4
|
Patel ZH, Lu X, Miller D, Forney CR, Lee J, Lynch A, Schroeder C, Parks L, Magnusen AF, Chen X, Pujato M, Maddox A, Zoller EE, Namjou B, Brunner HI, Henrickson M, Huggins JL, Williams AH, Ziegler JT, Comeau ME, Marion MC, Glenn SB, Adler A, Shen N, Nath SK, Stevens AM, Freedman BI, Pons-Estel BA, Tsao BP, Jacob CO, Kamen DL, Brown EE, Gilkeson GS, Alarcón GS, Martin J, Reveille JD, Anaya JM, James JA, Sivils KL, Criswell LA, Vilá LM, Petri M, Scofield RH, Kimberly RP, Edberg JC, Ramsey-Goldman R, Bang SY, Lee HS, Bae SC, Boackle SA, Cunninghame Graham D, Vyse TJ, Merrill JT, Niewold TB, Ainsworth HC, Silverman ED, Weisman MH, Wallace DJ, Raj P, Guthridge JM, Gaffney PM, Kelly JA, Alarcón-Riquelme ME, Langefeld CD, Wakeland EK, Kaufman KM, Weirauch MT, Harley JB, Kottyan LC. A plausibly causal functional lupus-associated risk variant in the STAT1-STAT4 locus. Hum Mol Genet 2018; 27:2392-2404. [PMID: 29912393 PMCID: PMC6005081 DOI: 10.1093/hmg/ddy140] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/21/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE or lupus) (OMIM: 152700) is a chronic autoimmune disease with debilitating inflammation that affects multiple organ systems. The STAT1-STAT4 locus is one of the first and most highly replicated genetic loci associated with lupus risk. We performed a fine-mapping study to identify plausible causal variants within the STAT1-STAT4 locus associated with increased lupus disease risk. Using complementary frequentist and Bayesian approaches in trans-ancestral Discovery and Replication cohorts, we found one variant whose association with lupus risk is supported across ancestries in both the Discovery and Replication cohorts: rs11889341. In B cell lines from patients with lupus and healthy controls, the lupus risk allele of rs11889341 was associated with increased STAT1 expression. We demonstrated that the transcription factor HMGA1, a member of the HMG transcription factor family with an AT-hook DNA-binding domain, has enriched binding to the risk allele compared with the non-risk allele of rs11889341. We identified a genotype-dependent repressive element in the DNA within the intron of STAT4 surrounding rs11889341. Consistent with expression quantitative trait locus (eQTL) analysis, the lupus risk allele of rs11889341 decreased the activity of this putative repressor. Altogether, we present a plausible molecular mechanism for increased lupus risk at the STAT1-STAT4 locus in which the risk allele of rs11889341, the most probable causal variant, leads to elevated STAT1 expression in B cells due to decreased repressor activity mediated by increased binding of HMGA1.
Collapse
Affiliation(s)
- Zubin H Patel
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaoming Lu
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel Miller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Carmy R Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua Lee
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Arthur Lynch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Connor Schroeder
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lois Parks
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Albert F Magnusen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mario Pujato
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Avery Maddox
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Erin E Zoller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Hermine I Brunner
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael Henrickson
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jennifer L Huggins
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adrienne H Williams
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Julie T Ziegler
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mary E Comeau
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Miranda C Marion
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Stuart B Glenn
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Adam Adler
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Nan Shen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Anne M Stevens
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Division of Rheumatology, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | - Betty P Tsao
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Chaim O Jacob
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Diane L Kamen
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth E Brown
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gary S Gilkeson
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Graciela S Alarcón
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Javier Martin
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, CSIC, Granada 18001-18016, Spain
| | - John D Reveille
- Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogota 111711, Colombia
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathy L Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lindsey A Criswell
- Department of Medicine, Rosalind Russell/Ephraim P Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, CA 94143-0500, USA
| | - Luis M Vilá
- Division of Rheumatology, Department of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Michelle Petri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- United States Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Robert P Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey C Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Susan A Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Deborah Cunninghame Graham
- Divisions of Genetics/Molecular Medicine and Immunology, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Timothy J Vyse
- Divisions of Genetics/Molecular Medicine and Immunology, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Joan T Merrill
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Timothy B Niewold
- Division of Rheumatology, Department of Pathology, New York University, New York, NY 10016, USA
| | - Hannah C Ainsworth
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Earl D Silverman
- Division of Rheumatology, The Hospital for Sick Children, Hospital for Sick Research Institute, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Michael H Weisman
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel J Wallace
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Marta E Alarcón-Riquelme
- Unit of Chronic Inflammatory Diseases, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 17167, Sweden
- Center for Genomics and Oncological Research, Pfizer-University of Granada-Junta de Andalucia, Parque Tecnológica de la Salud, Granada 18016, Spain
| | - Carl D Langefeld
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- United States Department of Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- United States Department of Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| |
Collapse
|
6
|
Liu S, Xia Y, Liu X, Wang Y, Chen Z, Xie J, Qian J, Shen H, Yang P. In-depth proteomic profiling of left ventricular tissues in human end-stage dilated cardiomyopathy. Oncotarget 2018; 8:48321-48332. [PMID: 28427148 PMCID: PMC5564650 DOI: 10.18632/oncotarget.15689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/12/2017] [Indexed: 01/30/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is caused by reduced left ventricular (LV) myocardial function, which is one of the most common causes of heart failure (HF). We performed iTRAQ-coupled 2D-LC-MS/MS to profile the cardiac proteome of LV tissues from healthy controls and patients with end-stage DCM. We identified 4263 proteins, of which 125 were differentially expressed in DCM tissues compared to LV controls. The majority of these were membrane proteins related to cellular junctions and neuronal metabolism. In addition, these proteins were involved in membrane organization, mitochondrial organization, translation, protein transport, and cell death process. Four key proteins involved in the cell death process were also detected by western blotting, indicated that cell death was activated in DCM tissues. Furthermore, S100A1 and eEF2 were enriched in the “cellular assembly and organization” and “cell cycle” networks, respectively. We verified decreases in these two proteins in end-stage DCM LV samples through multiple reaction monitoring (MRM). These observations demonstrate that our understanding of the mechanisms underlying DCM can be deepened through comparison of the proteomes of normal LV tissues with that from end-stage DCM in humans.
Collapse
Affiliation(s)
- Shanshan Liu
- Institutes of Biomedical Sciences of Shanghai Medical School and Minhang Hospital, Fudan University, Shanghai, China.,Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yan Xia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaohui Liu
- Department of chemistry, Fudan University, Shanghai, China
| | - Yi Wang
- Institutes of Biomedical Sciences of Shanghai Medical School and Minhang Hospital, Fudan University, Shanghai, China.,Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juanjuan Xie
- Institutes of Biomedical Sciences of Shanghai Medical School and Minhang Hospital, Fudan University, Shanghai, China.,Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huali Shen
- Institutes of Biomedical Sciences of Shanghai Medical School and Minhang Hospital, Fudan University, Shanghai, China.,Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of chemistry, Fudan University, Shanghai, China
| | - Pengyuan Yang
- Institutes of Biomedical Sciences of Shanghai Medical School and Minhang Hospital, Fudan University, Shanghai, China.,Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of chemistry, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Lu X, Zoller E, Weirauch M, Wu Z, Namjou B, Williams A, Ziegler J, Comeau M, Marion M, Glenn S, Adler A, Shen N, Nath S, Stevens A, Freedman B, Tsao B, Jacob C, Kamen D, Brown E, Gilkeson G, Alarcón G, Reveille J, Anaya JM, James J, Sivils K, Criswell L, Vilá L, Alarcón-Riquelme M, Petri M, Scofield R, Kimberly R, Ramsey-Goldman R, Joo Y, Choi J, Bae SC, Boackle S, Graham D, Vyse T, Guthridge J, Gaffney P, Langefeld C, Kelly J, Greis K, Kaufman K, Harley J, Kottyan L. Lupus Risk Variant Increases pSTAT1 Binding and Decreases ETS1 Expression. Am J Hum Genet 2015; 96:731-9. [PMID: 25865496 DOI: 10.1016/j.ajhg.2015.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/05/2015] [Indexed: 01/19/2023] Open
Abstract
Genetic variants at chromosomal region 11q23.3, near the gene ETS1, have been associated with systemic lupus erythematosus (SLE), or lupus, in independent cohorts of Asian ancestry. Several recent studies have implicated ETS1 as a critical driver of immune cell function and differentiation, and mice deficient in ETS1 develop an SLE-like autoimmunity. We performed a fine-mapping study of 14,551 subjects from multi-ancestral cohorts by starting with genotyped variants and imputing to all common variants spanning ETS1. By constructing genetic models via frequentist and Bayesian association methods, we identified 16 variants that are statistically likely to be causal. We functionally assessed each of these variants on the basis of their likelihood of affecting transcription factor binding, miRNA binding, or chromatin state. Of the four variants that we experimentally examined, only rs6590330 differentially binds lysate from B cells. Using mass spectrometry, we found more binding of the transcription factor signal transducer and activator of transcription 1 (STAT1) to DNA near the risk allele of rs6590330 than near the non-risk allele. Immunoblot analysis and chromatin immunoprecipitation of pSTAT1 in B cells heterozygous for rs6590330 confirmed that the risk allele increased binding to the active form of STAT1. Analysis with expression quantitative trait loci indicated that the risk allele of rs6590330 is associated with decreased ETS1 expression in Han Chinese, but not other ancestral cohorts. We propose a model in which the risk allele of rs6590330 is associated with decreased ETS1 expression and increases SLE risk by enhancing the binding of pSTAT1.
Collapse
|