1
|
Hu HL, Kang Y, Zeng Y, Zhang M, Liao Q, Rong MQ, Zhang Q, Lai R. Region-resolved proteomics profiling of monkey heart. J Cell Physiol 2019; 234:13720-13734. [PMID: 30644093 PMCID: PMC7166496 DOI: 10.1002/jcp.28052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023]
Abstract
Nonhuman primates (NHPs) play an indispensable role in biomedical research because of their similarities in genetics, physiological, and neurological function to humans. Proteomics profiling of monkey heart could reveal significant cardiac biomarkers and help us to gain a better understanding of the pathogenesis of heart disease. However, the proteomic study of monkey heart is relatively lacking. Here, we performed the proteomics profiling of the normal monkey heart by measuring three major anatomical regions (vessels, valves, and chambers) based on iTRAQ‐coupled LC‐MS/MS analysis. Over 3,200 proteins were identified and quantified from three heart tissue samples. Furthermore, multiple bioinformatics analyses such as gene ontology analysis, protein–protein interaction analysis, and gene‐diseases association were used to investigate biological network of those proteins from each area. More than 60 genes in three heart regions are implicated with heart diseases such as hypertrophic cardiomyopathy, heart failure, and myocardial infarction. These genes associated with heart disease are mainly enriched in citrate cycle, amino acid degradation, and glycolysis pathway. At the anatomical level, the revelation of molecular characteristics of the healthy monkey heart would be an important starting point to investigate heart disease. As a unique resource, this study can serve as a reference map for future in‐depth research on cardiac disease‐related NHP model and novel biomarkers of cardiac injury.
Collapse
Affiliation(s)
- Hao-Liang Hu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Kang
- Division of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yong Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, China
| | - Qiong Liao
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming-Qiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qin Zhang
- Division of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, China
| |
Collapse
|
2
|
Moulder R, Bhosale SD, Goodlett DR, Lahesmaa R. Analysis of the plasma proteome using iTRAQ and TMT-based Isobaric labeling. MASS SPECTROMETRY REVIEWS 2018; 37:583-606. [PMID: 29120501 DOI: 10.1002/mas.21550] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/26/2017] [Indexed: 05/23/2023]
Abstract
Over the past decade, chemical labeling with isobaric tandem mass tags, such as isobaric tags for relative and absolute quantification reagents (iTRAQ) and tandem mass tag (TMT) reagents, has been employed in a wide range of different clinically orientated serum and plasma proteomics studies. In this review the scope of these works is presented with attention to the areas of research, methods employed and performance limitations. These applications have covered a wide range of diseases, disorders and infections, and have implemented a variety of different preparative and mass spectrometric approaches. In contrast to earlier works, which struggled to quantify more than a few hundred proteins, increasingly these studies have provided deeper insight into the plasma proteome extending the numbers of quantified proteins to over a thousand.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Santosh D Bhosale
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
3
|
Kim K, Chini N, Fairchild DG, Engle SK, Reagan WJ, Summers SD, Mirsalis JC. Evaluation of Cardiac Toxicity Biomarkers in Rats from Different Laboratories. Toxicol Pathol 2016; 44:1072-1083. [PMID: 27638646 DOI: 10.1177/0192623316668276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a great need for improved diagnostic and prognostic accuracy of potential cardiac toxicity in drug development. This study reports the evaluation of several commercially available biomarker kits by 3 institutions (SRI, Eli Lilly, and Pfizer) for the discrimination between myocardial degeneration/necrosis and cardiac hypertrophy as well as the assessment of the interlaboratory and interplatform variation in results. Serum concentrations of natriuretic peptides (N-terminal pro-atrial natriuretic peptide [NT-proANP] and N-terminal pro-brain natriuretic peptide [NT-proBNP]), cardiac and skeletal troponins (cTnI, cTnT, and sTnI), myosin light chain 3 (Myl3), and fatty acid binding protein 3 (FABP3) were assessed in rats treated with minoxidil (MNX) and isoproterenol (ISO). MNX caused increased heart-to-body weight ratios and prominent elevations in NT-proANP and NT-proBNP concentrations detected at 24-hr postdose without elevation in troponins, Myl3, or FABP3 and with no abnormal histopathological findings. ISO caused ventricular leukocyte infiltration, myocyte fibrosis, and necrosis with increased concentrations of the natriuretic peptides, cardiac troponins, and Myl3. These results reinforce the advantages of a multimarker strategy in elucidating the underlying cause of cardiac insult and detecting myocardial tissue damage at 24-hr posttreatment. The interlaboratory and interplatform comparison analyses also showed that the data obtained from different laboratories and platforms are highly correlated and reproducible, making these biomarkers widely applicable in preclinical studies.
Collapse
Affiliation(s)
- Kyuri Kim
- 1 SRI International, Menlo Park, California, USA
| | - Naseem Chini
- 1 SRI International, Menlo Park, California, USA
| | | | - Steven K Engle
- 2 Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, Indiana, USA
| | - William J Reagan
- 3 Pfizer, Drug Safety Research and Development, Groton, Connecticut, USA
| | - Sandra D Summers
- 3 Pfizer, Drug Safety Research and Development, Groton, Connecticut, USA
| | | | | |
Collapse
|
4
|
Song B, Liu Y, Parman T, Liu S, Miller JK, Liu X, Tanga MJ, Mirsalis J. Quantitative proteomics for cardiac biomarker discovery using isoproterenol-treated nonhuman primates. J Proteome Res 2014; 13:5909-17. [PMID: 25345801 PMCID: PMC4261936 DOI: 10.1021/pr500835w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To identify new cardiac biomarkers, a quantitative proteomic analysis has been performed on serum and heart tissue proteins from three species of nonhuman primates following isoproterenol (ISO) treatment. Three serum proteins--serum amyloid A (SAA), α-1-acid glycoprotein (A1AG), and apolipoprotein A-1 (Apo A1)--were consistently identified as changed and remained altered 72 h post dose in all three species post ISO treatment, indicating the potential of including these proteins in preclinical or clinical evaluation of drug-induced cardiac injury. Furthermore, proteomic analysis of heart tissue proteins following ISO treatment demonstrated detrimental effects on calcium signaling and energy generation in cardiac myocytes. It is worth noting that cardiac troponins were not identified in serum but were identified as altered in heart tissue lysate along with other cardiac-specific proteins. This strategy for cardiac biomarker discovery by proteomic screening of heart tissue proteins, followed by verification in serum samples using immunoassays or targeted mass spectrometry, could be applied in future biomarker studies.
Collapse
Affiliation(s)
- Benben Song
- Biosciences Division, SRI International , Harrisonburg, Virginia 22802, United States
| | | | | | | | | | | | | | | |
Collapse
|
5
|
New candidate biomarkers in the female genital tract to evaluate microbicide toxicity. PLoS One 2014; 9:e110980. [PMID: 25333937 PMCID: PMC4205019 DOI: 10.1371/journal.pone.0110980] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/17/2014] [Indexed: 01/14/2023] Open
Abstract
Vaginal microbicides hold great promise for the prevention of viral diseases like HIV, but the failure of several microbicide candidates in clinical trials has raised important questions regarding the parameters to be evaluated to determine in vivo efficacy in humans. Clinical trials of the candidate microbicides nonoxynol-9 (N9) and cellulose sulfate revealed an increase in HIV infection, vaginal inflammation, and recruitment of HIV susceptible lymphocytes, highlighting the need to identify biomarkers that can accurately predict microbicide toxicity early in preclinical development and in human trials. We used quantitative proteomics and RT-PCR approaches in mice and rabbits to identify protein changes in vaginal fluid and tissue in response to treatment with N9 or benzalkonium chloride (BZK). We compared changes generated with N9 and BZK treatment to the changes generated in response to tenofovir gel, a candidate microbicide that holds promise as a safe and effective microbicide. Both compounds down regulated mucin 5 subtype B, and peptidoglycan recognition protein 1 in vaginal tissue; however, mucosal brush samples also showed upregulation of plasma proteins fibrinogen, plasminogen, apolipoprotein A-1, and apolipoprotein C-1, which may be a response to the erosive nature of N9 and BZK. Additional proteins down-regulated in vaginal tissue by N9 or BZK treatment include CD166 antigen, olfactomedin-4, and anterior gradient protein 2 homolog. We also observed increases in the expression of C-C chemokines CCL3, CCL5, and CCL7 in response to treatment. There was concordance in expression level changes for several of these proteins using both the mouse and rabbit models. Using a human vaginal epithelial cell line, the expression of mucin 5 subtype B and olfactomedin-4 were down-regulated in response to N9, suggesting these markers could apply to humans. These data identifies new proteins that after further validation could become part of a panel of biomarkers to effectively evaluate microbicide toxicity.
Collapse
|