1
|
Timmins-Schiffman E, Telish J, Field C, Monson C, Guzmán JM, Nunn BL, Young G, Forsgren K. An In-Depth Coho Salmon (Oncorhynchus kisutch) Ovarian Follicle Proteome Reveals Coordinated Changes Across Diverse Cellular Processes during the Transition From Primary to Secondary Growth. Proteomics 2024:e202400311. [PMID: 39648474 DOI: 10.1002/pmic.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Teleost fishes are a highly diverse, ecologically essential group of aquatic vertebrates that include coho salmon (Oncorhynchus kisutch). Coho are semelparous and all ovarian follicles develop synchronously. Owing to their ubiquitous distribution, teleosts provide critical sources of food worldwide through subsistence, commercial fisheries, and aquaculture. Enhancement of hatchery practices requires detailed knowledge of teleost reproductive physiology. Despite decades of research on teleost reproductive processes, an in-depth proteome of teleost ovarian development has yet to be generated. We have described a coho salmon ovarian proteome of over 5700 proteins, generated with data independent acquisition, revealing the proteins that change through the transition from primary to secondary ovarian follicle development. This transition is critical during the onset of puberty and for determining egg quality and embryonic development. Primary follicle development was marked by differential abundances of proteins in carbohydrate metabolism, protein turnover, and the complement pathway, suggesting elevated metabolism as the follicles develop through stages of oogenesis. The greatest proteomic shift occurred during the transition from primary to secondary follicle growth, with increased abundance of proteins underlying cortical alveoli formation, extracellular matrix reorganization, iron binding, and cell-cell signaling. This work provides a foundation for identifying biomarkers of salmon oocyte stage and quality.
Collapse
Affiliation(s)
| | - Jennifer Telish
- Fullerton, Biological Sciences, California State University, Fullterton, California, USA
| | - Chelsea Field
- Fullerton, Biological Sciences, California State University, Fullterton, California, USA
| | - Chris Monson
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - José M Guzmán
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Graham Young
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Kristy Forsgren
- Fullerton, Biological Sciences, California State University, Fullterton, California, USA
| |
Collapse
|
2
|
Rajab SAS, Andersen LK, Kenter LW, Berlinsky DL, Borski RJ, McGinty AS, Ashwell CM, Ferket PR, Daniels HV, Reading BJ. Combinatorial metabolomic and transcriptomic analysis of muscle growth in hybrid striped bass (female white bass Morone chrysops x male striped bass M. saxatilis). BMC Genomics 2024; 25:580. [PMID: 38858615 PMCID: PMC11165755 DOI: 10.1186/s12864-024-10325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/19/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Understanding growth regulatory pathways is important in aquaculture, fisheries, and vertebrate physiology generally. Machine learning pattern recognition and sensitivity analysis were employed to examine metabolomic small molecule profiles and transcriptomic gene expression data generated from liver and white skeletal muscle of hybrid striped bass (white bass Morone chrysops x striped bass M. saxatilis) representative of the top and bottom 10 % by body size of a production cohort. RESULTS Larger fish (good-growth) had significantly greater weight, total length, hepatosomatic index, and specific growth rate compared to smaller fish (poor-growth) and also had significantly more muscle fibers of smaller diameter (≤ 20 µm diameter), indicating active hyperplasia. Differences in metabolomic pathways included enhanced energetics (glycolysis, citric acid cycle) and amino acid metabolism in good-growth fish, and enhanced stress, muscle inflammation (cortisol, eicosanoids) and dysfunctional liver cholesterol metabolism in poor-growth fish. The majority of gene transcripts identified as differentially expressed between groups were down-regulated in good-growth fish. Several molecules associated with important growth-regulatory pathways were up-regulated in muscle of fish that grew poorly: growth factors including agt and agtr2 (angiotensins), nicotinic acid (which stimulates growth hormone production), gadd45b, rgl1, zfp36, cebpb, and hmgb1; insulin-like growth factor signaling (igfbp1 and igf1); cytokine signaling (socs3, cxcr4); cell signaling (rgs13, rundc3a), and differentiation (rhou, mmp17, cd22, msi1); mitochondrial uncoupling proteins (ucp3, ucp2); and regulators of lipid metabolism (apoa1, ldlr). Growth factors pttg1, egfr, myc, notch1, and sirt1 were notably up-regulated in muscle of good-growing fish. CONCLUSION A combinatorial pathway analysis using metabolomic and transcriptomic data collectively suggested promotion of cell signaling, proliferation, and differentiation in muscle of good-growth fish, whereas muscle inflammation and apoptosis was observed in poor-growth fish, along with elevated cortisol (an anti-inflammatory hormone), perhaps related to muscle wasting, hypertrophy, and inferior growth. These findings provide important biomarkers and mechanisms by which growth is regulated in fishes and other vertebrates as well.
Collapse
Affiliation(s)
- Sarah A S Rajab
- Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Box 7617, Raleigh, NC, 27695, USA
| | - Linnea K Andersen
- Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Box 7617, Raleigh, NC, 27695, USA
| | - Linas W Kenter
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| | - David L Berlinsky
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Russell J Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Andrew S McGinty
- North Carolina State University, Pamlico Aquaculture Field Laboratory, Aurora, NC, USA
| | - Christopher M Ashwell
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Peter R Ferket
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Harry V Daniels
- Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Box 7617, Raleigh, NC, 27695, USA
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Box 7617, Raleigh, NC, 27695, USA.
- North Carolina State University, Pamlico Aquaculture Field Laboratory, Aurora, NC, USA.
| |
Collapse
|
3
|
Nolin SJ, Taylor RL, Edens FW, Siegel PB, Ashwell CM. Combining supervised machine learning with statistics reveals differential gene expression patterns related to energy metabolism in the jejuna of chickens divergently selected for antibody response to sheep red blood cells. Poult Sci 2023; 102:102751. [PMID: 37244088 DOI: 10.1016/j.psj.2023.102751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/29/2023] Open
Abstract
Since the 1970s, 2 lines of White Leghorn chickens, HAS and LAS, have been continuously divergently selected for 5-day postinjection antibody titer to injection with sheep red blood cells (SRBC). Antibody response is a complex genetic trait and characterizing differences in gene expression could facilitate better understanding of physiological changes due to selection and antigen exposure. At 41 d of age, randomly selected HAS and LAS chickens, which had been coraised from hatch, were either injected with SRBC (HASI and LASI) or kept as the noninjected cohort (HASN and LASN). Five days later, all were euthanized, and samples collected from the jejunum for RNA isolation and sequencing. Resulting gene expression data were analyzed combining traditional statistics with machine learning to obtain signature gene lists for functional analysis. Differences in ATP production and cellular processes were observed in the jejunum between lines and following SRBC injection. HASN vs. LASN exhibited upregulation of ATP production, immune cell motility, and inflammation. LASI exhibits upregulation of ATP production and protein synthesis vs. LASN, reflective of what was observed in HASN vs. LASN. In contrast, no corresponding upregulation of ATP production was observed in HASI vs. HASN, and most other cellular processes appear inhibited. Without exposure to SRBC, gene expression in the jejunum indicates HAS generates more ATP than LAS, suggesting HAS maintains a "primed" system; and gene expression of HASI vs. HASN further suggests this basal ATP production is sufficient for robust antibody responses. Conversely, LASI vs. LASN jejunal gene expression implies a physiological need for increased ATP production with only minimal correlating antibody production. The results of this experiment provide insight into energetic resource needs and allocations in the jejunum in response to genetic selection and antigen exposure in HAS and LAS which may help explain phenotypic differences observed in antibody response.
Collapse
Affiliation(s)
- Shelly J Nolin
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Robert L Taylor
- Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown West, VA 26506-6108, USA
| | - Frank W Edens
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Christopher M Ashwell
- Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown West, VA 26506-6108, USA
| |
Collapse
|
4
|
Williams TI, Kowalchyk C, Collins LB, Reading BJ. Discovery Proteomics and Absolute Protein Quantification Can Be Performed Simultaneously on an Orbitrap-Based Mass Spectrometer. ACS OMEGA 2023; 8:12573-12583. [PMID: 37033798 PMCID: PMC10077438 DOI: 10.1021/acsomega.2c07614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Mass spectrometry (MS) has steadily moved into the forefront of quantification-centered protein research. Protein cleavage isotope dilution MS is a proven way for quantifying proteins by using an isotope-labeled analogue of a peptide fragment of the parent protein as an internal standard. Parallel reaction monitoring (PRM) has become the go-to approach for such quantification on an Orbitrap-based instrument as it is assumed that the instrument sensitivity is enhanced. We performed a comparative study on data-dependent acquisition (DDA) and PRM-based workflows to quantify egg yolk protein precursors or vitellogenins (VTGs) Aa, Ab, and C in striped bass (Morone saxatilis). VTG proportions serve as a developmental measure of egg quality, possibly changing with the environment, and have been studied as an indicator of the health of North Carolina stocks. Based on single-factor analysis of variance comparisons of mean VTG amounts across fish from the same sample groupings, our results indicate that there is no statistical difference between MS1-based and MS2-based VTG quantification. We further conclude that DDA is able to deliver both discovery data and absolute quantification data in the same experiment.
Collapse
Affiliation(s)
- Taufika Islam Williams
- Molecular,
Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Plant Sciences Building, Raleigh, North Carolina 27606, United States
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Cara Kowalchyk
- Marine
Fisheries, Department of Environmental Quality, Raleigh, North Carolina 27603, United States
| | - Leonard B. Collins
- Molecular,
Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Plant Sciences Building, Raleigh, North Carolina 27606, United States
| | - Benjamin J. Reading
- Department
of Applied Ecology, North Carolina State
University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Cao H, Li L, Li Z, Gao H, Peng G, Zhu C, Chen Y, Yang F, Dong W. Denovo RNA-Seq analysis of ovary and testis reveals potential differentially expressed transcripts associated with gonadal unsynchronization development in Onychostoma macrolepis. Gene Expr Patterns 2023; 47:119303. [PMID: 36565945 DOI: 10.1016/j.gep.2022.119303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/27/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The Onychostoma macrolepis (O. macrolepis) is a rare and endangered wild species. Their endangered extinction might be due to their low fertility. To further illustrate the molecular mechanism of gonad development of the male and female O. macrolepis, the present study carried out de novo testicular and ovarian transcriptome sequencing. By comparing ovary and testis, 30,869 differentially expressed unigenes (9870 in female, 20999 in male) were identified. In addition, KEGG and GO analysis suggested that the Hedgehog signaling pathway have important roles in testis maintenance and spermatogenesis, whereas the Hippo signaling pathway and Wnt signaling pathway are likely to participate in ovary maintenance. RT-qPCR analysis results were consistent with transcriptome sequencing that all of gender differentiation-related genes (FOXL2, GDF9, WNT4, CYP19A1, SOX9 and GATA4), temperature-enriched genes (NOVA1, CTGF and NR4A1), clock-related genes (PER2, PER3, CRY1, CRY2, BMAL1 and CIPC) were significantly differential expression in testis compared with ovaries. Taken together, these results revealed a potential molecular mechanism that low fertility of the O. macrolepis might strong correlate with the gonadal dyssynchrony development of the male and female, which might provide theoretical basis and technical support for artificial reproduction and germplasm resource protection of the O. macrolepis.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhenpeng Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Huihui Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Guofan Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Wolf DA, Lin Y, Duan H, Cheng Y. eIF-Three to Tango: emerging functions of translation initiation factor eIF3 in protein synthesis and disease. J Mol Cell Biol 2020; 12:403-409. [PMID: 32279082 PMCID: PMC7333474 DOI: 10.1093/jmcb/mjaa018] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Studies over the past three years have substantially expanded the involvements of eukaryotic initiation factor 3 (eIF3) in messenger RNA (mRNA) translation. It now appears that this multi-subunit complex is involved in every possible form of mRNA translation, controlling every step of protein synthesis from initiation to elongation, termination, and quality control in positive as well as negative fashion. Through the study of eIF3, we are beginning to appreciate protein synthesis as a highly integrated process coordinating protein production with protein folding, subcellular targeting, and degradation. At the same time, eIF3 subunits appear to have specific functions that probably vary between different tissues and individual cells. Considering the broad functions of eIF3 in protein homeostasis, it comes as little surprise that eIF3 is increasingly implicated in major human diseases and first attempts at therapeutically targeting eIF3 have been undertaken. Much remains to be learned, however, about subunit- and tissue-specific functions of eIF3 in protein synthesis and disease and their regulation by environmental conditions and post-translational modifications.
Collapse
Affiliation(s)
- Dieter A Wolf
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research & Innovation Center for Cell Stress Signaling, Xiamen University, Xiamen 361102, China
| | - Yingying Lin
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research & Innovation Center for Cell Stress Signaling, Xiamen University, Xiamen 361102, China
| | - Haoran Duan
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research & Innovation Center for Cell Stress Signaling, Xiamen University, Xiamen 361102, China
| | - Yabin Cheng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research & Innovation Center for Cell Stress Signaling, Xiamen University, Xiamen 361102, China
| |
Collapse
|
7
|
Molecular approaches underlying the oogenic cycle of the scleractinian coral, Acropora tenuis. Sci Rep 2020; 10:9914. [PMID: 32555307 PMCID: PMC7303178 DOI: 10.1038/s41598-020-66020-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/13/2020] [Indexed: 11/18/2022] Open
Abstract
This study aimed to elucidate the physiological processes of oogenesis in Acropora tenuis. Genes/proteins related to oogenesis were investigated: Vasa, a germ cell marker, vitellogenin (VG), a major yolk protein precursor, and its receptor (LDLR). Coral branches were collected monthly from coral reefs around Sesoko Island (Okinawa, Japan) for histological observation by in situ hybridisation (ISH) of the Vasa (AtVasa) and Low Density Lipoprotein Receptor (AtLDLR) genes and immunohistochemistry (IHC) of AtVasa and AtVG. AtVasa immunoreactivity was detected in germline cells and ooplasm, whereas AtVG immunoreactivity was detected in ooplasm and putative ovarian tissues. AtVasa was localised in germline cells located in the retractor muscles of the mesentery, whereas AtLDLR was localised in the putative ovarian and mesentery tissues. AtLDLR was detected in coral tissues during the vitellogenic phase, whereas AtVG immunoreactivity was found in primary oocytes. Germline cells expressing AtVasa are present throughout the year. In conclusion, Vasa has physiological and molecular roles throughout the oogenic cycle, as it determines gonadal germline cells and ensures normal oocyte development, whereas the roles of VG and LDLR are limited to the vitellogenic stages because they act in coordination with lipoprotein transport, vitellogenin synthesis, and yolk incorporation into oocytes.
Collapse
|
8
|
Wang Y, Zhang M, Qin Q, Peng Y, Huang X, Wang C, Cao L, Li W, Tao M, Zhang C, Liu S. Transcriptome Profile Analysis on Ovarian Tissues of Autotetraploid Fish and Diploid Red Crucian Carp. Front Genet 2019; 10:208. [PMID: 30941161 PMCID: PMC6434244 DOI: 10.3389/fgene.2019.00208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
Polyploidization can significantly alter the size of animal gametes. Autotetraploid fish (RRRR, 4nRR = 200) (4nRR) possessing four sets of chromosomes were derived from whole-genome duplication in red crucian carp (RR, 2n = 100) (RCC). The diploid eggs of the 4nRR fish were significantly larger than the eggs of RCC. To explore the differences between the ovaries of these two ploidies of fishes at the molecular level, we compared the ovary transcriptome profiles of 4nRR fish and RCC and identified differentially expressed genes (DEGs). A total of 19,015 unigenes were differentially expressed between 4nRR fish and RCC, including 12,591 upregulated and 6,424 downregulated unigenes in 4nRR fish. Functional analyses revealed that eight genes (CDKL1, AHCY, ARHGEF3, TGFβ, WNT11, CYP27A, GDF7, and CKB) were involved in the regulation of cell proliferation, cell division, gene transcription, ovary development and energy metabolism, suggesting that these eight genes were related to egg size in 4nRR fish and RCC. We validated the expression levels of these eight DEGs in 4nRR fish and RCC using quantitative PCR. The study results provided insights into the regulatory mechanisms underlying the differences in crucian carp egg sizes.
Collapse
Affiliation(s)
- Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Minghe Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yajun Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Liu Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
9
|
Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors Influencing Female Fertility. FISHES 2018. [DOI: 10.3390/fishes3040045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Egg quality in fishes has been a topic of research in aquaculture and fisheries for decades as it represents an important life history trait and is critical for captive propagation and successful recruitment. A major factor influencing egg quality is proper yolk formation, as most fishes are oviparous and the developing offspring are entirely dependent on stored egg yolk for nutritional sustenance. These maternally derived nutrients consist of proteins, carbohydrates, lipids, vitamins, minerals, and ions that are transported from the liver to the ovary by lipoprotein particles including vitellogenins. The yolk composition may be influenced by broodstock diet, husbandry, and other intrinsic and extrinsic conditions. In addition, a number of other maternal factors that may influence egg quality also are stored in eggs, such as gene transcripts, that direct early embryonic development. Dysfunctional regulation of gene or protein expression may lead to poor quality eggs and failure to thrive within hours of fertilization. These gene transcripts may provide important markers as their expression levels may be used to screen broodstock for potential spawning success. In addition to such intrinsic factors, stress may lead to ovarian atresia or reproductive failure and can impact fish behavior, fecundity, and ovulation rate. Finally, postovulatory aging may occur when eggs become overripe and the fish fails to spawn in a timely fashion, leading to low fertility, often encountered during manual strip spawning of fish.
Collapse
|
10
|
Tao W, Chen J, Tan D, Yang J, Sun L, Wei J, Conte MA, Kocher TD, Wang D. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis. BMC Genomics 2018; 19:363. [PMID: 29764377 PMCID: PMC5952695 DOI: 10.1186/s12864-018-4756-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/02/2018] [Indexed: 11/20/2022] Open
Abstract
Background The factors determining sex in teleosts are diverse. Great efforts have been made to characterize the underlying genetic network in various species. However, only seven master sex-determining genes have been identified in teleosts. While the function of a few genes involved in sex determination and differentiation has been studied, we are far from fully understanding how genes interact to coordinate in this process. Results To enable systematic insights into fish sexual differentiation, we generated a dynamic co-expression network from tilapia gonadal transcriptomes at 5, 20, 30, 40, 90, and 180 dah (days after hatching), plus 45 and 90 dat (days after treatment) and linked gene expression profiles to both development and sexual differentiation. Transcriptomic profiles of female and male gonads at 5 and 20 dah exhibited high similarities except for a small number of genes that were involved in sex determination, while drastic changes were observed from 90 to 180 dah, with a group of differently expressed genes which were involved in gonadal differentiation and gametogenesis. Weighted gene correlation network analysis identified changes in the expression of Borealin, Gtsf1, tesk1, Zar1, Cdn15, and Rpl that were correlated with the expression of genes previously known to be involved in sex differentiation, such as Foxl2, Cyp19a1a, Gsdf, Dmrt1, and Amh. Conclusions Global gonadal gene expression kinetics during sex determination and differentiation have been extensively profiled in tilapia. These findings provide insights into the genetic framework underlying sex determination and sexual differentiation, and expand our current understanding of developmental pathways during teleost sex determination. Electronic supplementary material The online version of this article (10.1186/s12864-018-4756-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jinlin Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Dejie Tan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Youneszadeh-Fashalami M, Salati AP, Keyvanshokooh S. Comparison of proteomic profiles in the ovary of Sterlet sturgeon (Acipenser ruthenus) during vitellogenic stages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 27:23-29. [PMID: 29738886 DOI: 10.1016/j.cbd.2018.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 11/29/2022]
Abstract
One of the challenges of sturgeon aquaculture is that sturgeon takes an extended amount of time to reach sexual maturity. The pattern of the protein expression in relation to the late maturity of sturgeon can help to better understand changes in sexual maturity. 17β-estradiol (E2), testosterone (T) and vitellogenin (Vtg) levels were examined at all stages of sexual maturation in Sterlet sturgeon (Acipenser ruthenus). Two-dimensional gel electrophoresis and mass spectrometry analysis were used to show the pattern of the ovarian proteins. The T levels increased from the previtellogenic to the postvitellogenic stages (P < 0.05) and Vtg showed a decremental pattern in pre- and postvitellogenic, and atresia (not significantly). The analysis showed 900 protein spots, 19 of which were successfully identified and had significant differences between the previtellogenic and the vitellogenic groups (P < 0.05). Among the identified proteins, 40% involved in cell defense (heat shock protein, Glutathione peroxidase, natural killer enhancing factor, peroxiredoxin-2), 30% in transcription and translation (constitutive photomorphogenesis 9 and Ybx2), 20% in metabolism and energy production (triose-phosphate isomerase (TPI)) and 10% in transport (glycolipid transfer protein). In the vitellogenic stage, the proteins were related to metabolism and energy production (TPI, ES1, creatin kinase, enolase, nucleoside diphosphate kinase, 50%), cell defense (thioredoxin and dislophid isomerase, 20%) and transport (fatty acid binding protein, 10%). Our findings show changes in protein expression pattern from cell defense to metabolism during egg development.
Collapse
Affiliation(s)
- Mohammad Youneszadeh-Fashalami
- Department of Fisheries, Faculty of marine Natural Resources, Khorramshahr University of Marine Science and Technology, Iran; South Iranian Aquaculture Research Center, Ahwaz, Iran
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of marine Natural Resources, Khorramshahr University of Marine Science and Technology, Iran.
| | - Saeed Keyvanshokooh
- Department of Fisheries, Faculty of marine Natural Resources, Khorramshahr University of Marine Science and Technology, Iran
| |
Collapse
|
12
|
Woods LC, Li Y, Ding Y, Liu J, Reading BJ, Fuller SA, Song J. DNA methylation profiles correlated to striped bass sperm fertility. BMC Genomics 2018; 19:244. [PMID: 29636007 PMCID: PMC5894188 DOI: 10.1186/s12864-018-4548-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 02/13/2018] [Indexed: 01/11/2023] Open
Abstract
Background Striped bass (Morone saxatilis) spermatozoa are used to fertilize in vitro the eggs of white bass (M. chrysops) to produce the preferred hybrid for the striped bass aquaculture industry. Currently, only one source of domestic striped bass juveniles is available to growers that is not obtained from wild-caught parents and is thus devoid of any genetic improvement in phenotypic traits of importance to aquaculture. Sperm epigenetic modification has been predicted to be associated with fertility, which could switch genes on and off without changing the DNA sequence itself. DNA methylation is one of the most common epigenetic modification types and changes in sperm epigenetics can be correlated to sub-fertility or infertility in male striped bass. The objective of this study was to find the differentially methylated regions (DMRs) between high-fertility and sub-fertility male striped bass, which could potentially regulate the fertility performance. Results In our present study, we performed DNA methylation analysis of high-fertility and sub-fertility striped bass spermatozoa through MBD-Seq methods. A total of 171 DMRs were discovered in striped bass sperm correlated to fertility. Based on the annotation of these DMRs, we conducted a functional classification analysis and two important groups of genes including the WDR3/UTP12 and GPCR families, were discovered to be related to fertility performance of striped bass. Proteins from the WDR3/UTP12 family are involved in forming the sperm flagella apparatus in vertebrates and GPCRs are involved in hormonal signaling and regulation of tissue development, proliferation and differentiation. Conclusions Our results contribute insights into understanding the mechanism of fertility in striped bass, which will provide powerful tools to maximize reproductive efficiencies and to identify those males with superior gametes for this important aquaculture species. Electronic supplementary material The online version of this article (10.1186/s12864-018-4548-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Curry Woods
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, GD, 510642, China.
| | - Yi Ding
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Jianan Liu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - S Adam Fuller
- HKD Stuttgart National Aquaculture Research Center, Agricultural Research Service, US Department of Agriculture, Stuttgart, AR, 72160, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
13
|
Douros JD, Baltzegar DA, Reading BJ, Seale AP, Lerner DT, Grau EG, Borski RJ. Leptin Stimulates Cellular Glycolysis Through a STAT3 Dependent Mechanism in Tilapia. Front Endocrinol (Lausanne) 2018; 9:465. [PMID: 30186233 PMCID: PMC6110908 DOI: 10.3389/fendo.2018.00465] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
We assessed if leptin, a cytokine hormone known to enhance energy expenditure by promoting lipid and carbohydrate catabolism in response to physiologic stress, might directly regulate cellular glycolysis. A transcriptomic analysis of prolactin cells in the tilapia (Oreochromis mossambicus) pituitary rostral pars distalis (RPD) revealed that recombinant leptin (rtLep) differentially regulates 1,995 genes, in vitro. Machine learning algorithms and clustering analyses show leptin influences numerous cellular gene networks including metabolism; protein processing, transport, and metabolism; cell cycle and the hypoxia response. Leptin stimulates transcript abundance of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (gapdh) in a covariate manner to the hypoxic stress gene network. Orthogonal tests confirm that rtLepA dose-dependently increases gapdh gene expression in the RPD along with transcript abundance of 6-phosphofructo-1-kinase (pfk1), the rate limiting glycolytic enzyme. Functional testing demonstrated that leptin stimulates PFK activity and glycolytic output, while Stattic (a STAT3 blocker) was sufficient to suppress these responses, indicating leptin stimulates glycolysis through a STAT3-dependent mechanism. Leptin also stimulated pfk1 gene expression and lactate production in primary hepatocyte incubations in a similar manner to those shown for the pituitary RPD. This work characterizes a critical metabolic action of leptin to directly stimulate glycolysis across tissue types in a teleost model system, and suggest that leptin may promote energy expenditure, in part, by stimulating glycolysis. These data in a teleost fish, suggest that one of leptin's ancient, highly-conserved functions among vertebrates may be stimulation of glycolysis to facilitate the energetic needs associated with various stressors.
Collapse
Affiliation(s)
- Jonathan D. Douros
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - David A. Baltzegar
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Genomics Sciences Laboratory, North Carolina State University, Raleigh, NC, United States
| | - Benjamin J. Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Andre P. Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, United States
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Mānoa, Honolulu, HI, United States
| | - Darren T. Lerner
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, United States
- University of Hawaii Sea Grant College Program, Honolulu, HI, United States
| | - E. Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, United States
| | - Russell J. Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Russell J. Borski
| |
Collapse
|
14
|
Hou L, Wang J, Wang Y, Hua X, Wu J. Compared proteomic analysis of 8- and 32-week-old postnatal porcine ovaries. Cell Biochem Funct 2017; 36:34-42. [PMID: 29282749 DOI: 10.1002/cbf.3315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/24/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022]
Abstract
Pigs share many anatomical and physiological features with humans, offering a unique and viable model for biomedical research. Tandem mass tag method followed by mass spectrometry analysis was utilized to identify peptides (47,405), proteins (14,701), and protein groups (7634) in ovaries of 8- and 32-week-old postnatal Banna miniature pigs. After annotation and analysis by Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology, the proteins were identified as being involved in hormone metabolic pathways and maintenance, proliferation, and regulation of stem cells. In addition, we found 638 differentially expressed proteins between ovaries of 8- and 32-week-old postnatal Banna miniature pigs. We used Interactive Pathway Explorer to produce an overview of pig ovarian proteomics. Compared with those of the 8-week-old group, the proteins enriched in metabolism of steroid hormones, metabolism of lipids, and energy metabolism pathway were upregulated in the 32-week-old group, indicating physiological characteristics of sexual maturity. These findings have implications in applications of biomedicine. SIGNIFICANCE OF THE STUDY Pigs share many anatomical and physiological features with humans, offering a unique and viable model for biomedical research. In this study, we used tandem mass tag quantitative proteomics to describe, for the first time, protein expression patterns of postnatal pig ovaries. Proteins involved in hormone metabolic pathways and maintenance, proliferation, and regulation of stem cells were identified. With further analysis by Interactive Pathway Explorer, proteins enriched in metabolism of steroid hormones, metabolism of lipids, and energy metabolism pathway were upregulated in the 32-week-old group, indicating physiological characteristics of sexual maturity. These findings have implications in applications of biomedicine.
Collapse
Affiliation(s)
- Lin Hou
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), School of Medicine, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), School of Medicine, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Yinjuan Wang
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), School of Medicine, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuguo Hua
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), School of Medicine, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| |
Collapse
|
15
|
Comparative transcriptome analysis of ovary and testis reveals potential sex-related genes and pathways in spotted knifejaw Oplegnathus punctatus. Gene 2017; 637:203-210. [DOI: 10.1016/j.gene.2017.09.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
|
16
|
Ptushkina M, Poolman T, Iqbal M, Ashe M, Petersen J, Woodburn J, Rattray M, Whetton A, Ray D. A non-transcriptional role for the glucocorticoid receptor in mediating the cell stress response. Sci Rep 2017; 7:12101. [PMID: 28935859 PMCID: PMC5608759 DOI: 10.1038/s41598-017-09722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022] Open
Abstract
The glucocorticoid receptor (GR) is essential for the stress response in mammals. We investigated potential non-transcriptional roles of GR in cellular stress response using fission yeast as a model.We surprisingly discovered marked heat stress resistance in yeast ectopically expressing human GR, which required expression of both the N-terminal transactivation domain, and the C-terminal ligand binding domain, but not the DNA-binding domain of the GR. This effect was not affected by GR ligand exposure, and occurred without significant GR nuclear accumulation. Mechanistically, the GR survival effect required Hsp104, and, indeed, GR expression increased Hsp104 expression. Proteomic analysis revealed GR binding to translasome components, including eIF3, a known partner for Sty1, a pattern of protein interaction which we confirmed using yeast two-hybrid studies.Taken together, we find evidence for a novel pathway conferring stress resistance in yeast that can be activated by the human GR, acting by protein-protein mechanisms in the cytoplasm. This suggests that in organisms where GR is natively expressed, GR likely contributes to stress responses through non-transcriptional mechanisms in addition to its well-established transcriptional responses.
Collapse
Affiliation(s)
- Marina Ptushkina
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK.
- Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK.
| | - Toryn Poolman
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - Mudassar Iqbal
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - Mark Ashe
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - Janni Petersen
- School of Health Science, Flinders University, South Australia Sturt Road 5042, GPO Box 2100, Adelaide, Australia
| | - Joanna Woodburn
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - Magnus Rattray
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - Anthony Whetton
- Division of Cancer, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - David Ray
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK.
- Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK.
- Department of Endocrinology, Manchester Royal Infirmary, Manchester, M13 9WL, UK.
| |
Collapse
|
17
|
Abdelrahman H, ElHady M, Alcivar-Warren A, Allen S, Al-Tobasei R, Bao L, Beck B, Blackburn H, Bosworth B, Buchanan J, Chappell J, Daniels W, Dong S, Dunham R, Durland E, Elaswad A, Gomez-Chiarri M, Gosh K, Guo X, Hackett P, Hanson T, Hedgecock D, Howard T, Holland L, Jackson M, Jin Y, Khalil K, Kocher T, Leeds T, Li N, Lindsey L, Liu S, Liu Z, Martin K, Novriadi R, Odin R, Palti Y, Peatman E, Proestou D, Qin G, Reading B, Rexroad C, Roberts S, Salem M, Severin A, Shi H, Shoemaker C, Stiles S, Tan S, Tang KFJ, Thongda W, Tiersch T, Tomasso J, Prabowo WT, Vallejo R, van der Steen H, Vo K, Waldbieser G, Wang H, Wang X, Xiang J, Yang Y, Yant R, Yuan Z, Zeng Q, Zhou T. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genomics 2017; 18:191. [PMID: 28219347 PMCID: PMC5319170 DOI: 10.1186/s12864-017-3557-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/06/2017] [Indexed: 12/31/2022] Open
Abstract
Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.
Collapse
Affiliation(s)
- Hisham Abdelrahman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mohamed ElHady
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Standish Allen
- Aquaculture Genetics & Breeding Technology Center, Virginia Institute of Marine Science, Gloucester Point, VA, 23062, USA
| | - Rafet Al-Tobasei
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Lisui Bao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ben Beck
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Harvey Blackburn
- USDA-ARS-NL Wheat & Corn Collections at a Glance GRP, National Animal Germplasm Program, 1111 S. Mason St., Fort Collins, CO, 80521-4500, USA
| | - Brian Bosworth
- USDA-ARS/CGRU, 141 Experimental Station Road, Stoneville, MS, 38701, USA
| | - John Buchanan
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, Suite E, San Diego, CA, 92121, USA
| | - Jesse Chappell
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - William Daniels
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Sheng Dong
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Evan Durland
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal & Veterinary Science, 134 Woodward Hall, 9 East Alumni Avenue, Kingston, RI, 02881, USA
| | - Kamal Gosh
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Perry Hackett
- Department of Genetics, Cell Biology and Development, 5-108 MCB, 420 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Terry Hanson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dennis Hedgecock
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Tiffany Howard
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Leigh Holland
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Molly Jackson
- Taylor Shellfish Farms, 130 SE Lynch RD, Shelton, WA, 98584, USA
| | - Yulin Jin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Karim Khalil
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Thomas Kocher
- Department of Biology, University of Maryland, 2132 Biosciences Research Building, College Park, MD, 20742, USA
| | - Tim Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Ning Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lauren Lindsey
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Kyle Martin
- Troutlodge, 27090 Us Highway 12, Naches, WA, 98937, USA
| | - Romi Novriadi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ramjie Odin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dina Proestou
- USDA ARS NEA NCWMAC Shellfish Genetics at the University Rhode Island, 469 CBLS, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Guyu Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Benjamin Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695-7617, USA
| | - Caird Rexroad
- USDA ARS Office of National Programs, George Washington Carver Center Room 4-2106, 5601 Sunnyside Avenue, Beltsville, MD, 20705, USA
| | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Mohamed Salem
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Andrew Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, 50011, USA
| | - Huitong Shi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Craig Shoemaker
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Sheila Stiles
- USDOC/NOAA, National Marine Fisheries Service, NEFSC, Milford Laboratory, Milford, Connectcut, 06460, USA
| | - Suxu Tan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Kathy F J Tang
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Wilawan Thongda
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Terrence Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70820, USA
| | - Joseph Tomasso
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wendy Tri Prabowo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Vallejo
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, 25430, USA
| | | | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Geoff Waldbieser
- USDA-ARS/CGRU, 141 Experimental Station Road, Stoneville, MS, 38701, USA
| | - Hanping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, 45661, USA
| | - Xiaozhu Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Roger Yant
- Hybrid Catfish Company, 1233 Montgomery Drive, Inverness, MS, 38753, USA
| | - Zihao Yuan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
18
|
Yilmaz O, Prat F, Ibáñez AJ, Köksoy S, Amano H, Sullivan CV. Multiple vitellogenins and product yolk proteins in European sea bass (Dicentrarchus labrax): Molecular characterization, quantification in plasma, liver and ovary, and maturational proteolysis. Comp Biochem Physiol B Biochem Mol Biol 2015; 194-195:71-86. [PMID: 26643259 DOI: 10.1016/j.cbpb.2015.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022]
Abstract
Three complete vitellogenin (Vtg) polypeptides of European sea bass (Dicentrarchus labrax), an acanthomorph teleost spawning pelagic eggs in seawater, were deduced from cDNA and identified as VtgAa, VtgAb and VtgC based on current Vtg nomenclature and phylogeny. Label free quantitative mass spectrometry verified the presence of the three sea bass Vtgs or their product yolk proteins (YPs) in liver, plasma and ovary of postvitellogenic females. As evidenced by normalized spectral counts, VtgAb-derived protein was 2- to 5-fold more abundant, depending on sample type, than for VtgAa, while VtgC-derived protein was less abundant, albeit only 3-fold lower than for VtgAb in the ovary. Western blotting with Vtg type-specific antisera raised against corresponding gray mullet (Mugil cephalus) lipovitellins (Lvs) detected all three types of sea bass Vtg in the blood plasma of gravid females and/or estrogenized males and showed that all three forms of sea bass Lv undergo limited partial degradation during oocyte maturation. The comparatively high levels of VtgC-derived YPs in fully-grown oocytes and the maturational proteolysis of all three types of Lv differ from what has been reported for other teleosts spawning pelagic eggs in seawater but are similar to recent findings for two species of North American Moronidae, the striped bass (Morone saxatilis) and white perch (Morone americana), which spawn pelagic and demersal eggs, respectively in fresh water. Together with the high Vtg sequence homologies and virtually identical structural features of each type of Vtg between species, these findings indicate that the moronid multiple Vtg systems do not substantially vary with reproductive environment.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Akdeniz University, Fisheries Faculty, Antalya, 07070, Turkey
| | - Francisco Prat
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, Avda. República Saharaui 2, 11510 Puerto Real, Cádiz, Spain
| | - A Jose Ibáñez
- Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, Torre de la Sal, s/n 12595, Ribera de Cabanes, Castellòn, Spain
| | - Sadi Köksoy
- Central Research and Immunology Laboratories, Akdeniz University, Faculty of Medicine, Antalya, 07070, Turkey
| | - Haruna Amano
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Craig V Sullivan
- Department of Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7617, USA.
| |
Collapse
|
19
|
Schilling J, Nepomuceno AI, Planchart A, Yoder JA, Kelly RM, Muddiman DC, Daniels HV, Hiramatsu N, Reading BJ. Machine learning reveals sex-specific 17β-estradiol-responsive expression patterns in white perch (Morone americana) plasma proteins. Proteomics 2015; 15:2678-90. [PMID: 25900664 PMCID: PMC5765861 DOI: 10.1002/pmic.201400606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/03/2015] [Accepted: 04/17/2015] [Indexed: 12/29/2022]
Abstract
With growing abundance and awareness of endocrine disrupting compounds (EDCs) in the environment, there is a need for accurate and reliable detection of EDC exposure. Our objective in the present study was to observe differences within and between the global plasma proteomes of sexually mature male and female white perch (Morone americana) before (Initial Control, IC) and after 17β-estradiol (E2 ) induction. Semiquantitative nanoLC-MS/MS data were analyzed by machine learning support vector machines (SVMs) and by two-way ANOVA. By ANOVA, the expression levels of 44, 77, and 57 proteins varied significantly by gender, treatment, and the interaction of gender and treatment, respectively. SVMs perfectly classified male and female perch IC and E2 -induced plasma samples using the protein expression data. E2 -induced male and female perch plasma proteomes contained significantly higher levels of the yolk precursors vitellogenin Aa and Ab (VtgAa, VtgAb), as well as latrophilin and seven transmembrane domain-containing protein 1 (Eltd1) and kininogen 1 (Kng1). This is the first report that Eltd1 and Kng1 may be E2 -responsive proteins in fishes and therefore may be useful indicators of estrogen induction.
Collapse
Affiliation(s)
- Justin Schilling
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Angelito I. Nepomuceno
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey A. Yoder
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - David C. Muddiman
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA
| | - Harry V. Daniels
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Naoshi Hiramatsu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Benjamin J. Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
20
|
Petushkova NA, Kuznetsova GP, Larina OV, Kisrieva YS, Samenkova NF, Trifonova OP, Miroshnichenko YV, Zolotarev KV, Karuzina II, Ipatova OM, Lisitsa AV. One-dimensional proteomic profiling of Danio rerio embryo vitellogenin to estimate quantum dot toxicity. Proteome Sci 2015; 13:17. [PMID: 25964724 PMCID: PMC4426544 DOI: 10.1186/s12953-015-0072-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/21/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Vitellogenin (Vtg) is the major egg yolk protein (YP) in most oviparous species and may be useful as an indicator in ecotoxicological testing at the biochemical level. In this study, we obtained detailed information about the Vtgs of Danio rerio embryos by cutting SDS-PAGE gel lanes into thin slices, and analyzing them slice-by-slice with (MALDI-TOF) mass spectrometry. RESULTS We conducted three proteomic analyses, comparing embryonic Danio rerio Vtg cleavage products after exposure for 48 h to CdSecore/ZnSshell quantum dots (QDs), after exposure to a mixture of the components used for quantum dot synthesis (MCS-QDs), and in untreated embryos. The Vtg mass spectrometric profiles of the QDs-treated embryos differed from those of the unexposed or MCS-QDs-treated embryos. CONCLUSION This study demonstrates the possible utility of Vtg profiling in D. rerio embryos as a sensitive diagnostic tool to estimate nanoparticle toxicity.
Collapse
Affiliation(s)
- Natalia A Petushkova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
- />Postgen Tech LLC, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Galina P Kuznetsova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Olesya V Larina
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Yulia S Kisrieva
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Natalia F Samenkova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Oxana P Trifonova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | | | - Konstantin V Zolotarev
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Irina I Karuzina
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Olga M Ipatova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Andrey V Lisitsa
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| |
Collapse
|
21
|
Laporte D, Huot JL, Bader G, Enkler L, Senger B, Becker HD. Exploring the evolutionary diversity and assembly modes of multi-aminoacyl-tRNA synthetase complexes: lessons from unicellular organisms. FEBS Lett 2014; 588:4268-78. [PMID: 25315413 DOI: 10.1016/j.febslet.2014.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous and ancient enzymes, mostly known for their essential role in generating aminoacylated tRNAs. During the last two decades, many aaRSs have been found to perform additional and equally crucial tasks outside translation. In metazoans, aaRSs have been shown to assemble, together with non-enzymatic assembly proteins called aaRSs-interacting multifunctional proteins (AIMPs), into so-called multi-synthetase complexes (MSCs). Metazoan MSCs are dynamic particles able to specifically release some of their constituents in response to a given stimulus. Upon their release from MSCs, aaRSs can reach other subcellular compartments, where they often participate to cellular processes that do not exploit their primary function of synthesizing aminoacyl-tRNAs. The dynamics of MSCs and the expansion of the aaRSs functional repertoire are features that are so far thought to be restricted to higher and multicellular eukaryotes. However, much can be learnt about how MSCs are assembled and function from apparently 'simple' organisms. Here we provide an overview on the diversity of these MSCs, their composition, mode of assembly and the functions that their constituents, namely aaRSs and AIMPs, exert in unicellular organisms.
Collapse
Affiliation(s)
- Daphné Laporte
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Jonathan L Huot
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Gaétan Bader
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Ludovic Enkler
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Bruno Senger
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France.
| |
Collapse
|
22
|
Reading BJ, Hiramatsu N, Schilling J, Molloy KT, Glassbrook N, Mizuta H, Luo W, Baltzegar DA, Williams VN, Todo T, Hara A, Sullivan CV. Lrp13 is a novel vertebrate lipoprotein receptor that binds vitellogenins in teleost fishes. J Lipid Res 2014; 55:2287-95. [PMID: 25217480 DOI: 10.1194/jlr.m050286] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcripts encoding a novel member of the lipoprotein receptor superfamily, termed LDL receptor-related protein (Lrp)13, were sequenced from striped bass (Morone saxatilis) and white perch (Morone americana) ovaries. Receptor proteins were purified from perch ovary membranes by protein-affinity chromatography employing an immobilized mixture of vitellogenins Aa and Ab. RT-PCR revealed lrp13 to be predominantly expressed in striped bass ovary, and in situ hybridization detected lrp13 transcripts in the ooplasm of early secondary growth oocytes. Quantitative RT-PCR confirmed peak lrp13 expression in the ovary during early secondary growth. Quantitative mass spectrometry revealed peak Lrp13 protein levels in striped bass ovary during late-vitellogenesis, and immunohistochemistry localized Lrp13 to the oolemma and zona radiata of vitellogenic oocytes. Previously unreported orthologs of lrp13 were identified in genome sequences of fishes, chicken (Gallus gallus), mouse (Mus musculus), and dog (Canis lupus familiaris). Zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) lrp13 loci are discrete and share genomic synteny. The Lrp13 appears to function as a vitellogenin receptor and may be an important mediator of yolk formation in fishes and other oviparous vertebrates. The presence of lrp13 orthologs in mammals suggests that this lipoprotein receptor is widely distributed among vertebrates, where it may generally play a role in lipoprotein metabolism.
Collapse
Affiliation(s)
- Benjamin J Reading
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Naoshi Hiramatsu
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Justin Schilling
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Katelyn T Molloy
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Norm Glassbrook
- Genomic Sciences Laboratory, North Carolina State University, Raleigh, NC
| | - Hiroko Mizuta
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Wenshu Luo
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | | | - Valerie N Williams
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Takashi Todo
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Akihiko Hara
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Craig V Sullivan
- Biological Sciences, North Carolina State University, Raleigh, NC Carolina AquaGyn, Raleigh, NC
| |
Collapse
|
23
|
Garcia-Reyero N, Tingaud-Sequeira A, Cao M, Zhu Z, Perkins EJ, Hu W. Endocrinology: advances through omics and related technologies. Gen Comp Endocrinol 2014; 203:262-73. [PMID: 24726988 DOI: 10.1016/j.ygcen.2014.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 12/27/2022]
Abstract
The rapid development of new omics technologies to measure changes at genetic, transcriptomic, proteomic, and metabolomics levels together with the evolution of methods to analyze and integrate the data at a systems level are revolutionizing the study of biological processes. Here we discuss how new approaches using omics technologies have expanded our knowledge especially in nontraditional models. Our increasing knowledge of these interactions and evolutionary pathway conservation facilitates the use of nontraditional species, both invertebrate and vertebrate, as new model species for biological and endocrinology research. The increasing availability of technology to create organisms overexpressing key genes in endocrine function allows manipulation of complex regulatory networks such as growth hormone (GH) in transgenic fish where disregulation of GH production to produce larger fish has also permitted exploration of the role that GH plays in testis development, suggesting that it does so through interactions with insulin-like growth factors. The availability of omics tools to monitor changes at nearly any level in any organism, manipulate gene expression and behavior, and integrate data across biological levels, provides novel opportunities to explore endocrine function across many species and understand the complex roles that key genes play in different aspects of the endocrine function.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Institute for Genomics Biocomputing and Biotechnology, Mississippi State University, Starkville, MS 39759, USA.
| | - Angèle Tingaud-Sequeira
- Laboratoire MRMG, Maladies Rares: Génétique et Métabolisme, Université de Bordeaux, 33405 Talence Cedex, France
| | - Mengxi Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Edward J Perkins
- US Army Engineer Research and Development Center, Vicksburg, MS 39180, USA
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
24
|
Williams VN, Reading BJ, Amano H, Hiramatsu N, Schilling J, Salger SA, Islam Williams T, Gross K, Sullivan CV. Proportional accumulation of yolk proteins derived from multiple vitellogenins is precisely regulated during vitellogenesis in striped bass (Morone saxatilis). ACTA ACUST UNITED AC 2014; 321:301-15. [DOI: 10.1002/jez.1859] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 02/07/2014] [Accepted: 02/20/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Valerie N. Williams
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Benjamin J. Reading
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Haruna Amano
- Graduate School of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Naoshi Hiramatsu
- Graduate School of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Justin Schilling
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Scott A. Salger
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Taufika Islam Williams
- Mass Spectrometry Laboratory; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Kevin Gross
- Department of Statistics; North Carolina State University; Raleigh North Carolina
| | - Craig V. Sullivan
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| |
Collapse
|
25
|
Schilling J, Nepomuceno A, Schaff JE, Muddiman DC, Daniels HV, Reading BJ. Compartment Proteomics Analysis of White Perch (Morone americana) Ovary Using Support Vector Machines. J Proteome Res 2014; 13:1515-26. [DOI: 10.1021/pr401067g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Justin Schilling
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Angelito Nepomuceno
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Jennifer E. Schaff
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - David C. Muddiman
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Harry V. Daniels
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Benjamin J. Reading
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| |
Collapse
|