ¶¶Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumio Nomura
- ¶Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan; ‖Clinical Proteomics Research Center, Chiba University Hospital, Chiba, Japan
| | - Takeshi Tomonaga
- From the ‡Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka, Japan;
| |
Collapse
|
17
|
IWASAKI M, ISHIHAMA Y. Challenges Facing Complete Human Proteome Analysis. CHROMATOGRAPHY 2014. [DOI: 10.15583/jpchrom.2014.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Mio IWASAKI
- Center for iPS Cell Research and Application, Kyoto University
| | | |
Collapse
|
18
|
Lane L, Bairoch A, Beavis RC, Deutsch EW, Gaudet P, Lundberg E, Omenn GS. Metrics for the Human Proteome Project 2013-2014 and strategies for finding missing proteins. J Proteome Res 2013; 13:15-20. [PMID: 24364385 DOI: 10.1021/pr401144x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One year ago the Human Proteome Project (HPP) leadership designated the baseline metrics for the Human Proteome Project to be based on neXtProt with a total of 13,664 proteins validated at protein evidence level 1 (PE1) by mass spectrometry, antibody-capture, Edman sequencing, or 3D structures. Corresponding chromosome-specific data were provided from PeptideAtlas, GPMdb, and Human Protein Atlas. This year, the neXtProt total is 15,646 and the other resources, which are inputs to neXtProt, have high-quality identifications and additional annotations for 14,012 in PeptideAtlas, 14,869 in GPMdb, and 10,976 in HPA. We propose to remove 638 genes from the denominator that are "uncertain" or "dubious" in Ensembl, UniProt/SwissProt, and neXtProt. That leaves 3844 "missing proteins", currently having no or inadequate documentation, to be found from a new denominator of 19,490 protein-coding genes. We present those tabulations and web links and discuss current strategies to find the missing proteins.
Collapse
Affiliation(s)
- Lydie Lane
- SIB-Swiss Institute of Bioinformatics , CMU - Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
19
|
Islam MT, Garg G, Hancock WS, Risk BA, Baker MS, Ranganathan S. Protannotator: A Semiautomated Pipeline for Chromosome-Wise Functional Annotation of the “Missing” Human Proteome. J Proteome Res 2013; 13:76-83. [DOI: 10.1021/pr400794x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - William S. Hancock
- Barnett
Institute, Northeastern University, 140 The Fenway, Boston, Massachusetts 02115, United States
| | - Brian A. Risk
- College
of Arts and Sciences, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States
| | | | - Shoba Ranganathan
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599 Singapore
| |
Collapse
|