1
|
Mancini F, Giorgini L, Teveroni E, Pontecorvi A, Moretti F. Role of Sex in the Therapeutic Targeting of p53 Circuitry. Front Oncol 2021; 11:698946. [PMID: 34307167 PMCID: PMC8298065 DOI: 10.3389/fonc.2021.698946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/16/2021] [Indexed: 12/03/2022] Open
Abstract
Sex profoundly affects cancer incidence and susceptibility to therapy, with sex hormones highly contributing to this disparity. Various studies and omics data suggest a relationship between sex and the oncosuppressor p53 circuitry, including its regulators MDM2 and MDM4. Association of this network with genetic variation underlies sex-related altered cancer risk, age of onset, and cancer sensitivity to therapy. Moreover, sex-related factors, mainly estrogenic hormones, can affect the levels and/or function of the p53 network both in hormone-dependent and independent cancer. Despite this evidence, preclinical and clinical studies aimed to evaluate p53 targeted therapy rarely consider sex and related factors. This review summarizes the studies reporting the relationship between sex and the p53 circuitry, including its associated regulators, MDM2 and MDM4, with particular emphasis on estrogenic hormones. Moreover, we reviewed the evaluation of sex/hormone in preclinical studies and clinical trials employing p53-target therapies, and discuss how patients’ sex and hormonal status could impact these therapeutic approaches.
Collapse
Affiliation(s)
- Francesca Mancini
- Research Unit on Human Reproduction, International Scientific Institute Paul VI, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Ludovica Giorgini
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Monterotondo, Italy.,Catholic University of the Sacred Heart of Rome, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Emanuela Teveroni
- Research Unit on Human Reproduction, International Scientific Institute Paul VI, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Catholic University of the Sacred Heart of Rome, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Fabiola Moretti
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Monterotondo, Italy
| |
Collapse
|
2
|
Illiano A, Pinto G, Melchiorre C, Carpentieri A, Faraco V, Amoresano A. Protein Glycosylation Investigated by Mass Spectrometry: An Overview. Cells 2020; 9:E1986. [PMID: 32872358 PMCID: PMC7564411 DOI: 10.3390/cells9091986] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
The protein glycosylation is a post-translational modification of crucial importance for its involvement in molecular recognition, protein trafficking, regulation, and inflammation. Indeed, abnormalities in protein glycosylation are correlated with several disease states such as cancer, inflammatory diseases, and congenial disorders. The understanding of cellular mechanisms through the elucidation of glycan composition encourages researchers to find analytical solutions for their detection. Actually, the multiplicity and diversity of glycan structures bond to the proteins, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies make their detection much trickier than other kinds of biopolymers. An overview of the most prominent techniques based on mass spectrometry (MS) for protein glycosylation (glycoproteomics) studies is here presented. The tricks and pre-treatments of samples are discussed as a crucial step prodromal to the MS analysis to improve the glycan ionization efficiency. Therefore, the different instrumental MS mode is also explored for the qualitative and quantitative analysis of glycopeptides and the glycans structural composition, thus contributing to the elucidation of biological mechanisms.
Collapse
Affiliation(s)
- Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
- CEINGE Advanced Biotechnology, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
- Istituto Nazionale Biostrutture e Biosistemi—Consorzio Interuniversitario, Viale delle Medaglie d’Oro, 305, 00136 Rome, Italy
| |
Collapse
|
3
|
Analysis of Spatial Distribution and Prognostic Value of Different Pan Cytokeratin Immunostaining Intensities in Breast Tumor Tissue Sections. Int J Mol Sci 2020; 21:ijms21124434. [PMID: 32580421 PMCID: PMC7352516 DOI: 10.3390/ijms21124434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 01/19/2023] Open
Abstract
Cancer risk prognosis could improve patient survival through early personalized treatment decisions. This is the first systematic analysis of the spatial and prognostic distribution of different pan cytokeratin immunostaining intensities in breast tumors. The prognostic model included 102 breast carcinoma patients, with distant metastasis occurrence as the endpoint. We segmented the full intensity range (0–255) of pan cytokeratin digitized immunostaining into seven discrete narrow grey level ranges: 0–130, 130–160, 160–180, 180–200, 200–220, 220–240, and 240–255. These images were subsequently examined by 33 major (GLCM), fractal and first-order statistics computational analysis features. Interestingly, while moderate intensities were strongly associated with metastasis outcome, high intensities of pan cytokeratin immunostaining provided no prognostic value even after an exhaustive computational analysis. The intense pan cytokeratin immunostaining was also relatively rare, suggesting the low differentiation state of epithelial cells. The observed variability in immunostaining intensities highlighted the intratumoral heterogeneity of the malignant cells and its association with a poor disease outcome. The prognostic importance of the moderate intensity range established by complex computational morphology analyses was supported by simple measurements of its immunostaining area which was associated with favorable disease outcome. This study reveals intratumoral heterogeneity of the pan cytokeratin immunostaining together with the prognostic evaluation and spatial distribution of its discrete intensities.
Collapse
|
4
|
Pinto G, D'Acierno M, Illiano A, Petruk G, Ferraro G, Merlino A, Monti DM, Godovac-Zimmermann J, Amoresano A. Label-free quantitative proteomics of the MCF-7 cellular response to a ferritin–metallodrug complex. Mol Omics 2020; 16:165-173. [DOI: 10.1039/c9mo00158a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Schematic summary of the experimental workflow based on label-free quantitative proteomics.
Collapse
Affiliation(s)
- Gabriella Pinto
- Department of Chemical Sciences
- University of Naples Federico II
- Napoli
- Italy
| | | | - Anna Illiano
- Department of Chemical Sciences
- University of Naples Federico II
- Napoli
- Italy
| | - Ganna Petruk
- Department of Chemical Sciences
- University of Naples Federico II
- Napoli
- Italy
| | - Giarita Ferraro
- Department of Chemical Sciences
- University of Naples Federico II
- Napoli
- Italy
- Department of Chemistry Ugo Schiff
| | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Napoli
- Italy
| | - Daria Maria Monti
- Department of Chemical Sciences
- University of Naples Federico II
- Napoli
- Italy
| | | | - Angela Amoresano
- Department of Chemical Sciences
- University of Naples Federico II
- Napoli
- Italy
| |
Collapse
|
5
|
Estrogens Counteract Platinum-Chemosensitivity by Modifying the Subcellular Localization of MDM4. Cancers (Basel) 2019; 11:cancers11091349. [PMID: 31547268 PMCID: PMC6770881 DOI: 10.3390/cancers11091349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/28/2022] Open
Abstract
Estrogen activity towards cancer-related pathways can impact therapeutic intervention. Recent omics data suggest possible crosstalk between estrogens/gender and MDM4, a key regulator of p53. Since MDM4 can either promote cell transformation or enhance DNA damage-sensitivity, we analysed in vivo impact of estrogens on both MDM4 activities. In Mdm4 transgenic mouse, Mdm4 accelerates the formation of fibrosarcoma and increases tumor sensitivity to cisplatin as well, thus confirming in vivo Mdm4 dual mode of action. Noteworthy, Mdm4 enhances chemo- and radio-sensitivity in male but not in female animals, whereas its tumor-promoting activity is not affected by mouse gender. Combination therapy of transgenic females with cisplatin and fulvestrant, a selective estrogen receptor degrader, was able to recover tumor cisplatin-sensitivity, demonstrating the relevance of estrogens in the observed sexual dimorphism. Molecularly, estrogen receptor-α alters intracellular localization of MDM4 by increasing its nuclear fraction correlated to decreased cell death, in a p53-independent manner. Importantly, MDM4 nuclear localization and intra-tumor estrogen availability correlate with decreased platinum-sensitivity and apoptosis and predicts poor disease-free survival in high-grade serous ovarian carcinoma. These data demonstrate estrogen ability to modulate chemo-sensitivity of MDM4-expressing tumors and to impinge on intracellular trafficking. They support potential usefulness of combination therapy involving anti-estrogenic drugs.
Collapse
|
6
|
Alkhanjaf AAM, Raggiaschi R, Crawford M, Pinto G, Godovac‐Zimmermann J. Moonlighting Proteins and Cardiopathy in the Spatial Response of MCF-7 Breast Cancer Cells to Tamoxifen. Proteomics Clin Appl 2019; 13:e1900029. [PMID: 31282103 PMCID: PMC6771495 DOI: 10.1002/prca.201900029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/03/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND The purpose of this study is to apply quantitative high-throughput proteomics methods to investigate dynamic aspects of protein changes in nucleocytoplasmic distribution of proteins and of total protein abundance for MCF-7 cells exposed to tamoxifen (Tam) in order to reveal the agonistic and antagonistic roles of the drug. EXPERIMENTAL DESIGN The MS-based global quantitative proteomics with the analysis of fractions enriched in target subcellular locations is applied to measure the changes in total abundance and in the compartmental abundance/distribution between the nucleus and cytoplasm for several thousand proteins differentially expressed in MCF-7 cells in response to Tam stimulation. RESULTS The response of MCF-7 cells to the Tam treatment shows significant changes in subcellular abundance rather than in their total abundance. The bioinformatics study reveals the relevance of moonlighting proteins and numerous pathways involved in Tam response of MCF-7 including some of which may explain the agonistic and antagonistic roles of the drug. CONCLUSIONS The results indicate possible protective role of Tam against cardiovascular diseases as well as its involvement in G-protein coupled receptors pathways that enhance breast tissue proliferation.
Collapse
Affiliation(s)
- Abdulrab Ahmed M. Alkhanjaf
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
- Molecular Biotechnology, Department of Clinical Laboratory SciencesCollege of Applied Medical sciencesNajran UniversityNajran61441Saudi Arabia
| | - Roberto Raggiaschi
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| | - Mark Crawford
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| | - Gabriella Pinto
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
- Department of Chemical SciencesUniversity of Naples Federico II80126NaplesItaly
| | - Jasminka Godovac‐Zimmermann
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| |
Collapse
|
7
|
Alkhanjaf AAM, Raggiaschi R, Crawford M, Pinto G, Godovac-Zimmermann J. Moonlighting Proteins and Cardiopathy in the Spatial Response of MCF-7 Breast Cancer Cells to Tamoxifen. PROTEOMICS. CLINICAL APPLICATIONS 2019. [PMID: 31282103 DOI: 10.1002/prca.201900029,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The purpose of this study is to apply quantitative high-throughput proteomics methods to investigate dynamic aspects of protein changes in nucleocytoplasmic distribution of proteins and of total protein abundance for MCF-7 cells exposed to tamoxifen (Tam) in order to reveal the agonistic and antagonistic roles of the drug. EXPERIMENTAL DESIGN The MS-based global quantitative proteomics with the analysis of fractions enriched in target subcellular locations is applied to measure the changes in total abundance and in the compartmental abundance/distribution between the nucleus and cytoplasm for several thousand proteins differentially expressed in MCF-7 cells in response to Tam stimulation. RESULTS The response of MCF-7 cells to the Tam treatment shows significant changes in subcellular abundance rather than in their total abundance. The bioinformatics study reveals the relevance of moonlighting proteins and numerous pathways involved in Tam response of MCF-7 including some of which may explain the agonistic and antagonistic roles of the drug. CONCLUSIONS The results indicate possible protective role of Tam against cardiovascular diseases as well as its involvement in G-protein coupled receptors pathways that enhance breast tissue proliferation.
Collapse
Affiliation(s)
- Abdulrab Ahmed M Alkhanjaf
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK.,Molecular Biotechnology, Department of Clinical Laboratory Sciences, College of Applied Medical sciences, Najran University, Najran, 61441, Saudi Arabia
| | - Roberto Raggiaschi
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| | - Mark Crawford
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| | - Gabriella Pinto
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK.,Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Jasminka Godovac-Zimmermann
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| |
Collapse
|
8
|
Pinto G, Radulovic M, Godovac-Zimmermann J. Spatial perspectives in the redox code-Mass spectrometric proteomics studies of moonlighting proteins. MASS SPECTROMETRY REVIEWS 2018; 37:81-100. [PMID: 27186965 DOI: 10.1002/mas.21508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/03/2016] [Indexed: 06/05/2023]
Abstract
The Redox Code involves specific, reversible oxidative changes in proteins that modulate protein tertiary structure, interactions, trafficking, and activity, and hence couple the proteome to the metabolic/oxidative state of cells. It is currently a major focus of study in cell biology. Recent studies of dynamic cellular spatial reorganization with MS-based subcellular-spatial-razor proteomics reveal that protein constituents of many subcellular structures, including mitochondria, the endoplasmic reticulum, the plasma membrane, and the extracellular matrix, undergo changes in their subcellular abundance/distribution in response to oxidative stress. These proteins are components of a diverse variety of functional processes spatially distributed across cells. Many of the same proteins are involved in response to suppression of DNA replication indicate that oxidative stress is strongly intertwined with DNA replication/proliferation. Both are replete with networks of moonlighting proteins that show coordinated changes in subcellular location and that include primary protein actuators of the redox code involved in the processing of NAD+ /NADH, NADP+ /NADPH, Cys/CySS, and GSH/GSSG redox couples. Small groups of key proteins such as {KPNA2, KPNB1, PCNA, PTMA, SET} constitute "spatial switches" that modulate many nuclear processes. Much of the functional response involves subcellular protein trafficking, including nuclear import/export processes, vesicle-mediated trafficking, the endoplasmic reticulum/Golgi pathway, chaperone-assisted processes, and other transport systems. This is not visible to measurements of total protein abundance by transcriptomics or proteomics. Comprehensive pictures of cellular function will require collection of data on the subcellular transport and local functions of many moonlighting proteins, especially of those with critical roles in spatial coordination across cells. The proteome-wide analysis of coordinated changes in abundance and trafficking of proteins offered by MS-based proteomics has a unique, crucial role to play in deciphering the complex adaptive systems that underlie cellular function. © 2016 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Gabriella Pinto
- Division of Medicine, Center for Nephrology, Royal Free Campus, University College London, Rowland Hill Street, London, NW3 2PF, United Kingdom
| | - Marko Radulovic
- Insitute of Oncology and Radiology, Pasterova 14, Belgrade, 11000, Serbia
| | - Jasminka Godovac-Zimmermann
- Division of Medicine, Center for Nephrology, Royal Free Campus, University College London, Rowland Hill Street, London, NW3 2PF, United Kingdom
| |
Collapse
|
9
|
Lombardi B, Ashford P, Moya-Garcia AA, Rust A, Crawford M, Williams SV, Knowles MA, Katan M, Orengo C, Godovac-Zimmermann J. Unique signalling connectivity of FGFR3-TACC3 oncoprotein revealed by quantitative phosphoproteomics and differential network analysis. Oncotarget 2017; 8:102898-102911. [PMID: 29262532 PMCID: PMC5732698 DOI: 10.18632/oncotarget.22048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
The FGFR3-TACC3 fusion is an oncogenic driver in diverse malignancies, including bladder cancer, characterized by upregulated tyrosine kinase activity. To gain insights into distinct properties of FGFR3-TACC3 down-stream signalling, we utilised telomerase-immortalised normal human urothelial cell lines expressing either the fusion or wild-type FGFR3 (isoform IIIb) for subsequent quantitative proteomics and network analysis. Cellular lysates were chemically labelled with isobaric tandem mass tag reagents and, after phosphopeptide enrichment, liquid chromatography-high mass accuracy tandem mass spectrometry (LC-MS/MS) was used for peptide identification and quantification. Comparison of data from the two cell lines under non-stimulated and FGF1 stimulated conditions and of data representing physiological stimulation of FGFR3 identified about 200 regulated phosphosites. The identified phosphoproteins and quantified phosphosites were further analysed in the context of functional biological networks by inferring kinase-substrate interactions, mapping these to a comprehensive human signalling interaction network, filtering based on tissue-expression profiles and applying disease module detection and pathway enrichment methods. Analysis of our phosphoproteomics data using these bioinformatics methods combined into a new protocol-Disease Relevant Analysis of Genes On Networks (DRAGON)-allowed us to tease apart pathways differentially involved in FGFR3-TACC3 signalling in comparison to wild-type FGFR3 and to investigate their local phospho-signalling context. We highlight 9 pathways significantly regulated only in the cell line expressing FGFR3-TACC3 fusion and 5 pathways regulated only by stimulation of the wild-type FGFR3. Pathways differentially linked to FGFR3-TACC3 fusion include those related to chaperone activation and stress response and to regulation of TP53 expression and degradation that could contribute to development and maintenance of the cancer phenotype.
Collapse
Affiliation(s)
- Benedetta Lombardi
- Proteomics and Molecular Cell Dynamics, Center for Nephrology, School of Life and Medical Sciences, University College London, London NW3 2PF, United Kingdom
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Paul Ashford
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Aurelio A. Moya-Garcia
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Aleksander Rust
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Mark Crawford
- Proteomics and Molecular Cell Dynamics, Center for Nephrology, School of Life and Medical Sciences, University College London, London NW3 2PF, United Kingdom
| | - Sarah V. Williams
- Section of Molecular Oncology, Leeds Institute of Molecular Medicine, St James’s University Hospital, Leeds LS9 7TF, United Kingdom
| | - Margaret A. Knowles
- Section of Molecular Oncology, Leeds Institute of Molecular Medicine, St James’s University Hospital, Leeds LS9 7TF, United Kingdom
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Christine Orengo
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Proteomics and Molecular Cell Dynamics, Center for Nephrology, School of Life and Medical Sciences, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
10
|
Iyer JK, Kalra M, Kaul A, Payton ME, Kaul R. Estrogen receptor expression in chronic hepatitis C and hepatocellular carcinoma pathogenesis. World J Gastroenterol 2017; 23:6802-6816. [PMID: 29085224 PMCID: PMC5645614 DOI: 10.3748/wjg.v23.i37.6802] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/12/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate gender-specific liver estrogen receptor (ER) expression in normal subjects and patients with hepatitis C virus (HCV)-related cirrhosis and hepatocellular carcinoma (HCC).
METHODS Liver tissues from normal donors and patients diagnosed with HCV-related cirrhosis and HCV-related HCC were obtained from the NIH Liver Tissue and Cell Distribution System. The expression of ER subtypes, ERα and ERβ, were evaluated by Western blotting and real-time RT-PCR. The subcellular distribution of ERα and ERβ was further determined in nuclear and cytoplasmic tissue lysates along with the expression of inflammatory [activated NF-κB and IκB-kinase (IKK)] and oncogenic (cyclin D1) markers by Western blotting and immunohistochemistry. The expression of ERα and ERβ was correlated with the expression of activated NF-κB, activated IKK and cyclin D1 by Spearman’s correlation.
RESULTS Both ER subtypes were expressed in normal livers but male livers showed significantly higher expression of ERα than females (P < 0.05). We observed significantly higher mRNA expression of ERα in HCV-related HCC liver tissues as compared to normals (P < 0.05) and ERβ in livers of HCV-related cirrhosis and HCV-related HCC subjects (P < 0.05). At the protein level, there was a significantly higher expression of nuclear ERα in livers of HCV-related HCC patients and nuclear ERβ in HCV-related cirrhosis patients as compared to normals (P < 0.05). Furthermore, we observed a significantly higher expression of phosphorylated NF-κB and cyclin D1 in diseased livers (P < 0.05). There was a positive correlation between the expression of nuclear ER subtypes and nuclear cyclin D1 and a negative correlation between cytoplasmic ER subtypes and cytoplasmic phosphorylated IKK in HCV-related HCC livers. These findings suggest that dysregulated expression of ER subtypes following chronic HCV-infection may contribute to the progression of HCV-related cirrhosis to HCV-related HCC.
CONCLUSION Gender differences were observed in ERα expression in normal livers. Alterations in ER subtype expression observed in diseased livers may influence gender-related disparity in HCV-related pathogenesis.
Collapse
Affiliation(s)
- Janaki K Iyer
- Department of Biochemistry and Microbiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107, United States
- (Current Affiliation) Department of Natural Sciences, Northeastern State University, Tahlequah, OK 74464, United States
| | - Mamta Kalra
- Immatics US Inc, Houston, TX 77077, United States
| | - Anil Kaul
- Health Care Administration, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107, United States
| | - Mark E Payton
- Department of Statistics, Oklahoma State University, Stillwater, OK 74078, United States
| | - Rashmi Kaul
- Department of Biochemistry and Microbiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107, United States
| |
Collapse
|
11
|
Gao SP, Sun HF, Fu WY, Li LD, Zhao Y, Chen MT, Jin W. High expression of COX5B is associated with poor prognosis in breast cancer. Future Oncol 2017; 13:1711-1719. [PMID: 28592145 DOI: 10.2217/fon-2017-0058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cytochrome c oxidase subunit VB (COX5B), a subunit of mammalian COX, takes roles in COX assembling and functions. Online database predicts high COX5B transcription may be associated with worse disease-free survival (DFS). However, the clinical implications of COX5B in breast cancer remain unclear. METHODS We carried out immunohistochemistry on tissue microarrays of 244 patients with invasive ductal breast carcinoma to detected COX5B expression. RESULTS Our results suggest that COX5B protein level might be associated with tumor size. COX5B overexpression indicated a worse DFS (p < 0.05) in breast cancer. Furthermore, high COX5B expression may act as an independent factor for worse DFS in breast cancer. CONCLUSIONS Cumulatively, our findings suggest that COX5B might serve as an important prognostic factor for breast cancer.
Collapse
Affiliation(s)
- Shui-Ping Gao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - He-Fen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen-Yan Fu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liang-Dong Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Meng-Ting Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Teveroni E, Pellegrino M, Sacconi S, Calandra P, Cascino I, Farioli-Vecchioli S, Puma A, Garibaldi M, Morosetti R, Tasca G, Ricci E, Trevisan CP, Galluzzi G, Pontecorvi A, Crescenzi M, Deidda G, Moretti F. Estrogens enhance myoblast differentiation in facioscapulohumeral muscular dystrophy by antagonizing DUX4 activity. J Clin Invest 2017; 127:1531-1545. [PMID: 28263188 DOI: 10.1172/jci89401] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/12/2017] [Indexed: 01/28/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder that is characterized by extreme variability in symptoms, with females being less severely affected than males and presenting a higher proportion of asymptomatic carriers. The sex-related factors involved in the disease are not known. Here, we have utilized myoblasts isolated from FSHD patients (FSHD myoblasts) to investigate the effect of estrogens on muscle properties. Our results demonstrated that estrogens counteract the differentiation impairment of FSHD myoblasts without affecting cell proliferation or survival. Estrogen effects are mediated by estrogen receptor β (ERβ), which reduces chromatin occupancy and transcriptional activity of double homeobox 4 (DUX4), a protein whose aberrant expression has been implicated in FSHD pathogenesis. During myoblast differentiation, we observed that the levels and activity of DUX4 increased progressively and were associated with its enhanced recruitment in the nucleus. ERβ interfered with this recruitment by relocalizing DUX4 in the cytoplasm. This work identifies estrogens as a potential disease modifier that underlie sex-related differences in FSHD by protecting against myoblast differentiation impairments in this disease.
Collapse
|
13
|
MetaMass, a tool for meta-analysis of subcellular proteomics data. Nat Methods 2016; 13:837-40. [PMID: 27571551 DOI: 10.1038/nmeth.3967] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 07/21/2016] [Indexed: 11/08/2022]
Abstract
We report a tool for the analysis of subcellular proteomics data, called MetaMass, based on the use of standardized lists of subcellular markers. We analyzed data from 11 studies using MetaMass, mapping the subcellular location of 5,970 proteins. Our analysis revealed large variations in the performance of subcellular fractionation protocols as well as systematic biases in protein annotation databases. The Excel and R versions of MetaMass should enhance transparency and reproducibility in subcellular proteomics.
Collapse
|
14
|
Radulovic M, Baqader NO, Stoeber K, Godovac-Zimmermann J. Spatial Cross-Talk between Oxidative Stress and DNA Replication in Human Fibroblasts. J Proteome Res 2016; 15:1907-38. [PMID: 27142241 DOI: 10.1021/acs.jproteome.6b00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MS-based proteomics has been applied to a differential network analysis of the nuclear-cytoplasmic subcellular distribution of proteins between cell-cycle arrest: (a) at the origin activation checkpoint for DNA replication, or (b) in response to oxidative stress. Significant changes were identified for 401 proteins. Cellular response combines changes in trafficking and in total abundance to vary the local compartmental abundances that are the basis of cellular response. Appreciable changes for both perturbations were observed for 245 proteins, but cross-talk between oxidative stress and DNA replication is dominated by 49 proteins that show strong changes for both. Many nuclear processes are influenced by a spatial switch involving the proteins {KPNA2, KPNB1, PCNA, PTMA, SET} and heme/iron proteins HMOX1 and FTH1. Dynamic spatial distribution data are presented for proteins involved in caveolae, extracellular matrix remodelling, TGFβ signaling, IGF pathways, emerin complexes, mitochondrial protein import complexes, spliceosomes, proteasomes, and so on. The data indicate that for spatially heterogeneous cells cross-compartmental communication is integral to their system biology, that coordinated spatial redistribution for crucial protein networks underlies many functional changes, and that information on dynamic spatial redistribution of proteins is essential to obtain comprehensive pictures of cellular function. We describe how spatial data of the type presented here can provide priorities for further investigation of crucial features of high-level spatial coordination across cells. We suggest that the present data are related to increasing indications that much of subcellular protein transport is constitutive and that perturbation of these constitutive transport processes may be related to cancer and other diseases. A quantitative, spatially resolved nucleus-cytoplasm interaction network is provided for further investigations.
Collapse
Affiliation(s)
- Marko Radulovic
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.,Insitute of Oncology and Radiology , Pasterova 14, 11000 Belgrade, Serbia
| | - Noor O Baqader
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Kai Stoeber
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London , University Street, London WC1E 6JJ, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
15
|
Pinto G, Alhaiek AAM, Godovac-Zimmermann J. Proteomics reveals the importance of the dynamic redistribution of the subcellular location of proteins in breast cancer cells. Expert Rev Proteomics 2015; 12:61-74. [PMID: 25591448 DOI: 10.1586/14789450.2015.1002474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
At the molecular level, living cells are enormously complicated complex adaptive systems in which intertwined genomic, transcriptomic, proteomic and metabolic networks all play a crucial role. At the same time, cells are spatially heterogeneous systems in which subcellular compartmentalization of different functions is ubiquitous and requires efficient cross-compartmental communication. Dynamic redistribution of multitudinous proteins to different subcellular locations in response to cellular functional state is increasingly recognized as a crucial characteristic of cellular function that seems to be at least as important as overall changes in protein abundance. Characterization of the subcellular spatial dynamics of protein distribution is a major challenge for proteomics and recent results with MCF7 breast cancer cells suggest that this may be of particular importance for cancer cells.
Collapse
Affiliation(s)
- Gabriella Pinto
- Division of Medicine, University College London, Centre for Nephrology, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | | | | |
Collapse
|
16
|
Baqader NO, Radulovic M, Crawford M, Stoeber K, Godovac-Zimmermann J. Nuclear cytoplasmic trafficking of proteins is a major response of human fibroblasts to oxidative stress. J Proteome Res 2014; 13:4398-423. [PMID: 25133973 PMCID: PMC4259009 DOI: 10.1021/pr500638h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have used a subcellular spatial razor approach based on LC-MS/MS-based proteomics with SILAC isotope labeling to determine changes in protein abundances in the nuclear and cytoplasmic compartments of human IMR90 fibroblasts subjected to mild oxidative stress. We show that response to mild tert-butyl hydrogen peroxide treatment includes redistribution between the nucleus and cytoplasm of numerous proteins not previously associated with oxidative stress. The 121 proteins with the most significant changes encompass proteins with known functions in a wide variety of subcellular locations and of cellular functional processes (transcription, signal transduction, autophagy, iron metabolism, TCA cycle, ATP synthesis) and are consistent with functional networks that are spatially dispersed across the cell. Both nuclear respiratory factor 2 and the proline regulatory axis appear to contribute to the cellular metabolic response. Proteins involved in iron metabolism or with iron/heme as a cofactor as well as mitochondrial proteins are prominent in the response. Evidence suggesting that nuclear import/export and vesicle-mediated protein transport contribute to the cellular response was obtained. We suggest that measurements of global changes in total cellular protein abundances need to be complemented with measurements of the dynamic subcellular spatial redistribution of proteins to obtain comprehensive pictures of cellular function.
Collapse
Affiliation(s)
- Noor O. Baqader
- Division of Medicine, Center for Nephrology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Marko Radulovic
- Division of Medicine, Center for Nephrology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
- Insitute of Oncology and Radiology, Pasterova 14, 11000 Belgrade, Serbia
| | - Mark Crawford
- Division of Medicine, Center for Nephrology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Kai Stoeber
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Division of Medicine, Center for Nephrology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|