1
|
Hwang J, Bang S, Choi MH, Hong SH, Kim SW, Lee HE, Yang JH, Park US, Choi YJ. Discovery and Validation of Survival-Specific Genes in Papillary Renal Cell Carcinoma Using a Customized Next-Generation Sequencing Gene Panel. Cancers (Basel) 2024; 16:2006. [PMID: 38893126 PMCID: PMC11171119 DOI: 10.3390/cancers16112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
PURPOSE Papillary renal cell carcinoma (PRCC), the second most common kidney cancer, is morphologically, genetically, and molecularly heterogeneous with diverse clinical manifestations. Genetic variations of PRCC and their association with survival are not yet well-understood. This study aimed to identify and validate survival-specific genes in PRCC and explore their clinical utility. MATERIALS AND METHODS Using machine learning, 293 patients from the Cancer Genome Atlas-Kidney Renal Papillary Cell Carcinoma (TCGA-KIRP) database were analyzed to derive genes associated with survival. To validate these genes, DNAs were extracted from the tissues of 60 Korean PRCC patients. Next generation sequencing was conducted using a customized PRCC gene panel of 202 genes, including 171 survival-specific genes. Kaplan-Meier and Log-rank tests were used for survival analysis. Fisher's exact test was performed to assess the clinical utility of variant genes. RESULTS A total of 40 survival-specific genes were identified in the TCGA-KIRP database through machine learning and statistical analysis. Of them, 10 (BAP1, BRAF, CFDP1, EGFR, ITM2B, JAK1, NODAL, PCSK2, SPATA13, and SYT5) were validated in the Korean-KIRP database. Among these survival gene signatures, three genes (BAP1, PCSK2, and SPATA13) showed survival specificity in both overall survival (OS) (p = 0.00004, p = 1.38 × 10-7, and p = 0.026, respectively) and disease-free survival (DFS) (p = 0.00002, p = 1.21 × 10-7, and p = 0.036, respectively). Notably, the PCSK2 mutation demonstrated survival specificity uniquely in both the TCGA-KIRP (OS: p = 0.010 and DFS: p = 0.301) and Korean-KIRP (OS: p = 1.38 × 10-7 and DFS: p = 1.21 × 10-7) databases. CONCLUSIONS We discovered and verified genes specific for the survival of PRCC patients in the TCGA-KIRP and Korean-KIRP databases. The survival gene signature, including PCSK2 commonly obtained from the 40 gene signature of TCGA and the 10 gene signature of the Korean database, is expected to provide insight into predicting the survival of PRCC patients and developing new treatment.
Collapse
Affiliation(s)
- Jia Hwang
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (J.H.); (H.E.L.)
| | - Seokhwan Bang
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.B.); (S.-H.H.); (S.W.K.)
| | - Moon Hyung Choi
- Department of Radiology, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Republic of Korea;
| | - Sung-Hoo Hong
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.B.); (S.-H.H.); (S.W.K.)
| | - Sae Woong Kim
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.B.); (S.-H.H.); (S.W.K.)
| | - Hye Eun Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (J.H.); (H.E.L.)
| | - Ji Hoon Yang
- Department of Computer Science and Engineering, Sogang University, Seoul 04107, Republic of Korea; (J.H.Y.); (U.S.P.)
| | - Un Sang Park
- Department of Computer Science and Engineering, Sogang University, Seoul 04107, Republic of Korea; (J.H.Y.); (U.S.P.)
| | - Yeong Jin Choi
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (J.H.); (H.E.L.)
| |
Collapse
|
2
|
Waseem NH, Low S, Shah AZ, Avisetti D, Ostergaard P, Simpson M, Niemiec KA, Martin-Martin B, Aldehlawi H, Usman S, Lee PS, Khawaja AP, Ruddle JB, Shah A, Sackey E, Day A, Jiang Y, Swinfield G, Viswanathan A, Alfano G, Chakarova C, Cordell HJ, Garway-Heath DF, Khaw PT, Bhattacharya SS, Waseem A, Foster PJ. Mutations in SPATA13/ASEF2 cause primary angle closure glaucoma. PLoS Genet 2020; 16:e1008721. [PMID: 32339198 PMCID: PMC7233598 DOI: 10.1371/journal.pgen.1008721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 05/18/2020] [Accepted: 03/17/2020] [Indexed: 11/18/2022] Open
Abstract
Current estimates suggest 50% of glaucoma blindness worldwide is caused by primary angle-closure glaucoma (PACG) but the causative gene is not known. We used genetic linkage and whole genome sequencing to identify Spermatogenesis Associated Protein 13, SPATA13 (NM_001166271; NP_001159743, SPATA13 isoform I), also known as ASEF2 (Adenomatous polyposis coli-stimulated guanine nucleotide exchange factor 2), as the causal gene for PACG in a large seven-generation white British family showing variable expression and incomplete penetrance. The 9 bp deletion, c.1432_1440del; p.478_480del was present in all affected individuals with angle-closure disease. We show ubiquitous expression of this transcript in cell lines derived from human tissues and in iris, retina, retinal pigment and ciliary epithelia, cornea and lens. We also identified eight additional mutations in SPATA13 in a cohort of 189 unrelated PACS/PAC/PACG samples. This gene encodes a 1277 residue protein which localises to the nucleus with partial co-localisation with nuclear speckles. In cells undergoing mitosis SPATA13 isoform I becomes part of the kinetochore complex co-localising with two kinetochore markers, polo like kinase 1 (PLK-1) and centrosome-associated protein E (CENP-E). The 9 bp deletion reported in this study increases the RAC1-dependent guanine nucleotide exchange factors (GEF) activity. The increase in GEF activity was also observed in three other variants identified in this study. Taken together, our data suggest that SPATA13 is involved in the regulation of mitosis and the mutations dysregulate GEF activity affecting homeostasis in tissues where it is highly expressed, influencing PACG pathogenesis.
Collapse
Affiliation(s)
- Naushin H. Waseem
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
| | - Sancy Low
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
- Department of Ophthalmology, St. Thomas’ Hospital, Westminster Bridge Road, London, United Kingdom
| | - Amna Z. Shah
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Deepa Avisetti
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Pia Ostergaard
- Medical Genetics Unit, St. George’s University of London, Cranmer Terrace, London, United Kingdom
| | - Michael Simpson
- Genetics and Molecular Medicine, King’s College London, Great Maze Pond, London, United Kingdom
| | - Katarzyna A. Niemiec
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Belen Martin-Martin
- Blizard Advanced Light Microscopy, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Hebah Aldehlawi
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Saima Usman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Pak Sang Lee
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Anthony P. Khawaja
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Jonathan B. Ruddle
- Department of Ophthalmology, University of Melbourne, Victoria, Australia
| | - Ameet Shah
- Department of Ophthalmology, Royal Free Hospital NHS Foundation Trust, Pond Street, London, United Kingdom
| | - Ege Sackey
- Medical Genetics Unit, St. George’s University of London, Cranmer Terrace, London, United Kingdom
| | - Alexander Day
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
| | - Yuzhen Jiang
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
| | - Geoff Swinfield
- Society of Genealogists, Goswell Road, London, United Kingdom
| | - Ananth Viswanathan
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Giovanna Alfano
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | | | - Heather J. Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - David F. Garway-Heath
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Peng T. Khaw
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Shomi S. Bhattacharya
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Paul J. Foster
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
The guanine nucleotide exchange factor, Spata13, influences social behaviour and nocturnal activity. Mamm Genome 2019; 30:54-62. [PMID: 31020388 PMCID: PMC6491400 DOI: 10.1007/s00335-019-09800-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/08/2019] [Indexed: 11/08/2022]
Abstract
Spermatogenesis-associated protein 13 (Spata13) is a guanine nucleotide exchange factor (GEF) enriched in discrete brain regions in the adult, with pronounced expression in the extended central amygdala (CeA). Loss of Spata13, also known as the adenomatous polyposis coli exchange factor Asef2, has no identifiable phenotype although it has been shown to reduce the number and size of intestinal tumours in Apc (Min/+) mice. Nevertheless, its brain-related functions have not been investigated. To pursue this, we have generated a Spata13 knockout mouse line using CRISPR-mediated deletion of an exon containing the GTPase domain that is common to multiple isoforms. Homozygous mutants were viable and appeared normal. We subjected both male and female cohorts to a comprehensive battery of behavioural tests designed to investigate particular CeA-related functions. Here, we show that Spata13 modulates social behaviour with homozygous mutants being subordinate to wildtype controls. Furthermore, female homozygotes show increased activity in home cages during the dark phase of the light–dark cycle. In summary, Spata13 modulates social hierarchy in both male and female mice in addition to affecting voluntary activity in females.
Collapse
|
4
|
Liu Y, Yang M, Cheng H, Sun N, Liu S, Li S, Wang Y, Zheng Y, Uversky VN. The effect of phosphorylation on the salt-tolerance-related functions of the soybean protein PM18, a member of the group-3 LEA protein family. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:1291-1303. [PMID: 28867216 DOI: 10.1016/j.bbapap.2017.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/08/2017] [Accepted: 08/27/2017] [Indexed: 12/29/2022]
Abstract
Enzymatically driven post-translated modifications (PTMs) usually happen within the intrinsically disordered regions of a target protein and can modulate variety of protein functions. Late embryogenesis abundant (LEA) proteins are a family of the plant intrinsically disordered proteins (IDPs). Despite their important roles in plant stress response, there is currently limited knowledge on the presence and functional and structural effects of phosphorylation on LEA proteins. In this study, we identified three phosphorylation sites (Ser90, Tyr136, and Thr266) in the soybean PM18 protein that belongs to the group-3 LEA proteins. In yeast expression system, PM18 protein increased the salt tolerance of yeast, and the phosphorylation of this protein further enhanced its protective function. Further analysis revealed that Ser90 and Tyr136 are more important than Thr266, and these two sites might work cooperatively in regulating the salt resistance function of PM18. The circular dichroism analysis showed that PM18 protein was disordered in aqueous media, and phosphorylation did not affect the disordered status of this protein. However, phosphorylation promoted formation of more helical structure in the presence of sodium dodecyl sulfate (SDS) or trifluoroethanol (TFE). Furthermore, in dedicated in vitro experiments, phosphorylated PM18 protein was able to better protect lactate dehydrogenase (LDH) from the inactivation induced by the freeze-thaw cycles than its un- or dephosphorylated forms. All these data indicate that phosphorylation may have regulatory effects on the stress-tolerance-related function of LEA proteins. Therefore, further studies are needed to shed more light on functional and structural roles of phosphorylation in LEA proteins.
Collapse
Affiliation(s)
- Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China.
| | - Meiyan Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Hua Cheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Nan Sun
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Simu Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Shuiming Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yong Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yizhi Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region 142290, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia.
| |
Collapse
|
5
|
Abstract
Thyroid hormones (THs) have been shown to improve in vitro embryo production in cattle by increasing blastocyst formation rate, and the average cell number of blastocysts and by significantly decreasing apoptosis rate. To better understand those genetic aspects that may underlie enhanced early embryo development in the presence of THs, we characterized the bovine embryonic transcriptome at the blastocyst stage, and examined differential gene expression profiles using a bovine-specific microarray. We found that 1212 genes were differentially expressed in TH-treated embryos when compared with non-treated controls (>1.5-fold at P < 0.05). In addition 23 and eight genes were expressed uniquely in control and treated embryos, respectively. The expression of genes specifically associated with metabolism, mitochondrial function, cell differentiation and development were elevated. However, TH-related genes, including those encoding TH receptors and deiodinases, were not differentially expressed in treated embryos. Furthermore, the over-expression of 52 X-chromosome linked genes in treated embryos suggested a delay or escape from X-inactivation. This study highlights the significant impact of THs on differential gene expression in the early embryo; the identification of TH-responsive genes provides an insight into those regulatory pathways activated during development.
Collapse
|