1
|
Jakšić Ž, Mrljak V, Horvatić A, Gelemanović A, Mičić M. Loggerhead sea turtle Caretta caretta plasma biochemistry and proteome profile modulation during recovery. J Proteomics 2022; 252:104433. [PMID: 34839037 DOI: 10.1016/j.jprot.2021.104433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022]
Abstract
The aim of the study was to monitor and analyse injured and diseased loggerhead sea turtles (Caretta caretta) plasma proteome profiles and biochemistry parameters during their recovery period in rescue centre within different age and recovery period groups, and determine the potential biomarkers that can be used in diagnostics. The plasma biochemical parameters of total protein and glucose content, accompanied by aspartate aminotransferase (AST) and N-acetyl-cystein-activated creatinine kinase (CK-NAC) are highlighted as valuable and potential biomarkers of turtle's health status and condition. Using high throughput tandem mass tag (TMT)-based proteomic approach we identified 913 plasma proteins, 12 of which shown to be modulated in loggerheads age groups, and identified as a part of (i) platelet degranulation, (ii) neutrophil degranulation, and (iii) innate immune system pathways. The neurofascin (NFASC) is shown to be differentially abundant among all the age groups, and alpha-1-acid glycoprotein 2-like (ORM2) and alpha-1-antitrypsin-like (SERPINA1) proteins were recognized as members of all three above mentioned REACTOME pathways. Furthermore, 29 of plasma proteins were significantly differentially abundant in loggerheads age and recovery period groups. Out of 15 recognized pathways, those proteins were mostly included in three specific REACTOME pathways: (i) post-translational phosphorylation, (ii) regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs), and (iii) platelet degranulation. The alpha-fetoprotein (AFP) was the only protein which showed statistically significant up-regulation patterns in all loggerhead age groups before release from the rescue centre, and the complement component 3 (C3) protein was the only protein modulated in all recovery period groups. Furthermore, C3 protein takes part in 9; and followed up with apolipoprotein A-I (APOA1) in 7; complement component 4 (C4), complement component 5 (C5) and kininogen-1 (KNG1) in 6 REACTOME pathways. Thereby, those proteins are highlighted and recommended as potential biomarkers of turtle's health status. Data are available via ProteomeXchange with identifier PXD029569. Finally, based on our results, we believe that comprehensive omics approach and routine plasma biochemical analysis, accompanied by proteins of acute phase, acid-base status and immune-response indicator analysis may significantly and reliably improve assessment of captive loggerheads rehabilitation and medication. SIGNIFICANCE: Monitoring and comparison of loggerhead sea turtles (C. caretta) blood plasma biochemistry parameters and plasma proteome profiles in relation to the age, and recovery period pointed out significantly differentially abundant proteins, along with certain biochemical parameter contents as potential biomarkers of turtle's fitness, health status and physiology.
Collapse
Affiliation(s)
- Ž Jakšić
- Ruđer Bošković Institute, Center for Marine Rresearch Rovinj, G. Paliage 5, HR - 52210 Rovinj, Croatia; Marine Educational Centre Pula, A. Negri 10, HR - 52100 Pula, Croatia.
| | - V Mrljak
- University of Zagreb, Faculty of Veterinary Medicine, Department of Pathophysiology, Heinzelova 55, HR - 10000 Zagreb, Croatia
| | - A Horvatić
- University of Zagreb, Faculty of Veterinary Medicine, Department of Pathophysiology, Heinzelova 55, HR - 10000 Zagreb, Croatia; University of Zagreb, Faculty of Food Technology and Biotechnology, Department of Chemistry and Biochemistry, Pierottieva 6, HR - 10000 Zagreb, Croatia
| | - A Gelemanović
- Mediterranean Institute for Life Sciences (MedILS), Šetalište Ivana Meštrovića 45, HR - 21000 Split, Croatia
| | - M Mičić
- Aquarium Verudela, Verudela bb, HR - 52105 Pula, Croatia; Marine Educational Centre Pula, A. Negri 10, HR - 52100 Pula, Croatia
| |
Collapse
|
2
|
Chazarin B, Ziemianin A, Evans AL, Meugnier E, Loizon E, Chery I, Arnemo JM, Swenson JE, Gauquelin-Koch G, Simon C, Blanc S, Lefai E, Bertile F. Limited Oxidative Stress Favors Resistance to Skeletal Muscle Atrophy in Hibernating Brown Bears ( Ursus Arctos). Antioxidants (Basel) 2019; 8:antiox8090334. [PMID: 31443506 PMCID: PMC6770786 DOI: 10.3390/antiox8090334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress, which is believed to promote muscle atrophy, has been reported to occur in a few hibernators. However, hibernating bears exhibit efficient energy savings and muscle protein sparing, despite long-term physical inactivity and fasting. We hypothesized that the regulation of the oxidant/antioxidant balance and oxidative stress could favor skeletal muscle maintenance in hibernating brown bears. We showed that increased expressions of cold-inducible proteins CIRBP and RBM3 could favor muscle mass maintenance and alleviate oxidative stress during hibernation. Downregulation of the subunits of the mitochondrial electron transfer chain complexes I, II, and III, and antioxidant enzymes, possibly due to the reduced mitochondrial content, indicated a possible reduction of the production of reactive oxygen species in the hibernating muscle. Concomitantly, the upregulation of cytosolic antioxidant systems, under the control of the transcription factor NRF2, and the maintenance of the GSH/GSSG ratio suggested that bear skeletal muscle is not under a significant oxidative insult during hibernation. Accordingly, lower levels of oxidative damage were recorded in hibernating bear skeletal muscles. These results identify mechanisms by which limited oxidative stress may underlie the resistance to skeletal muscle atrophy in hibernating brown bears. They may constitute therapeutic targets for the treatment of human muscle atrophy.
Collapse
Affiliation(s)
- Blandine Chazarin
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
- Centre National d'Etudes Spatiales, CNES, F-75001 Paris, France
| | - Anna Ziemianin
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
- Centre National d'Etudes Spatiales, CNES, F-75001 Paris, France
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway
| | - Emmanuelle Meugnier
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Emmanuelle Loizon
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Isabelle Chery
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Jon E Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
- Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway
| | | | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
| | - Stéphane Blanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France
| | - Etienne Lefai
- CarMen Laboratory, INSERM 1060, INRA 1397, University of Lyon, F-69600 Oullins, France
- Université d'Auvergne, INRA, UNH UMR1019, F-63122 Saint-Genès Champanelle, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-670000 Strasbourg, France.
| |
Collapse
|
3
|
Timmins-Schiffman E, Mikan MP, Ting YS, Harvey HR, Nunn BL. MS analysis of a dilution series of bacteria:phytoplankton to improve detection of low abundance bacterial peptides. Sci Rep 2018; 8:9276. [PMID: 29915279 PMCID: PMC6006377 DOI: 10.1038/s41598-018-27650-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/06/2018] [Indexed: 11/17/2022] Open
Abstract
Assigning links between microbial activity and biogeochemical cycles in the ocean is a primary objective for ecologists and oceanographers. Bacteria represent a small ecosystem component by mass, but act as the nexus for both nutrient transformation and organic matter recycling. There are limited methods to explore the full suite of active bacterial proteins largely responsible for degradation. Mass spectrometry (MS)-based proteomics now has the potential to document bacterial physiology within these complex systems. Global proteome profiling using MS, known as data dependent acquisition (DDA), is limited by the stochastic nature of ion selection, decreasing the detection of low abundance peptides. The suitability of MS-based proteomics methods in revealing bacterial signatures outnumbered by phytoplankton proteins was explored using a dilution series of pure bacteria (Ruegeria pomeroyi) and diatoms (Thalassiosira pseudonana). Two common acquisition strategies were utilized: DDA and selected reaction monitoring (SRM). SRM improved detection of bacterial peptides at low bacterial cellular abundance that were undetectable with DDA from a wide range of physiological processes (e.g. amino acid synthesis, lipid metabolism, and transport). We demonstrate the benefits and drawbacks of two different proteomic approaches for investigating species-specific physiological processes across relative abundances of bacteria that vary by orders of magnitude.
Collapse
Affiliation(s)
| | - Molly P Mikan
- Old Dominion University, Department of Ocean, Earth, and Atmospheric Sciences, Norfolk, VA, 23529, USA
| | - Ying Sonia Ting
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195, USA
- Neon Therapeutics, Boston, MA, 02139, USA
| | - H Rodger Harvey
- Old Dominion University, Department of Ocean, Earth, and Atmospheric Sciences, Norfolk, VA, 23529, USA
| | - Brook L Nunn
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Timmins-Schiffman EB, Crandall GA, Vadopalas B, Riffle ME, Nunn BL, Roberts SB. Integrating Discovery-driven Proteomics and Selected Reaction Monitoring To Develop a Noninvasive Assay for Geoduck Reproductive Maturation. J Proteome Res 2017; 16:3298-3309. [PMID: 28730805 DOI: 10.1021/acs.jproteome.7b00288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Geoduck clams (Panopea generosa) are an increasingly important fishery and aquaculture product along the eastern Pacific coast from Baja California, Mexico, to Alaska. These long-lived clams are highly fecund, although sustainable hatchery production of genetically diverse larvae is hindered by the lack of sexual dimorphism, resulting in asynchronous spawning of broodstock, unequal sex ratios, and low numbers of breeders. The development of assays of gonad physiology could indicate sex and maturation stage as well as be used to assess the status of natural populations. Proteomic profiles were determined for three reproductive maturation stages in both male and female clams using data-dependent acquisition (DDA) of gonad proteins. Gonad proteomes became increasingly divergent between males and females as maturation progressed. The DDA data were used to develop targets analyzed with selected reaction monitoring (SRM) in gonad tissue as well as hemolymph. The SRM assay yielded a suite of indicator peptides that can be used as an efficient assay to determine geoduck gonad maturation status. Application of SRM in hemolymph samples demonstrates that this procedure could effectively be used to assess reproductive status in marine mollusks in a nonlethal manner.
Collapse
Affiliation(s)
- Emma B Timmins-Schiffman
- Department of Genome Sciences, University of Washington , Seattle, Washington 98105, United States
| | - Grace A Crandall
- School of Aquatic and Fishery Sciences, University of Washington , Seattle, Washington 98105, United States
| | - Brent Vadopalas
- School of Aquatic and Fishery Sciences, University of Washington , Seattle, Washington 98105, United States
| | - Michael E Riffle
- Department of Biochemistry, University of Washington , Seattle, Washington 98105, United States
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington , Seattle, Washington 98105, United States
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington , Seattle, Washington 98105, United States
| |
Collapse
|
5
|
Shi T, Song E, Nie S, Rodland KD, Liu T, Qian WJ, Smith RD. Advances in targeted proteomics and applications to biomedical research. Proteomics 2016; 16:2160-82. [PMID: 27302376 PMCID: PMC5051956 DOI: 10.1002/pmic.201500449] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/09/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074-1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ehwang Song
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Song Nie
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karin D Rodland
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
6
|
Schilling J, Loziuk PL, Muddiman DC, Daniels HV, Reading BJ. Mechanisms of Egg Yolk Formation and Implications on Early Life History of White Perch (Morone americana). PLoS One 2015; 10:e0143225. [PMID: 26580971 PMCID: PMC4651544 DOI: 10.1371/journal.pone.0143225] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022] Open
Abstract
The three white perch (Morone americana) vitellogenins (VtgAa, VtgAb, VtgC) were quantified accurately and precisely in the liver, plasma, and ovary during pre-, early-, mid-, and post-vitellogenic oocyte growth using protein cleavage-isotope dilution mass spectrometry (PC-IDMS). Western blotting generally mirrored the PC-IDMS results. By PC-IDMS, VtgC was quantifiable in pre-vitellogenic ovary tissues and VtgAb was quantifiable in pre-vitellogenic liver tissues however, neither protein was detected by western blotting in these respective tissues at this time point. Immunohistochemistry indicated that VtgC was present within pre-vitellogenic oocytes and localized to lipid droplets within vitellogenic oocytes. Affinity purification coupled to tandem mass spectrometry using highly purified VtgC as a bait protein revealed a single specific interacting protein (Y-box binding protein 2a-like [Ybx2a-like]) that eluted with suramin buffer and confirmed that VtgC does not bind the ovary vitellogenin receptors (LR8 and Lrp13). Western blotting for LR8 and Lrp13 showed that both receptors were expressed during vitellogenesis with LR8 and Lrp13 expression highest in early- and mid-vitellogenesis, respectively. The VtgAa within the ovary peaked during post-vitellogenesis, while VtgAb peaked during early-vitellogenesis in both white perch and the closely related striped bass (M. saxatilis). The VtgC was steadily accumulated by oocytes beginning during pre-vitellogenesis and continued until post-vitellogenesis and its composition varies widely between striped bass and white perch. In striped bass, the VtgC accounted for 26% of the vitellogenin-derived egg yolk, however in the white perch it comprised only 4%. Striped bass larvae have an extended developmental window and these larvae have yolk stores that may enable them to survive in the absence of food for twice as long as white perch after hatch. Thus, the VtgC may play an integral role in providing nutrients to late stage fish larvae prior to the onset of exogenous feeding and its composition in the egg yolk may relate to different early life histories among this diverse group of animals.
Collapse
Affiliation(s)
- Justin Schilling
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Philip L. Loziuk
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - David C. Muddiman
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Harry V. Daniels
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Benjamin J. Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
7
|
|
8
|
Carapito C, Burel A, Guterl P, Walter A, Varrier F, Bertile F, Van Dorsselaer A. MSDA, a proteomics software suite for in-depth Mass Spectrometry Data Analysis using grid computing. Proteomics 2014; 14:1014-9. [DOI: 10.1002/pmic.201300415] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique; IPHC; Université de Strasbourg; CNRS; UMR7178 Strasbourg France
| | - Alexandre Burel
- Laboratoire de Spectrométrie de Masse BioOrganique; IPHC; Université de Strasbourg; CNRS; UMR7178 Strasbourg France
| | - Patrick Guterl
- Laboratoire de Spectrométrie de Masse BioOrganique; IPHC; Université de Strasbourg; CNRS; UMR7178 Strasbourg France
| | - Alexandre Walter
- Laboratoire de Spectrométrie de Masse BioOrganique; IPHC; Université de Strasbourg; CNRS; UMR7178 Strasbourg France
| | - Fabrice Varrier
- Laboratoire de Spectrométrie de Masse BioOrganique; IPHC; Université de Strasbourg; CNRS; UMR7178 Strasbourg France
| | - Fabrice Bertile
- Laboratoire de Spectrométrie de Masse BioOrganique; IPHC; Université de Strasbourg; CNRS; UMR7178 Strasbourg France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique; IPHC; Université de Strasbourg; CNRS; UMR7178 Strasbourg France
| |
Collapse
|