1
|
Hon KW, Zainal Abidin SA, Othman I, Naidu R. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer. Front Pharmacol 2021; 12:768861. [PMID: 34887764 PMCID: PMC8650587 DOI: 10.3389/fphar.2021.768861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
Collapse
Affiliation(s)
| | | | | | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
2
|
p53/p73 Protein Network in Colorectal Cancer and Other Human Malignancies. Cancers (Basel) 2021; 13:cancers13122885. [PMID: 34207603 PMCID: PMC8227208 DOI: 10.3390/cancers13122885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The p53 family of proteins comprises p53, p63, and p73, which share high structural and functional similarity. The two distinct promoters of each locus, the alternative splicing, and the alternative translation initiation sites enable the generation of numerous isoforms with different protein-interacting domains and distinct activities. The co-expressed p53/p73 isoforms have significant but distinct roles in carcinogenesis. Their activity is frequently impaired in human tumors including colorectal carcinoma due to dysregulated expression and a dominant-negative effect accomplished by some isoforms and p53 mutants. The interactions between isoforms are particularly important to understand the onset of tumor formation, progression, and therapeutic response. The understanding of the p53/p73 network can contribute to the development of new targeted therapies. Abstract The p53 tumor suppressor protein is crucial for cell growth control and the maintenance of genomic stability. Later discovered, p63 and p73 share structural and functional similarity with p53. To understand the p53 pathways more profoundly, all family members should be considered. Each family member possesses two promoters and alternative translation initiation sites, and they undergo alternative splicing, generating multiple isoforms. The resulting isoforms have important roles in carcinogenesis, while their expression is dysregulated in several human tumors including colorectal carcinoma, which makes them potential targets in cancer treatment. Their activities arise, at least in part, from the ability to form tetramers that bind to specific DNA sequences and activate the transcription of target genes. In this review, we summarize the current understanding of the biological activities and regulation of the p53/p73 isoforms, highlighting their role in colorectal tumorigenesis. The analysis of the expression patterns of the p53/p73 isoforms in human cancers provides an important step in the improvement of cancer therapy. Furthermore, the interactions among the p53 family members which could modulate normal functions of the canonical p53 in tumor tissue are described. Lastly, we emphasize the importance of clinical studies to assess the significance of combining the deregulation of different members of the p53 family to define the outcome of the disease.
Collapse
|
3
|
Yang H, Guo J, Jin W, Chang C, Guo X, Xu C. A combined proteomic and metabolomic analyses of the priming phase during rat liver regeneration. Arch Biochem Biophys 2020; 693:108567. [PMID: 32898568 DOI: 10.1016/j.abb.2020.108567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023]
Abstract
By comparing differentially abundant proteins and metabolites, the protein expression, metabolic changes and metabolic regulation mechanisms during the priming phase of liver regeneration (LR) were investigated. We combined proteomic analysis via isobaric tags for relative and absolute quantification (iTRAQ) with metabolomic analysis via nontargeted liquid chromatography-mass spectrometry (LC-MS). LC-MS was used to examine 29 energy metabolites expression alterations in targeted metabolomics. A total number of 441 differentially expressed proteins and 65 metabolites were identified. PSMB10, PSMB5, RCG_63409, PSME4 and PSMB7 were key node proteins, these proteins are involved in the proteasome pathway. The most strongly enriched transcription factor motif was TP63. These results point out a critical role of the proteasome pathway (defense mechanisms) and of TP63 (metabolic regulator) as the key transcription factor during the priming phase of LR. Metabolomic and metabolite analysis showed that profiling indicates upregulation of arginine biosynthesis and glycolysis as the main ATP-delivering pathway. Integrative proteomic and metabolomic analysis showed that biomolecular changes were primarily related to the neurological disease, cell death and survival and cell morphology. What's more, neurotransmitters may play an important role in the regulation of LR.
Collapse
Affiliation(s)
- Hui Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Jianlin Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Wei Jin
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Cuifang Chang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Xueqiang Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
4
|
Farina AR, Cappabianca L, Sebastiano M, Zelli V, Guadagni S, Mackay AR. Hypoxia-induced alternative splicing: the 11th Hallmark of Cancer. J Exp Clin Cancer Res 2020; 39:110. [PMID: 32536347 PMCID: PMC7294618 DOI: 10.1186/s13046-020-01616-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-induced alternative splicing is a potent driving force in tumour pathogenesis and progression. In this review, we update currents concepts of hypoxia-induced alternative splicing and how it influences tumour biology. Following brief descriptions of tumour-associated hypoxia and the pre-mRNA splicing process, we review the many ways hypoxia regulates alternative splicing and how hypoxia-induced alternative splicing impacts each individual hallmark of cancer. Hypoxia-induced alternative splicing integrates chemical and cellular tumour microenvironments, underpins continuous adaptation of the tumour cellular microenvironment responsible for metastatic progression and plays clear roles in oncogene activation and autonomous tumour growth, tumor suppressor inactivation, tumour cell immortalization, angiogenesis, tumour cell evasion of programmed cell death and the anti-tumour immune response, a tumour-promoting inflammatory response, adaptive metabolic re-programming, epithelial to mesenchymal transition, invasion and genetic instability, all of which combine to promote metastatic disease. The impressive number of hypoxia-induced alternative spliced protein isoforms that characterize tumour progression, classifies hypoxia-induced alternative splicing as the 11th hallmark of cancer, and offers a fertile source of potential diagnostic/prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Stefano Guadagni
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
5
|
Zhang J, Gelman IH, Katsuta E, Liang Y, Wang X, Li J, Qu J, Yan L, Takabe K, Hochwald SN. Glucose Drives Growth Factor-Independent Esophageal Cancer Proliferation via Phosphohistidine-Focal Adhesion Kinase Signaling. Cell Mol Gastroenterol Hepatol 2019; 8:37-60. [PMID: 30836148 PMCID: PMC6518323 DOI: 10.1016/j.jcmgh.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Most targeted therapies against cancer are designed to block growth factor-stimulated oncogenic growth. However, response rates are low, and resistance to therapy is high. One mechanism might relate to the ability of tumor cells to induce growth factor-independent proliferation (GFIP). This project aims to understand how (1) cancer cells preferentially derive a major growth advantage by using critical metabolic products of glucose, such as phosphoenolpyruvate (PEP), to drive proliferation and (2) esophageal squamous cell carcinoma (ESCC) cells, but not esophageal adenocarcinoma cells, can induce GFIP by using glycolysis to activate phosphohistidine (poHis)-mediated signaling through focal adhesion kinase (FAK). METHODS The hypothesis to be tested is that ESCC GFIP induced by glucose is facilitated by PEP-mediated histidine phosphorylation (poHis) of FAK, leading to the possibility that ESCC progression can be targeted by blocking poHis signaling. Biochemical, molecular biological, and in vivo experiments including bromodeoxyuridine/5-ethynyl-2'-deoxyuridine labeling, radioisotope tracing, CRISPR gene editing, and analysis of signaling gene sets in human cancer tissues and xenograft models were performed to define the mechanisms underlying ESCC GFIP. RESULTS Glucose promotes growth factor-independent DNA replication and accumulation of PEP in ESCC cells. PEP is the direct phospho-donor to poHis58-FAK within a known "HG" motif for histidine phosphorylation. Glucose-induced poHis58 promotes growth factor-independent FAK-mediated proliferation. Furthermore, glucose activates phosphatidylinositol-3'-kinase/AKT via poHis58-FAK signaling. Non-phosphorylatable His58A-FAK reduces xenograft growth. CONCLUSIONS Glucose induces ESCC, but not esophageal adenocarcinoma GFIP via PEP-His58-FAK-AKT signaling. ESCC progression is controlled by actionable growth factor-independent, glucose-induced pathways that regulate proliferation through novel histidine phosphorylation of FAK.
Collapse
Affiliation(s)
- Jianliang Zhang
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Irwin H. Gelman
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eriko Katsuta
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Yuanzi Liang
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Xue Wang
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jun Li
- University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Jun Qu
- University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Li Yan
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Steven N. Hochwald
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York,Correspondence Address correspondence to: Steven N. Hochwald, MD, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York 14263. fax: (716) 845-1060.
| |
Collapse
|
6
|
Ganapathy-Kanniappan S. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Crit Rev Biochem Mol Biol 2019; 53:667-682. [PMID: 30668176 DOI: 10.1080/10409238.2018.1556578] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aerobic glycolysis is the process of oxidation of glucose into pyruvate followed by lactate production under normoxic condition. Distinctive from its anaerobic counterpart (i.e. glycolysis that occurs under hypoxia), aerobic glycolysis is frequently witnessed in cancers, popularly known as the "Warburg effect", and it is one of the earliest known evidences of metabolic alteration in neoplasms. Intracellularly, aerobic glycolysis circumvents mitochondrial oxidative phosphorylation (OxPhos), facilitating an increased rate of glucose hydrolysis. This in turn enables cancer cells to successfully compete with normal cells for glucose uptake in order to maintain uninterrupted growth. In addition, evading OxPhos mitigates excessive generation/accumulation of reactive oxygen species that otherwise may be deleterious to cells. Emerging data indicate that aerobic glycolysis in cancer also promotes glutaminolysis to satisfy the precursor requirements of certain biosynthetic processes (e.g. nucleic acids). Next, the metabolic intermediates of aerobic glycolysis also feed the pentose phosphate pathway (PPP) to facilitate macromolecular biosynthesis necessary for cancer cell growth and proliferation. Extracellularly, the extrusion of the end-product of aerobic glycolysis, i.e. lactate, alters the tumor microenvironment, and impacts cancer-associated cells. Collectively, accumulating data unequivocally demonstrate that aerobic glycolysis implicates myriad of molecular and functional processes to support cancer progression. This review, in the light of recent research, dissects the molecular intricacies of its regulation, and also deliberates the emerging paradigms to target aerobic glycolysis in cancer therapy.
Collapse
Affiliation(s)
- Shanmugasundaram Ganapathy-Kanniappan
- a The Division of Interventional Radiology, Russell H. Morgan Department of Radiology & Radiological Science , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
7
|
Shekari F, Han CL, Lee J, Mirzaei M, Gupta V, Haynes PA, Lee B, Baharvand H, Chen YJ, Hosseini Salekdeh G. Surface markers of human embryonic stem cells: a meta analysis of membrane proteomics reports. Expert Rev Proteomics 2018; 15:911-922. [PMID: 30358457 DOI: 10.1080/14789450.2018.1539669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Human embryonic stem cells (hESCs) have unique biological features and attributes that make them attractive in various areas of biomedical research. With heightened applications, there is an ever increasing need for advancement of proteome analysis. Membrane proteins are one of the most important subset of hESC proteins as they can be used as surface markers. Areas covered: This review discusses commonly used surface markers of hESCs, and provides in-depth analysis of available hESC membrane proteome reports and the existence of these markers in many other cell types, especially cancer cells. Appreciating, existing ambiguity in the definition of a membrane protein, we have attempted a meta analysis of the published membrane protein reports of hESCs by using a combination of protein databases and prediction tools to find the most confident plasma membrane proteins in hESCs. Furthermore, responsiveness of plasma membrane proteins to differentiation has been discussed based on available transcriptome profiling data bank. Expert commentary: Combined transcriptome and membrane proteome analysis highlighted additional proteins that may eventually find utility as new cell surface markers.
Collapse
Affiliation(s)
- Faezeh Shekari
- a Department of Molecular Systems Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran.,b Department of Developmental Biology , University of Science and Culture, ACECR , Tehran , Iran
| | - Chia-Li Han
- c Chemical Biology and Molecular Biophysics Program , Institute of Chemistry , Taipei , Taiwan , Republic of China
| | - Jaesuk Lee
- d Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Republic of Korea
| | - Mehdi Mirzaei
- e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia.,f Australian Proteome Analysis Facility , Macquarie University , Sydney , NSW , Australia.,g Department of Clinical Medicine , Macquarie University , Sydney , NSW , Australia
| | - Vivek Gupta
- g Department of Clinical Medicine , Macquarie University , Sydney , NSW , Australia
| | - Paul A Haynes
- e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia
| | - Bonghee Lee
- d Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Republic of Korea
| | - Hossein Baharvand
- b Department of Developmental Biology , University of Science and Culture, ACECR , Tehran , Iran.,h Department of Stem Cells and Developmental Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Yu-Ju Chen
- c Chemical Biology and Molecular Biophysics Program , Institute of Chemistry , Taipei , Taiwan , Republic of China
| | - Ghasem Hosseini Salekdeh
- a Department of Molecular Systems Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran.,e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia.,i Department of Systems and Synthetic biology , Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization , Karaj , Iran
| |
Collapse
|
8
|
Gatti V, Fierro C, Compagnone M, Giangrazi F, Markert EK, Bongiorno-Borbone L, Melino G, Peschiaroli A. ΔNp63 regulates the expression of hyaluronic acid-related genes in breast cancer cells. Oncogenesis 2018; 7:65. [PMID: 30139970 PMCID: PMC6107578 DOI: 10.1038/s41389-018-0073-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/20/2018] [Accepted: 07/10/2018] [Indexed: 12/16/2022] Open
Abstract
Triple negative breast cancers (TNBC) represent the most aggressive and clinically relevant breast carcinomas. On the basis of specific molecular signature, the majority of TNBC can be classified as basal-like breast carcinoma. Here, we report data showing that in basal-like breast carcinoma cells ΔNp63 is capable of sustaining the production of the hyaluronic acid (HA), one of the major component of the extracellular matrix (ECM). At molecular level, we found that ΔNp63 regulates the expression of HA-related genes, such as the HA synthase HAS3, the hyaluronidase HYAL-1 and CD44, the major HA cell membrane receptor. By controlling this pathway, ∆Np63 contributes to maintain the self-renewal of breast cancer stem cells. Importantly, high HAS3 expression is a negative prognostic factor of TNBC patients. Our data suggest that in basal-type breast carcinoma ∆Np63 might favor a HA-rich microenviroment, which can sustain tumor proliferation and stemness.
Collapse
Affiliation(s)
- Veronica Gatti
- National Research Council of Italy, (CNR), Institute of Cell Biology and Neurobiology (IBCN), CNR, Monterotondo, Rome, Italy
| | - Claudia Fierro
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Mirco Compagnone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Paediatric Haematology/Oncology Department, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Federica Giangrazi
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, The University of Dublin, Dublin 2, Ireland
| | - Elke Katrin Markert
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Lucilla Bongiorno-Borbone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy. .,Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Lancaster Road, P.O. Box 138, Leicester, LE1 9HN, UK.
| | - Angelo Peschiaroli
- National Research Council of Italy, (CNR), Institute of Translational Pharmacology (IFT), Via Fosso del Cavaliere 100, Rome, 00133, Italy.
| |
Collapse
|
9
|
Boughner JC, van Eede MC, Spring S, Yu LX, Rostampour N, Henkelman RM. P63 expression plays a role in developmental rate, embryo size, and local morphogenesis. Dev Dyn 2018; 247:779-787. [DOI: 10.1002/dvdy.24622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Julia C. Boughner
- Department of Anatomy & Cell Biology, College of Medicine; University of Saskatchewan; Saskatoon Saskatchewan Canada
| | | | - Shoshana Spring
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
| | - Lisa X. Yu
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
| | - Nasim Rostampour
- Department of Anatomy & Cell Biology, College of Medicine; University of Saskatchewan; Saskatoon Saskatchewan Canada
| | - R. Mark Henkelman
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
10
|
Lee J, Kee HJ, Min S, Park KC, Park S, Hwang TH, Ryu DH, Hwang GS, Cheong JH. Integrated omics-analysis reveals Wnt-mediated NAD+ metabolic reprogramming in cancer stem-like cells. Oncotarget 2018; 7:48562-48576. [PMID: 27391070 PMCID: PMC5217038 DOI: 10.18632/oncotarget.10432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/22/2016] [Indexed: 12/15/2022] Open
Abstract
Abnormal tumor cell metabolism is a consequence of alterations in signaling pathways that provide critical selective advantage to cancer cells. However, a systematic characterization of the metabolic and signaling pathways altered in cancer stem-like cells (CSCs) is currently lacking. Using nuclear magnetic resonance and mass spectrometry, we profiled the whole-cell metabolites of a pair of parental (P-231) and stem-like cancer cells (S-231), and then integrated with whole transcriptome profiles. We identified elevated NAAD+ in S-231 along with a coordinated increased expression of genes in Wnt/calcium signaling pathway, reflecting the correlation between metabolic reprogramming and altered signaling pathways. The expression of CD38 and ALP, upstream NAAD+ regulatory enzymes, was oppositely regulated between P- and S-231; high CD38 strongly correlated with NAADP in P-231 while high ALP with NAAD+ levels in S-231. Antagonizing Wnt activity by dnTCF4 transfection reversed the levels of NAAD+ and ALP expression in S-231. Of note, elevated NAAD+ caused a decrease of cytosolic Ca2+ levels preventing calcium-induced apoptosis in nutrient-deprived conditions. Reprograming of NAD+ metabolic pathway instigated by Wnt signaling prevented cytosolic Ca2+ overload thereby inhibiting calcium-induced apoptosis in S-231. These results suggest that “oncometabolites” resulting from cross talk between the deranged core cancer signaling pathway and metabolic network provide a selective advantage to CSCs.
Collapse
Affiliation(s)
- Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03760, Republic of Korea.,Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Jung Kee
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Soonki Min
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03760, Republic of Korea.,Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sunho Park
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tae Hyun Hwang
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03760, Republic of Korea.,Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,BK21 PLUS Projects for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Open NBI Convergence Technology Research Laboratory, Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Candi E, Smirnov A, Panatta E, Lena AM, Novelli F, Mancini M, Viticchiè G, Piro MC, Di Daniele N, Annicchiarico-Petruzzelli M, Melino G. Metabolic pathways regulated by p63. Biochem Biophys Res Commun 2017; 482:440-444. [PMID: 28212728 DOI: 10.1016/j.bbrc.2016.10.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 01/18/2023]
Abstract
The transcription factor p63 belongs to the p53-family and is a master regulator of proliferative potential, lineage specification, and differentiation in epithelia during development and tissue homeostasis. In cancer, p63 contribution is isoform-specific, with both oncogenic and tumour suppressive roles attributed, for ΔNp63 and TAp63, respectively. Recently, p53 and TAp73, in line with other tumour suppressor genes, have emerged as important regulators of energy metabolism and metabolic reprogramming in cancer. To date, p63 contributions in controlling energy metabolism have been partially investigated; given the extensive interaction of the p53 family members, these studies have potential implications in tumour cells for metabolic reprogramming. Here, we review the role of p63 isoforms, TAp63 and ΔNp63, in controlling cell metabolism, focusing on their specific metabolic target genes and their physiological/functional context of action.
Collapse
Affiliation(s)
- Eleonora Candi
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy; IDI-IRCCS "Istituto Dermopatico dell'Immacolata", Biochemistry Laboratory, Rome, Italy.
| | - Artem Smirnov
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Emanuele Panatta
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Flavia Novelli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mara Mancini
- Medical Research Council, Toxicology Unit, Leicester LE1 9HN, UK
| | | | - Maria Cristina Piro
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy; Medical Research Council, Toxicology Unit, Leicester LE1 9HN, UK.
| |
Collapse
|
12
|
Hsu JL, Chen SH. Stable isotope dimethyl labelling for quantitative proteomics and beyond. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0364. [PMID: 27644970 PMCID: PMC5031631 DOI: 10.1098/rsta.2015.0364] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 05/21/2023]
Abstract
Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan, Republic of China
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan City, Taiwan, Republic of China
| |
Collapse
|
13
|
Park GB, Chung YH, Gong JH, Jin DH, Kim D. GSK-3β-mediated fatty acid synthesis enhances epithelial to mesenchymal transition of TLR4-activated colorectal cancer cells through regulation of TAp63. Int J Oncol 2016; 49:2163-2172. [PMID: 27599658 DOI: 10.3892/ijo.2016.3679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/23/2016] [Indexed: 11/05/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) in cancer cells is a critical regulatory component of both cellular metabolism and epithelial-mesenchymal transition (EMT) processes via regulation of the β-catenin/E-cadherin and phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Lipogenesis of cancer cells also plays a critical role in survival and metastasis. We investigated the role of GSK-3β-mediated intracellular fatty acid synthesis to control EMT in TLR4-activated colorectal cancer cells and the underlying regulatory mechanism. Engagement of TLR4 with lipopolysaccharide (LPS) in colon cancer cells promoted the induction of phosphorylated GSK-3β and related lipogenic enzymes as well as the expression of CD74, CD44 and macrophage inhibitory factor (MIF), but decreased expression of transcriptionally active p63 (TAp63). In addition, targeted inhibition of GSK-3β using SB216763 was accompanied by decreased intracellular fatty acid synthesis and blockage of CD74 and CD44 expression, whereas it reversed the level of TAp63. Although TAp63 overexpression had no effect on the expression of CD74 and CD44 in LPS-treated colon cancer cells, GSK-3β-dependent fatty acid synthesis and invasive activity were significantly suppressed. Notably, inhibition of CD44 or CD74 by siRNA not only attenuated de novo lipogenesis and migratory activity but also restored the expression of TAp63 in LPS-activated colon cancer cells. These results suggest that TAp63-mediated GSK-3β activation induced by TLR4 stimulation triggers migration and invasion of colon cancer cells through the regulation of lipid synthesis and GSK-3β-mediated CD74/CD44 expression could be a target to control fatty acid-related EMT process through the modulation of TAp63 expression.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Ji Hee Gong
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
14
|
Kahlert UD, Mooney SM, Natsumeda M, Steiger HJ, Maciaczyk J. Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways. Int J Cancer 2016; 140:10-22. [PMID: 27389307 DOI: 10.1002/ijc.30259] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
Cancer stem-like cells (CSCs) are thought to be the main cause of tumor occurrence, progression and therapeutic resistance. Strong research efforts in the last decade have led to the development of several tailored approaches to target CSCs with some very promising clinical trials underway; however, until now no anti-CSC therapy has been approved for clinical use. Given the recent improvement in our understanding of how onco-proteins can manipulate cellular metabolic networks to promote tumorigenesis, cancer metabolism research may well lead to innovative strategies to identify novel regulators and downstream mediators of CSC maintenance. Interfering with distinct stages of CSC-associated metabolics may elucidate novel, more efficient strategies to target this highly malignant cell population. Here recent discoveries regarding the metabolic properties attributed to CSCs in glioblastoma (GBM) and malignant colorectal cancer (CRC) were summarized. The association between stem cell markers, the response to hypoxia and other environmental stresses including therapeutic insults as well as developmentally conserved signaling pathways with alterations in cellular bioenergetic networks were also discussed. The recent developments in metabolic imaging to identify CSCs were also summarized. This summary should comprehensively update basic and clinical scientists on the metabolic traits of CSCs in GBM and malignant CRC.
Collapse
Affiliation(s)
- U D Kahlert
- Department of Neurosurgery, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| | - S M Mooney
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - M Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - H-J Steiger
- Department of Neurosurgery, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| | - J Maciaczyk
- Department of Neurosurgery, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| |
Collapse
|
15
|
Del Boccio P, Rossi C, di Ioia M, Cicalini I, Sacchetta P, Pieragostino D. Integration of metabolomics and proteomics in multiple sclerosis: From biomarkers discovery to personalized medicine. Proteomics Clin Appl 2016; 10:470-84. [DOI: 10.1002/prca.201500083] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/17/2015] [Accepted: 12/30/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Piero Del Boccio
- Department of Medical Oral and Biotechnological Sciences; University “G. d'Annunzio” of Chieti- Pescara; Chieti Italy
- Analytical Biochemistry and Proteomics Unit, Research Centre on Aging (Ce.S.I); University “G. d'Annunzio” of Chieti-Pescara; Chieti Italy
| | - Claudia Rossi
- Department of Medical Oral and Biotechnological Sciences; University “G. d'Annunzio” of Chieti- Pescara; Chieti Italy
- Analytical Biochemistry and Proteomics Unit, Research Centre on Aging (Ce.S.I); University “G. d'Annunzio” of Chieti-Pescara; Chieti Italy
| | - Maria di Ioia
- Analytical Biochemistry and Proteomics Unit, Research Centre on Aging (Ce.S.I); University “G. d'Annunzio” of Chieti-Pescara; Chieti Italy
- Department of Neurosciences and Imaging; University “G. d'Annunzio” of Chieti-Pescara; Chieti Italy
| | - Ilaria Cicalini
- Department of Medical Oral and Biotechnological Sciences; University “G. d'Annunzio” of Chieti- Pescara; Chieti Italy
- Analytical Biochemistry and Proteomics Unit, Research Centre on Aging (Ce.S.I); University “G. d'Annunzio” of Chieti-Pescara; Chieti Italy
| | - Paolo Sacchetta
- Department of Medical Oral and Biotechnological Sciences; University “G. d'Annunzio” of Chieti- Pescara; Chieti Italy
- Analytical Biochemistry and Proteomics Unit, Research Centre on Aging (Ce.S.I); University “G. d'Annunzio” of Chieti-Pescara; Chieti Italy
| | - Damiana Pieragostino
- Department of Medical Oral and Biotechnological Sciences; University “G. d'Annunzio” of Chieti- Pescara; Chieti Italy
- Analytical Biochemistry and Proteomics Unit, Research Centre on Aging (Ce.S.I); University “G. d'Annunzio” of Chieti-Pescara; Chieti Italy
| |
Collapse
|
16
|
Affinity purification-mass spectrometry analysis of bcl-2 interactome identified SLIRP as a novel interacting protein. Cell Death Dis 2016; 7:e2090. [PMID: 26866271 PMCID: PMC4849145 DOI: 10.1038/cddis.2015.357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 02/06/2023]
Abstract
Members of the bcl-2 protein family share regions of sequence similarity, the bcl-2 homology (BH) domains. Bcl-2, the most studied member of this family, has four BH domains, BH1–4, and has a critical role in resistance to antineoplastic drugs by regulating the mitochondrial apoptotic pathway. Moreover, it is also involved in other relevant cellular processes such as tumor progression, angiogenesis and autophagy. Deciphering the network of bcl-2-interacting factors should provide a critical advance in understanding the different functions of bcl-2. Here, we characterized bcl-2 interactome by mass spectrometry in human lung adenocarcinoma cells. In silico functional analysis associated most part of the identified proteins to mitochondrial functions. Among them we identified SRA stem–loop interacting RNA-binding protein, SLIRP, a mitochondrial protein with a relevant role in regulating mitochondrial messenger RNA (mRNA) homeostasis. We validated bcl-2/SLIRP interaction by immunoprecipitation and immunofluorescence experiments in cancer cell lines from different histotypes. We showed that, although SLIRP is not involved in mediating bcl-2 ability to protect from apoptosis and oxidative damage, bcl-2 binds and stabilizes SLIRP protein and regulates mitochondrial mRNA levels. Moreover, we demonstrated that the BH4 domain of bcl-2 has a role in maintaining this binding.
Collapse
|
17
|
miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance. Cell Death Dis 2015; 6:e1823. [PMID: 26181203 PMCID: PMC4650737 DOI: 10.1038/cddis.2015.192] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 12/13/2022]
Abstract
The ErbB tyrosine kinase receptor family has been shown to have an important role in tumorigenesis, and the expression of its receptor members is frequently deregulated in many types of solid tumors. Various drugs targeting these receptors have been approved for cancer treatment. Particularly, in breast cancer, anti-Her2/EGFR molecules represent the standard therapy for Her2-positive malignancies. However, in a number of cases, the tumor relapses or progresses thus suggesting that not all cancer cells have been targeted. One possibility is that a subset of cells capable of regenerating the tumor, such as cancer stem cells (CSCs), may not respond to these therapeutic agents. Accumulating evidences indicate that miR-205-5p is significantly downregulated in breast tumors compared with normal breast tissue and acts as a tumor suppressor directly targeting oncogenes such as Zeb1 and ErbB3. In this study, we report that miR-205-5p is highly expressed in BCSCs and represses directly ERBB2 and indirectly EGFR leading to resistance to targeted therapy. Furthermore, we show that miR-205-5p directly regulates the expression of p63 which is in turn involved in the EGFR expression suggesting a miR-205/p63/EGFR regulation.
Collapse
|
18
|
Capuani B, Della-Morte D, Donadel G, Caratelli S, Bova L, Pastore D, De Canio M, D'Aguanno S, Coppola A, Pacifici F, Arriga R, Bellia A, Ferrelli F, Tesauro M, Federici M, Neri A, Bernardini S, Sbraccia P, Di Daniele N, Sconocchia G, Orlandi A, Urbani A, Lauro D. Liver protein profiles in insulin receptor-knockout mice reveal novel molecules involved in the diabetes pathophysiology. Am J Physiol Endocrinol Metab 2015; 308:E744-55. [PMID: 25714671 DOI: 10.1152/ajpendo.00447.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/19/2015] [Indexed: 02/08/2023]
Abstract
Liver has a principal role in glucose regulation and lipids homeostasis. It is under a complex control by substrates such as hormones, nutrients, and neuronal impulses. Insulin promotes glycogen synthesis, lipogenesis, and lipoprotein synthesis and inhibits gluconeogenesis, glycogenolysis, and VLDL secretion by modifying the expression and enzymatic activity of specific molecules. To understand the pathophysiological mechanisms leading to metabolic liver disease, we analyzed liver protein patterns expressed in a mouse model of diabetes by proteomic approaches. We used insulin receptor-knockout (IR(-/-)) and heterozygous (IR(+/-)) mice as a murine model of liver metabolic dysfunction associated with diabetic ketoacidosis and insulin resistance. We evaluated liver fatty acid levels by microscopic examination and protein expression profiles by orthogonal experimental strategies using protein 2-DE MALDI-TOF/TOF and peptic nLC-MS/MS shotgun profiling. Identified proteins were then loaded into Ingenuity Pathways Analysis to find possible molecular networks. Twenty-eight proteins identified by 2-DE analysis and 24 identified by nLC-MS/MS shotgun were differentially expressed among the three genotypes. Bioinformatic analysis revealed a central role of high-mobility group box 1/2 and huntigtin never reported before in association with metabolic and related liver disease. A different modulation of these proteins in both blood and hepatic tissue further suggests their role in these processes. These results provide new insight into pathophysiology of insulin resistance and hepatic steatosis and could be useful in identifying novel biomarkers to predict risk for diabetes and its complications.
Collapse
Affiliation(s)
- Barbara Capuani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS San Raffaele Pisana, Rome, Italy; and
| | - Giulia Donadel
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sara Caratelli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luca Bova
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Michele De Canio
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy; Laboratory of Proteomics and Metabonomics, S. Lucia Foundation-Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Simona D'Aguanno
- Laboratory of Proteomics and Metabonomics, S. Lucia Foundation-Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Coppola
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberto Arriga
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Policlinico Tor Vergata Foundation, Rome, Italy
| | - Francesca Ferrelli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Policlinico Tor Vergata Foundation, Rome, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Policlinico Tor Vergata Foundation, Rome, Italy
| | - Anna Neri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Policlinico Tor Vergata Foundation, Rome, Italy
| | - Sergio Bernardini
- Policlinico Tor Vergata Foundation, Rome, Italy; Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Policlinico Tor Vergata Foundation, Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Policlinico Tor Vergata Foundation, Rome, Italy
| | - Giuseppe Sconocchia
- Institute of Traslational Pharmacology, National Research Council, Rome, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Urbani
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy; Laboratory of Proteomics and Metabonomics, S. Lucia Foundation-Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Policlinico Tor Vergata Foundation, Rome, Italy;
| |
Collapse
|
19
|
OVCAR-3 spheroid-derived cells display distinct metabolic profiles. PLoS One 2015; 10:e0118262. [PMID: 25688563 PMCID: PMC4331360 DOI: 10.1371/journal.pone.0118262] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/07/2015] [Indexed: 01/06/2023] Open
Abstract
Introduction Recently, multicellular spheroids were isolated from a well-established epithelial ovarian cancer cell line, OVCAR-3, and were propagated in vitro. These spheroid-derived cells displayed numerous hallmarks of cancer stem cells, which are chemo- and radioresistant cells thought to be a significant cause of cancer recurrence and resultant mortality. Gene set enrichment analysis of expression data from the OVCAR-3 cells and the spheroid-derived putative cancer stem cells identified several metabolic pathways enriched in differentially expressed genes. Before this, there had been little previous knowledge or investigation of systems-scale metabolic differences between cancer cells and cancer stem cells, and no knowledge of such differences in ovarian cancer stem cells. Methods To determine if there were substantial metabolic changes corresponding with these transcriptional differences, we used two-dimensional gas chromatography coupled to mass spectrometry to measure the metabolite profiles of the two cell lines. Results These two cell lines exhibited significant metabolic differences in both intracellular and extracellular metabolite measurements. Principal components analysis, an unsupervised dimensional reduction technique, showed complete separation between the two cell types based on their metabolite profiles. Pathway analysis of intracellular metabolomics data revealed close overlap with metabolic pathways identified from gene expression data, with four out of six pathways found enriched in gene-level analysis also enriched in metabolite-level analysis. Some of those pathways contained multiple metabolites that were individually statistically significantly different between the two cell lines, with one of the most broadly and consistently different pathways, arginine and proline metabolism, suggesting an interesting hypothesis about cancerous and stem-like metabolic phenotypes in this pair of cell lines. Conclusions Overall, we demonstrate for the first time that metabolism in an ovarian cancer stem cell line is distinct from that of more differentiated isogenic cancer cells, supporting the potential importance of metabolism in the differences between cancer cells and cancer stem cells.
Collapse
|
20
|
Pflaum J, Schlosser S, Müller M. p53 Family and Cellular Stress Responses in Cancer. Front Oncol 2014; 4:285. [PMID: 25374842 PMCID: PMC4204435 DOI: 10.3389/fonc.2014.00285] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022] Open
Abstract
p53 is an important tumor suppressor gene, which is stimulated by cellular stress like ionizing radiation, hypoxia, carcinogens, and oxidative stress. Upon activation, p53 leads to cell-cycle arrest and promotes DNA repair or induces apoptosis via several pathways. p63 and p73 are structural homologs of p53 that can act similarly to the protein and also hold functions distinct from p53. Today more than 40 different isoforms of the p53 family members are known. They result from transcription via different promoters and alternative splicing. Some isoforms have carcinogenic properties and mediate resistance to chemotherapy. Therefore, expression patterns of the p53 family genes can offer prognostic information in several malignant tumors. Furthermore, the p53 family constitutes a potential target for cancer therapy. Small molecules (e.g., Nutlins, RITA, PRIMA-1, and MIRA-1 among others) have been objects of intense research interest in recent years. They restore pro-apoptotic wild-type p53 function and were shown to break chemotherapeutic resistance. Due to p53 family interactions small molecules also influence p63 and p73 activity. Thus, the members of the p53 family are key players in the cellular stress response in cancer and are expected to grow in importance as therapeutic targets.
Collapse
Affiliation(s)
- Johanna Pflaum
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| | - Sophie Schlosser
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| |
Collapse
|
21
|
Hustoft HK, Vehus T, Brandtzaeg OK, Krauss S, Greibrokk T, Wilson SR, Lundanes E. Open tubular lab-on-column/mass spectrometry for targeted proteomics of nanogram sample amounts. PLoS One 2014; 9:e106881. [PMID: 25222838 PMCID: PMC4164520 DOI: 10.1371/journal.pone.0106881] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/09/2014] [Indexed: 12/28/2022] Open
Abstract
A novel open tubular nanoproteomic platform featuring accelerated on-line protein digestion and high-resolution nano liquid chromatography mass spectrometry (LC-MS) has been developed. The platform features very narrow open tubular columns, and is hence particularly suited for limited sample amounts. For enzymatic digestion of proteins, samples are passed through a 20 µm inner diameter (ID) trypsin + endoproteinase Lys-C immobilized open tubular enzyme reactor (OTER). Resulting peptides are subsequently trapped on a monolithic pre-column and transferred on-line to a 10 µm ID porous layer open tubular (PLOT) liquid chromatography LC separation column. Wnt/ß-catenein signaling pathway (Wnt-pathway) proteins of potentially diagnostic value were digested+detected in targeted-MS/MS mode in small cell samples and tumor tissues within 120 minutes. For example, a potential biomarker Axin1 was identifiable in just 10 ng of sample (protein extract of ∼1,000 HCT15 colon cancer cells). In comprehensive mode, the current OTER-PLOT set-up could be used to identify approximately 1500 proteins in HCT15 cells using a relatively short digestion+detection cycle (240 minutes), outperforming previously reported on-line digestion/separation systems. The platform is fully automated utilizing common commercial instrumentation and parts, while the reactor and columns are simple to produce and have low carry-over. These initial results point to automated solutions for fast and very sensitive MS based proteomics, especially for samples of limited size.
Collapse
Affiliation(s)
| | - Tore Vehus
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Stefan Krauss
- Unit for Cell Signaling, Cancer Stem Cell Innovation Center, Oslo University Hospital, Oslo, Norway
| | - Tyge Greibrokk
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
D'Alessandro A, Amelio I, Berkers CR, Antonov A, Vousden KH, Melino G, Zolla L. Metabolic effect of TAp63α: enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense. Oncotarget 2014; 5:7722-33. [PMID: 25229745 PMCID: PMC4202156 DOI: 10.18632/oncotarget.2300] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/31/2014] [Indexed: 12/21/2022] Open
Abstract
TAp63α is a member of the p53 family, which plays a central role in epithelial cancers. Recently, a role has emerged for p53 family members in cancer metabolic modulation. In order to assess whether TAp63α plays a role in cancer metabolism, we exploited p53-null osteosarcoma Tet-On Saos-2 cells, in which the expression of TAp63α was dependent on doxycycline supplementation to the medium. Metabolomics labeling experiments were performed by incubating the cells in 13C-glucose or 13C15N-glutamine-labeled culture media, as to monitor metabolic fluxes upon induced expression of TAp63α. Induced expression of TAp63α resulted in cell cycle arrest at the G1 phase. From a metabolic standpoint, expression of Tap63α promoted glycolysis and the pentose phosphate pathway, which was uncoupled from nucleotide biosynthesis, albeit prevented oxidative stress in the form of oxidized glutathione. Double 13C-glucose and 13C15N-glutamine metabolic labeling confirmed that induced expression of TAp63α corresponded to a decreased flux of pyruvate to the Krebs cycle and decreased utilization of glutamine for catabolic purposes in the TCA cycle. Results were not conclusive in relation to anabolic utilization of labeled glutamine, since it is unclear to what extent the observed minor TAp63α-dependent increases of glutamine-derived labeling in palmitate could be tied to increased rates of reductive carboxylation and de novo synthesis of fatty acids. Finally, bioinformatics elaborations highlighted a link between patient survival rates and the co-expression of p63 and rate limiting enzymes of the pentose phosphate pathway, G6PD and PGD.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, snc, Viterbo, Italy
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Lancaster Road, Leicester, UK
| | - Celia R. Berkers
- CR-UK Beatson Institute, Switchback Road, Glasgow, UK
- Current address: Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, The Netherlands
| | - Alexey Antonov
- Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Lancaster Road, Leicester, UK
| | | | - Gerry Melino
- Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Lancaster Road, Leicester, UK
- Biochemistry Laboratory IDI-IRCCS, c/o/ Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, Rome, Italy
- Institute of Cellular Biology and Neurobiology, CNR, Rome, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, snc, Viterbo, Italy
| |
Collapse
|
23
|
Wang H, Zhang Q, Fang X. Transcriptomics and proteomics in stem cell research. Front Med 2014; 8:433-44. [PMID: 24972645 DOI: 10.1007/s11684-014-0336-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/14/2014] [Indexed: 12/20/2022]
Abstract
Stem cells are capable of self-renewal and differentiation, and the processes regulating these events are among the most comprehensively investigated topics in life sciences. In particular, the molecular mechanisms of the self-renewal, proliferation, and differentiation of stem cells have been extensively examined. Multi-omics integrative analysis, such as transcriptomics combined with proteomics, is one of the most promising approaches to the systemic investigation of stem cell biology. We reviewed the available information on stem cells by examining published results using transcriptomic and proteomic characterization of the different stem cell processes. Comprehensive understanding of these important processes can only be achieved using a systemic methodology, and employing such method will strengthen the study on stem cell biology and promote the clinical applications of stem cells.
Collapse
Affiliation(s)
- Hai Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | |
Collapse
|