1
|
Beutgen VM, Shinkevich V, Pörschke J, Meena C, Steitz AM, Pogge von Strandmann E, Graumann J, Gómez-Serrano M. Secretome Analysis Using Affinity Proteomics and Immunoassays: A Focus on Tumor Biology. Mol Cell Proteomics 2024; 23:100830. [PMID: 39147028 PMCID: PMC11417252 DOI: 10.1016/j.mcpro.2024.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
The study of the cellular secretome using proteomic techniques continues to capture the attention of the research community across a broad range of topics in biomedical research. Due to their untargeted nature, independence from the model system used, historically superior depth of analysis, as well as comparative affordability, mass spectrometry-based approaches traditionally dominate such analyses. More recently, however, affinity-based proteomic assays have massively gained in analytical depth, which together with their high sensitivity, dynamic range coverage as well as high throughput capabilities render them exquisitely suited to secretome analysis. In this review, we revisit the analytical challenges implied by secretomics and provide an overview of affinity-based proteomic platforms currently available for such analyses, using the study of the tumor secretome as an example for basic and translational research.
Collapse
Affiliation(s)
- Vanessa M Beutgen
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany; Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
| | - Veronika Shinkevich
- Institute of Pharmacology, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany
| | - Johanna Pörschke
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Celina Meena
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Anna M Steitz
- Translational Oncology Group, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany; Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps University, Marburg, Germany.
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.
| |
Collapse
|
2
|
Montero-Calle A, Garranzo-Asensio M, Moreno-Casbas MT, Campuzano S, Barderas R. Autoantibodies in cancer: a systematic review of their clinical role in the most prevalent cancers. Front Immunol 2024; 15:1455602. [PMID: 39234247 PMCID: PMC11371560 DOI: 10.3389/fimmu.2024.1455602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Although blood autoantibodies were initially associated with autoimmune diseases, multiple evidence have been accumulated showing their presence in many types of cancer. This has opened their use in clinics, since cancer autoantibodies might be useful for early detection, prognosis, and monitoring of cancer patients. In this review, we discuss the different techniques available for their discovery and validation. Additionally, we discuss here in detail those autoantibody panels verified in at least two different reports that should be more likely to be specific of each of the four most incident cancers. We also report the recent developed kits for breast and lung cancer detection mostly based on autoantibodies and the identification of novel therapeutic targets because of the screening of the cancer humoral immune response. Finally, we discuss unsolved issues that still need to be addressed for the implementation of cancer autoantibodies in clinical routine for cancer diagnosis, prognosis, and/or monitoring.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Maria Teresa Moreno-Casbas
- Investén-isciii, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Li J, Adobo SD, Shi H, Judicael KAW, Lin N, Gao L. Screening Methods for Cervical Cancer. ChemMedChem 2024; 19:e202400021. [PMID: 38735844 DOI: 10.1002/cmdc.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Cervical cancer seriously affects the health of women worldwide. Persistent infection of high-risk HPV (Human Papilloma Virus) can lead to cervical cancer. There is a great need for timely and efficient screening methods for cervical cancer. The current screening methods for cervical cancer are mainly based on cervical cytology and HPV testing. Cervical cytology is made of Pap smear and liquid-based cytology, while HPV testing is based on immunological and nucleic acid level detection methods. This review introduces cervical cancer screening methods based on cytology and human papillomavirus testing in detail. The advantages and limitations of the screening methods are also summarized and compared.
Collapse
Affiliation(s)
- Jingyan Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | | | - Hui Shi
- Jiangsu Provincial Health Development Research Center, Nanjing, 210003, China
| | | | - Ning Lin
- Jiangsu Provincial Health Development Research Center, Nanjing, 210003, China
| | - Li Gao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
4
|
Jiang Y, Zhang G, Zhu J, Wang X, Tao Z, Yu P. Development and validation of a TAAbs and TAAs based non-invasive model for diagnosing lung cancer. Heliyon 2024; 10:e33888. [PMID: 39027487 PMCID: PMC11255565 DOI: 10.1016/j.heliyon.2024.e33888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Background Single Tumor-associated autoantibodies (TAAbs) and tumor-associated antigens (TAAs) have been found to have lower diagnostic efficacy in lung cancer. Our objective is to develop and validate a lung cancer prediction model that utilizes TAAbs and TAAs and to enhance the accuracy of lung cancer detection. Methods 1830 subjects were randomly divided into training and validation sets at a 7:3 ratio for this study. Lasso regression analysis was used to remove collinear variables, whereas univariate logistic regression analysis was employed to identify potential independent risk factors for lung cancer. A diagnostic model was constructed using multivariate logistic analysis. The results were presented as a nomogram and assessed for various performance measures, including area under the curve, calibration curve, and decision curve analysis. Results The diagnostic model was developed using gender, age, GAGE7, MAGE-A1, CA125, and CEA as variables. The training set had an AUC of 0.787, while the validation set had an AUC of 0.750. The calibration curves of the training and validation sets showed a strong agreement between anticipated and observed values. The nomogram performed better than any individual variable in both the training and validation sets in terms of net benefits for lung cancer detection, according to DCA analysis. Conclusions This study proposes a diagnostic model for lung cancer that uses TAAbs and TAAs and incorporates individual characteristics. This model can be easily applied to personalized diagnosis.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Gong Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jiayi Zhu
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Pan Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
5
|
Sah S, Bifarin OO, Moore SG, Gaul DA, Chung H, Kwon SY, Cho H, Cho CH, Kim JH, Kim J, Fernández FM. Serum Lipidome Profiling Reveals a Distinct Signature of Ovarian Cancer in Korean Women. Cancer Epidemiol Biomarkers Prev 2024; 33:681-693. [PMID: 38412029 PMCID: PMC11061607 DOI: 10.1158/1055-9965.epi-23-1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Distinguishing ovarian cancer from other gynecological malignancies is crucial for patient survival yet hindered by non-specific symptoms and limited understanding of ovarian cancer pathogenesis. Accumulating evidence suggests a link between ovarian cancer and deregulated lipid metabolism. Most studies have small sample sizes, especially for early-stage cases, and lack racial/ethnic diversity, necessitating more inclusive research for improved ovarian cancer diagnosis and prevention. METHODS Here, we profiled the serum lipidome of 208 ovarian cancer, including 93 early-stage patients with ovarian cancer and 117 nonovarian cancer (other gynecological malignancies) patients of Korean descent. Serum samples were analyzed with a high-coverage liquid chromatography high-resolution mass spectrometry platform, and lipidome alterations were investigated via statistical and machine learning (ML) approaches. RESULTS We found that lipidome alterations unique to ovarian cancer were present in Korean women as early as when the cancer is localized, and those changes increase in magnitude as the diseases progresses. Analysis of relative lipid abundances revealed specific patterns for various lipid classes, with most classes showing decreased abundance in ovarian cancer in comparison with other gynecological diseases. ML methods selected a panel of 17 lipids that discriminated ovarian cancer from nonovarian cancer cases with an AUC value of 0.85 for an independent test set. CONCLUSIONS This study provides a systemic analysis of lipidome alterations in human ovarian cancer, specifically in Korean women. IMPACT Here, we show the potential of circulating lipids in distinguishing ovarian cancer from nonovarian cancer conditions.
Collapse
Affiliation(s)
- Samyukta Sah
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Olatomiwa O. Bifarin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Samuel G. Moore
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Hyewon Chung
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Daegu Republic of Korea
| | - Sun Young Kwon
- Department of Pathology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chi-Heum Cho
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Daegu Republic of Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
6
|
Bhadra M, Sachan M, Nara S. Current strategies for early epithelial ovarian cancer detection using miRNA as a potential tool. Front Mol Biosci 2024; 11:1361601. [PMID: 38690293 PMCID: PMC11058280 DOI: 10.3389/fmolb.2024.1361601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Ovarian cancer is one of the most aggressive and significant malignant tumor forms in the female reproductive system. It is the leading cause of death among gynecological cancers owing to its metastasis. Since its preliminary disease symptoms are lacking, it is imperative to develop early diagnostic biomarkers to aid in treatment optimization and personalization. In this vein, microRNAs, which are short sequence non-coding molecules, displayed great potential as highly specific and sensitive biomarker. miRNAs have been extensively advocated and proven to serve an instrumental part in the clinical management of cancer, especially ovarian cancer, by promoting the cancer cell progression, invasion, delayed apoptosis, epithelial-mesenchymal transition, metastasis of cancer cells, chemosensitivity and resistance and disease therapy. Here, we cover our present comprehension of the most up-to-date microRNA-based approaches to detect ovarian cancer, as well as current diagnostic and treatment strategies, the role of microRNAs as oncogenes or tumor suppressor genes, and their significance in ovarian cancer progression, prognosis, and therapy.
Collapse
|
7
|
Young Han C, Bedia JS, Yang WL, Hawley SJ, Bergan L, Hopper M, Celestino J, Guo J, Gornet TG, Soosaipillai A, Yang H, Doskocil SD, Lokshin AE, Handy BC, Diamandis EP, Moore RG, Lu KH, Lu Z, Anderson KS, Drescher CW, Skates SJ, Bast RC. Autoantibodies, antigen-autoantibody complexes and antigens complement CA125 for early detection of ovarian cancer. Br J Cancer 2024; 130:861-868. [PMID: 38195887 PMCID: PMC10912308 DOI: 10.1038/s41416-023-02560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Multiple antigens, autoantibodies (AAb), and antigen-autoantibody (Ag-AAb) complexes were compared for their ability to complement CA125 for early detection of ovarian cancer. METHODS Twenty six biomarkers were measured in a single panel of sera from women with early stage (I-II) ovarian cancers (n = 64), late stage (III-IV) ovarian cancers (186), benign pelvic masses (200) and from healthy controls (502), and then split randomly (50:50) into a training set to identify the most promising classifier and a validation set to compare its performance to CA125 alone. RESULTS Eight biomarkers detected ≥ 8% of early stage cases at 98% specificity. A four-biomarker panel including CA125, HE4, HE4 Ag-AAb and osteopontin detected 75% of early stage cancers in the validation set from among healthy controls compared to 62% with CA125 alone (p = 0.003) at 98% specificity. The same panel increased sensitivity for distinguishing early-stage ovarian cancers from benign pelvic masses by 25% (p = 0.0004) at 95% specificity. From 21 autoantibody candidates, 3 AAb (anti-p53, anti-CTAG1 and annt-Il-8) detected 22% of early stage ovarian cancers, potentially lengthening lead time prior to diagnosis. CONCLUSION A four biomarker panel achieved greater sensitivity at the same specificity for early detection of ovarian cancer than CA125 alone.
Collapse
Affiliation(s)
- Chae Young Han
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacob S Bedia
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Wei-Lei Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah J Hawley
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lindsay Bergan
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marika Hopper
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Guo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Terrie G Gornet
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Hailing Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samantha D Doskocil
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna E Lokshin
- Departments of Pathology, Medicine, and Obstetrics and Gynecology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Beverly C Handy
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Richard G Moore
- Department of Obstetrics and Gynecology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Charles W Drescher
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Steven J Skates
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA.
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Abdulla R, Devasia Puthenpurackal J, Pinto SM, Rekha PD, Subbannayya Y. Serum autoantibody profiling of oral squamous cell carcinoma patients reveals NUBP2 as a potential diagnostic marker. Front Oncol 2023; 13:1167691. [PMID: 37810966 PMCID: PMC10556692 DOI: 10.3389/fonc.2023.1167691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Oral Squamous Cell Carcinoma (OSCC), a common malignancy of the head and neck region, is frequently diagnosed at advanced stages, necessitating the development of efficient diagnostic methods. Profiling autoantibodies generated against tumor-associated antigens have lately demonstrated a promising role in diagnosis, predicting disease course, and response to therapeutics and relapse. Methods In the current study, we, for the first time, aimed to identify and evaluate the diagnostic value of autoantibodies in serum samples of patients with OSCC using autoantibody profiling by an immunome protein array. The utility of anti-NUBP2 antibody and tissue positivity in OSCC was further evaluated. Results and discussion We identified a total of 53 autoantibodies with significant differential levels between OSCC and control groups, including 25 that were increased in OSCC and 28 that were decreased. These included autoantibodies against Thymidine kinase 1 (TK1), nucleotide-binding protein 2 (NUBP2), and protein pyrroline-5-carboxylate reductase 1 (PYCR1), among others. Immunohistochemical validation indicated positive staining of NUBP2 in a large majority of cases (72%). Further, analysis of OSCC data available in TCGA revealed higher NUBP2 expression correlated with better disease-free patient survival. In conclusion, the differential serum autoantibodies identified in the current study, including those for NUBP2, could be used as potential biomarkers for early diagnosis or as screening biomarkers for OSCC pending investigation in a larger cohort.
Collapse
Affiliation(s)
- Riaz Abdulla
- Department of Oral Pathology and Microbiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, India
| | - Jofy Devasia Puthenpurackal
- Department of Oral Pathology and Microbiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, India
| | - Sneha M. Pinto
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Yashwanth Subbannayya
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
9
|
Harden S, Tan TY, Ku CW, Zhou J, Chen Q, Chan JKY, Brosens J, Lee YH. Peritoneal autoantibody profiling identifies p53 as an autoantibody target in endometriosis. Fertil Steril 2023; 120:176-187. [PMID: 36828054 DOI: 10.1016/j.fertnstert.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVE To map the peritoneal autoantibody (AAb) landscape in women with endometriosis. DESIGN Case-control laboratory study. SETTING Academic medical and research units. PATIENT(S) Women who presented with or without endometriosis. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Using native-conformation and citrullinated modified protein arrays, proteome-wide analysis of AAbs against 1,623 proteins were profiled in peritoneal fluids (PFs) of 25 women with endometriosis and 25 women without endometriosis. RESULT(S) In women with endometriosis, the median number of AAbs detected was 4, including AAbs that targeted autoantigens involved in implantation, B-cell activation/development, and aberrant migration and mitogenicity. Forty-six percent of women with endometriosis have ≥5 peritoneal AAbs. Conversely, in women without endometriosis, the median number of detected AAbs was 1. Autoantibodies recognizing tumor suppressor protein p53 were the most commonly detected AAbs, being present in 35% of women with endometriosis, and p53 AAb was associated with a monocyte/macrophage-like PF cytokine signature. Further investigation of the global reactivity of AAbs against citrullinated PF antigens by peptidylarginine deiminase enzymes 1, 2, and 6 revealed anticitrullinated p53 as the only AAb target elevated and citrullinated by all 3 peptidylarginine deiminase isotypes. Furthermore, unsupervised hierarchical clustering and integrative pathway analysis revealed that 60% of women with endometriosis-associated infertility were positive for AAbs, which are involved in platelet-derived growth factor, transforming growth factor-β, RAC1/PAK1/p38/MMP2 signaling, LAT2/NTAL/LAB-mediated calcium mobilization, and integrin-mediated cell adhesion. CONCLUSION(S) Together, our data identify peritoneal autoimmunity in a significant subset of women with endometriosis, with implications on infertility and disease pathophysiology. In these patients, p53 was identified as the most frequent PF AAb target, which was present in both the native and citrullinated forms.
Collapse
Affiliation(s)
- Sarah Harden
- Critical Analytics for Manufacturing Precision Medicine, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore; Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tse Yeun Tan
- Department of Reproductive Medicine, KKH, Singapore, Singapore; OBGYN-Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Wai Ku
- Department of Reproductive Medicine, KKH, Singapore, Singapore; OBGYN-Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Jieliang Zhou
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KKH, Singapore, Singapore; OBGYN-Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Jan Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, United Kingdom; Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yie Hou Lee
- Critical Analytics for Manufacturing Precision Medicine, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore; OBGYN-Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore; KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore.
| |
Collapse
|
10
|
Bérubé S, Kobayashi T, Wesolowski A, Norris DE, Ruczinski I, Moss WJ, Louis TA. A Bayesian hierarchical model for signal extraction from protein microarrays. Stat Med 2023; 42:1445-1460. [PMID: 36872556 DOI: 10.1002/sim.9680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/09/2022] [Accepted: 01/30/2023] [Indexed: 03/07/2023]
Abstract
Protein microarrays are a promising technology that measure protein levels in serum or plasma samples. Due to their high technical variability and high variation in protein levels across serum samples in any population, directly answering biological questions of interest using protein microarray measurements is challenging. Analyzing preprocessed data and within-sample ranks of protein levels can mitigate the impact of between-sample variation. As for any analysis, ranks are sensitive to preprocessing, but loss function based ranks that accommodate major structural relations and components of uncertainty are very effective. Bayesian modeling with full posterior distributions for quantities of interest produce the most effective ranks. Such Bayesian models have been developed for other assays, for example, DNA microarrays, but modeling assumptions for these assays are not appropriate for protein microarrays. Consequently, we develop and evaluate a Bayesian model to extract the full posterior distribution of normalized protein levels and associated ranks for protein microarrays, and show that it fits well to data from two studies that use protein microarrays produced by different manufacturing processes. We validate the model via simulation and demonstrate the downstream impact of using estimates from this model to obtain optimal ranks.
Collapse
Affiliation(s)
- Sophie Bérubé
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Douglas E Norris
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - William J Moss
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Thomas A Louis
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Zhang R, Siu MKY, Ngan HYS, Chan KKL. Molecular Biomarkers for the Early Detection of Ovarian Cancer. Int J Mol Sci 2022; 23:ijms231912041. [PMID: 36233339 PMCID: PMC9569881 DOI: 10.3390/ijms231912041] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is the deadliest gynecological cancer, leading to over 152,000 deaths each year. A late diagnosis is the primary factor causing a poor prognosis of ovarian cancer and often occurs due to a lack of specific symptoms and effective biomarkers for an early detection. Currently, cancer antigen 125 (CA125) is the most widely used biomarker for ovarian cancer detection, but this approach is limited by a low specificity. In recent years, multimarker panels have been developed by combining molecular biomarkers such as human epididymis secretory protein 4 (HE4), ultrasound results, or menopausal status to improve the diagnostic efficacy. The risk of ovarian malignancy algorithm (ROMA), the risk of malignancy index (RMI), and OVA1 assays have also been clinically used with improved sensitivity and specificity. Ongoing investigations into novel biomarkers such as autoantibodies, ctDNAs, miRNAs, and DNA methylation signatures continue to aim to provide earlier detection methods for ovarian cancer. This paper reviews recent advancements in molecular biomarkers for the early detection of ovarian cancer.
Collapse
|
12
|
Peng C, Li L, Luo G, Tan S, Xia R, Zeng L. Integrated analysis of the M2 macrophage-related signature associated with prognosis in ovarian cancer. Front Oncol 2022; 12:986885. [PMID: 36091124 PMCID: PMC9458878 DOI: 10.3389/fonc.2022.986885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 12/22/2022] Open
Abstract
Background M2 macrophages play an important role in cancer development. However, the underlying biological fator affecting M2 macrophages infiltration in ovarian cancer (OV) has not been elucidated. Methods R software v 4.0.0 was used for all the analysis. The expression profile and clinical information of OV patients enrolled in this study were all downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. Results The CIBERSORT algorithm was used to quantify the M2 macrophage infiltration in OV tissue, which was found a risk factor for patients survival. Based on the limma package, a total of 196 DEGs were identified between OV patients with high and low M2 macrophage infiltration, which were defined as M2 macrophages related genes. Finally, the genes PTGFR, LILRA2 and KCNA1 were identified for prognosis model construction, which showed a great prediction efficiency in both training and validation cohorts (Training cohort, 1-year AUC = 0.661, 3-year AUC = 0.682, 8-year AUC = 0.846; Validation cohort, 1-year AUC = 0.642, 3-year AUC = 0.716, 5-year AUC = 0.741). Clinical correlation showed that the riskscore was associated with the worse clinical features. Pathway enrichment analysis showed that in high risk patients, the pathway of epithelial-mesenchymal transition (EMT), TNF-α signaling via NFKB, IL2/STAT5 signaling, apical junction, inflammatory response, KRAS signaling, myogenesis were activated. Moreover, we found that the PTGFR, LILRA2 and KCNA1 were all positively correlated with M2 macrophage infiltration and PTGFR was significantly associated with the pathway of autophagy regulation. Moreover, we found that the low risk patients might be more sensitive to cisplatin, while high risk patient might be more sensitive to axitinib, bexarotene, bortezomib, nilotinib, pazopanib. Conclusions In this study, we identified the genes associated with M2 macrophage infiltration and developed a model that could effectively predict the prognosis of OV patients.
Collapse
Affiliation(s)
- Caijiao Peng
- Department of Gynecological Oncology, The Fourth Affiliated Hospital of Jishou University, Huaihua, China
- Department of Gynecological Oncology, the First People’s Hospital of Huaihua, Huaihua, China
| | - Licheng Li
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Guangxia Luo
- Department of Gynecological Oncology, The Fourth Affiliated Hospital of Jishou University, Huaihua, China
- Department of Gynecological Oncology, the First People’s Hospital of Huaihua, Huaihua, China
| | - Shanmei Tan
- Department of Gynecological Oncology, The Fourth Affiliated Hospital of Jishou University, Huaihua, China
- Department of Gynecological Oncology, the First People’s Hospital of Huaihua, Huaihua, China
| | - Ruming Xia
- Department of Gynecological Oncology, The Fourth Affiliated Hospital of Jishou University, Huaihua, China
- Department of Gynecological Oncology, the First People’s Hospital of Huaihua, Huaihua, China
| | - Lanjuan Zeng
- Department of Gynecological Oncology, The Fourth Affiliated Hospital of Jishou University, Huaihua, China
- Department of Gynecological Oncology, the First People’s Hospital of Huaihua, Huaihua, China
- *Correspondence: Lanjuan Zeng,
| |
Collapse
|
13
|
Luo M, Wu S, Ma Y, Liang H, Luo Y, Gu W, Fan L, Hao Y, Li H, Xing L. Evaluating a Panel of Autoantibodies Against Tumor-Associated Antigens in Human Osteosarcoma. Front Genet 2022; 13:872253. [PMID: 35547257 PMCID: PMC9081566 DOI: 10.3389/fgene.2022.872253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Abstract
Background: The aim of this study was to identify a panel of candidate autoantibodies against tumor-associated antigens in the detection of osteosarcoma (OS) so as to provide a theoretical basis for constructing a non-invasive serological diagnosis method in early immunodiagnosis of OS. Methods: The serological proteome analysis (SERPA) approach was used to select candidate anti-TAA autoantibodies. Then, indirect enzyme-linked immunosorbent assay (ELISA) was used to verify the expression levels of eight candidate autoantibodies in the serum of 51 OS cases, 28 osteochondroma (OC), and 51 normal human sera (NHS). The rank-sum test was used to compare the content of eight autoantibodies in the sera of three groups. The diagnostic value of each indicator for OS was analyzed by an ROC curve. Differential autoantibodies between OS and NHS were screened. Then, a binary logistic regression model was used to establish a prediction logistical regression model. Results: Through ELISA, the expression levels of seven autoantibodies (ENO1, GAPDH, HSP27, HSP60, PDLIM1, STMN1, and TPI1) in OS patients were identified higher than those in healthy patients (p < 0.05). By establishing a binary logistic regression predictive model, the optimal panel including three anti-TAAs (ENO1, GAPDH, and TPI1) autoantibodies was screened out. The sensitivity, specificity, Youden index, accuracy, and AUC of diagnosis of OS were 70.59%, 86.27%, 0.5686, 78.43%, and 0.798, respectively. Conclusion: The results proved that through establishing a predictive model, an optimal panel of autoantibodies could help detect OS from OC or NHS at an early stage, which could be used as a promising and powerful tool in clinical practice.
Collapse
Affiliation(s)
- Manli Luo
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan Provincial Rehabilitation Hospital, Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Songmei Wu
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan Ma
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
| | - Hong Liang
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
| | - Yage Luo
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
| | - Wentao Gu
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
| | - Lijuan Fan
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Hao
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Haiting Li
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Linbo Xing
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
14
|
Prostanoid Signaling in Cancers: Expression and Regulation Patterns of Enzymes and Receptors. BIOLOGY 2022; 11:biology11040590. [PMID: 35453789 PMCID: PMC9029281 DOI: 10.3390/biology11040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Cancer-associated disturbance of prostanoid signaling provides an aberrant accumulation of prostanoids. This signaling consists of 19 target genes, encoding metabolic enzymes and G-protein-coupled receptors, and prostanoids (prostacyclin, thromboxane, and prostaglandins E2, F2α, D2, H2). The study addresses the systems biology analysis of target genes in 24 solid tumors using a data mining pipeline. We analyzed differential expression patterns of genes and proteins, promoter methylation status as well as tissue-specific master regulators and microRNAs. Tumor types were clustered into several groups according to gene expression patterns. Target genes were characterized as low mutated in tumors, with the exception of melanoma. We found at least six ubiquitin ligases and eight protein kinases that post-translationally modified the most connected proteins PTGES3 and PTGIS. Models of regulation of PTGIS and PTGIR gene expression in lung and uterine cancers were suggested. For the first time, we found associations between the patient’s overall survival rates with nine multigene transcriptomics signatures in eight tumors. Expression patterns of each of the six target genes have predictive value with respect to cytostatic therapy response. One of the consequences of the study is an assumption of prostanoid-dependent (or independent) tumor phenotypes. Thus, pharmacologic targeting the prostanoid signaling could be a probable additional anticancer strategy.
Collapse
|
15
|
Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell 2022; 185:1208-1222.e21. [PMID: 35305314 DOI: 10.1016/j.cell.2022.02.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022]
Abstract
The tumor microenvironment hosts antibody-secreting cells (ASCs) associated with a favorable prognosis in several types of cancer. Patient-derived antibodies have diagnostic and therapeutic potential; yet, it remains unclear how antibodies gain autoreactivity and target tumors. Here, we found that somatic hypermutations (SHMs) promote antibody antitumor reactivity against surface autoantigens in high-grade serous ovarian carcinoma (HGSOC). Patient-derived tumor cells were frequently coated with IgGs. Intratumoral ASCs in HGSOC were both mutated and clonally expanded and produced tumor-reactive antibodies that targeted MMP14, which is abundantly expressed on the tumor cell surface. The reversion of monoclonal antibodies to their germline configuration revealed two types of classes: one dependent on SHMs for tumor binding and a second with germline-encoded autoreactivity. Thus, tumor-reactive autoantibodies are either naturally occurring or evolve through an antigen-driven selection process. These findings highlight the origin and potential applicability of autoantibodies directed at surface antigens for tumor targeting in cancer patients.
Collapse
|
16
|
Belousov PV. The Autoantibodies against Tumor-Associated Antigens as Potential Blood-Based Biomarkers in Thyroid Neoplasia: Rationales, Opportunities and Challenges. Biomedicines 2022; 10:biomedicines10020468. [PMID: 35203677 PMCID: PMC8962333 DOI: 10.3390/biomedicines10020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
The Autoantibodies targeting Tumor-Associated Antigens (TAA-AAbs) emerge as a result of a variety of tumor-related immunogenic stimuli and may be regarded as the eyewitnesses to the anti-tumor immune response. TAA-AAbs may be readily detected in peripheral blood to unveil the presence of a particular TAA-expressing tumor, and a fair number of TAAs eliciting the tumor-associated autoantibody response have been identified. The potential of TAA-AAbs as tumor biomarkers has been extensively studied in many human malignancies with a major influence on public health; however, tumors of the endocrine system, and, in particular, the well-differentiated follicular cell-derived thyroid neoplasms, remain understudied in this context. This review provides a detailed perspective on and legitimate rationales for the potential use of TAA-AAbs in thyroid neoplasia, with particular reference to the already established diagnostic implications of the TAA-AAbs in human cancer, to the windows for improvement and diagnostic niches in the current workup strategies in nodular thyroid disease and differentiated thyroid cancer that TAA-AAbs may successfully occupy, as well as to the proof-of-concept studies demonstrating the usefulness of TAA-AAbs in thyroid oncology, particularly for the pre-surgical discrimination between tumors of different malignant potential in the context of the indeterminate results of the fine-needle aspiration cytology.
Collapse
Affiliation(s)
- Pavel V. Belousov
- National Center for Personalized Medicine of Endocrine Diseases, National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, 117036 Moscow, Russia; or
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
17
|
Detection of IgG and IgM Levels in Patients with COVID-19 in Mosul Province, Iraq. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has become the most dangerous viral infection worldwide. Since its identification in late 2019, the number of medical trials to combat the infection has sharply increased. Here, we investigated the profiles of IgG and IgM in 85 patients with confirmed SARS-CoV-2 infection from day 1 after symptom onset until day 35 with 5-day intervals. Serum samples were collected and stored until use. We observed that IgM levels were detectable on day 5 post symptom onset and increased sharply, with the highest rate detected in moderate cases (32.332 ± 4.32, n=10). Subsequently, a significant reduction in IgM was observed until it was undetectable on day 35 after symptom onset. Meanwhile, IgG levels were detected on day 10 post symptom onset, and the highest rate was observed in moderate cases (8.232 ± 2.3, n=10). A significant increase in IgG rate was observed in all patients, with the highest rate in moderate cases (42.432 ± 4.34, n=67) on day 35 post symptom onset. The statistical difference between the case and control groups was significant (p≤0.001). Two out of 85 patients died during the study.
Collapse
|
18
|
Tumour- associated autoantibodies as prognostic cancer biomarkers- a review. Autoimmun Rev 2022; 21:103041. [DOI: 10.1016/j.autrev.2022.103041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
|
19
|
Holcakova J, Bartosik M, Anton M, Minar L, Hausnerova J, Bednarikova M, Weinberger V, Hrstka R. New Trends in the Detection of Gynecological Precancerous Lesions and Early-Stage Cancers. Cancers (Basel) 2021; 13:6339. [PMID: 34944963 PMCID: PMC8699592 DOI: 10.3390/cancers13246339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
The prevention and early diagnostics of precancerous stages are key aspects of contemporary oncology. In cervical cancer, well-organized screening and vaccination programs, especially in developed countries, are responsible for the dramatic decline of invasive cancer incidence and mortality. Cytological screening has a long and successful history, and the ongoing implementation of HPV triage with increased sensitivity can further decrease mortality. On the other hand, endometrial and ovarian cancers are characterized by a poor accessibility to specimen collection, which represents a major complication for early diagnostics. Therefore, despite relatively promising data from evaluating the combined effects of genetic variants, population screening does not exist, and the implementation of new biomarkers is, thus, necessary. The introduction of various circulating biomarkers is of potential interest due to the considerable heterogeneity of cancer, as highlighted in this review, which focuses exclusively on the most common tumors of the genital tract, namely, cervical, endometrial, and ovarian cancers. However, it is clearly shown that these malignancies represent different entities that evolve in different ways, and it is therefore necessary to use different methods for their diagnosis and treatment.
Collapse
Affiliation(s)
- Jitka Holcakova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (J.H.); (M.B.)
| | - Martin Bartosik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (J.H.); (M.B.)
| | - Milan Anton
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital, 625 00 Brno, Czech Republic; (M.A.); (L.M.)
| | - Lubos Minar
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital, 625 00 Brno, Czech Republic; (M.A.); (L.M.)
| | - Jitka Hausnerova
- Department of Pathology, Masaryk University and University Hospital, 625 00 Brno, Czech Republic;
| | - Marketa Bednarikova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital, 625 00 Brno, Czech Republic;
| | - Vit Weinberger
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital, 625 00 Brno, Czech Republic; (M.A.); (L.M.)
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (J.H.); (M.B.)
| |
Collapse
|
20
|
Presence of autoantibodies in serum does not impact the occurrence of immune checkpoint inhibitor-induced hepatitis in a prospective cohort of cancer patients. J Cancer Res Clin Oncol 2021; 148:647-656. [PMID: 34874490 PMCID: PMC8881258 DOI: 10.1007/s00432-021-03870-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022]
Abstract
Purpose Immune checkpoint inhibitor (ICI)-induced hepatitis belongs to the frequently occurring immune-related adverse events (irAEs), particularly with the combination therapy involving ipilimumab and nivolumab. However, predisposing factors predicting the occurrence of ICI-induced hepatitis are barely known. We investigated the association of preexisting autoantibodies in the development of ICI-induced hepatitis in a prospective cohort of cancer patients. Methods Data from a prospective biomarker cohort comprising melanoma and non-small cell lung cancer (NSCLC) patients were used to analyze the incidence of ICI-induced hepatitis, putatively associated factors, and outcome. Results 40 patients with melanoma and 91 patients with NSCLC received ICI between July 2016 and May 2019. 11 patients developed ICI-induced hepatitis (8.4%). Prior to treatment, 45.5% of patients in the hepatitis cohort and 43.8% of the control cohort showed elevated titers of autoantibodies commonly associated with autoimmune liver diseases (p = 0.82). We found two nominally significant associations between the occurrence of ICI-induced hepatitis and HLA alleles associated with autoimmune liver diseases among NSCLC patients. Of note, significantly more patients with ICI-induced hepatitis developed additional irAEs in other organs (p = 0.0001). Neither overall nor progression-free survival was affected in the hepatitis group. Conclusion We found nominally significant associations of ICI-induced hepatitis with two HLA alleles. ICI-induced hepatitis showed no correlation with liver-specific autoantibodies, but frequently co-occurred with irAEs affecting other organs. Unlike other irAEs, ICI-induced hepatitis is not associated with a better prognosis. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03870-6.
Collapse
|
21
|
Identification of Tumor Antigens in Ovarian Cancers Using Local and Circulating Tumor-Specific Antibodies. Int J Mol Sci 2021; 22:ijms222011220. [PMID: 34681879 PMCID: PMC8538754 DOI: 10.3390/ijms222011220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancers include several disease subtypes and patients often present with advanced metastatic disease and a poor prognosis. New biomarkers for early diagnosis and targeted therapy are, therefore, urgently required. This study uses antibodies produced locally in tumor-draining lymph nodes (ASC probes) of individual ovarian cancer patients to screen two separate protein microarray platforms and identify cognate tumor antigens. The resulting antigen profiles were unique for each individual cancer patient and were used to generate a 50-antigen custom microarray. Serum from a separate cohort of ovarian cancer patients encompassing four disease subtypes was screened on the custom array and we identified 28.8% of all ovarian cancers, with a higher sensitivity for mucinous (50.0%) and serous (40.0%) subtypes. Combining local and circulating antibodies with high-density protein microarrays can identify novel, patient-specific tumor-associated antigens that may have diagnostic, prognostic or therapeutic uses in ovarian cancer.
Collapse
|
22
|
Li J, Dai L, Huang M, Ma Y, Guo Z, Wang X, Li W, Zhang JY. Immunoseroproteomic profiling in autoantibody to ENO1 as potential biomarker in immunodiagnosis of osteosarcoma by serological proteome analysis (SERPA) approach. Oncoimmunology 2021; 10:1966969. [PMID: 38260036 PMCID: PMC10802918 DOI: 10.1080/2162402x.2021.1966969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is the most common highly malignant primary solid bone tumor. Despite its relatively low incidence among cancers, it remains one of the most harmful primary malignant tumors in childhood and adolescence. It is now evident that serum autoantibodies against tumor-associated antigens (TAAs) could be used as serological cancer biomarkers in types of cancers. Serological proteome analysis (SERPA) approach was applied to profile anti-TAA autoantibody response in sera from patients with OS and normal human, as well as explore difference between this response. This approach can detect autoantibodies that could serve as clinical biomarkers and immunotherapeutic agents. Enzyme-linked immunosorbent assay (ELISA) and Western blotting were further used to validate the level of identified TAAs. ENO1 as a 47kD TAA in OS was identified and characterized by SERPA. Analysis of 172 serum samples with OS, osteochondroma (OC), and normal human sera (NHS) by ELISA showed higher frequency of anti-ENO1 autoantibodies in OS sera compared to others. Interestingly, decrease of ENO1 immunoreactivity was observed in most patients after treatments, which may imply a potential association between anti-ENO1 autoantibody titers and disease progression. Nine of twelve sera reacted strongly against purified ENO1, but three reacted weakly against purified ENO1, which indicated 75.0% sera with positive optimal density values from ELISA were consistently positive in Western blotting. The expression of ENO1 in OS tissues was evaluated by immunohistochemistry in tumor microarray. ENO1 was one of the autoantibodies that elicit autoimmune responses in OS and can be used as biomarkers in immunodiagnosis and progression of OS.
Collapse
Affiliation(s)
- Jitian Li
- Department of Biological Sciences & NIH-sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, Henan, China
| | - Liping Dai
- Department of Biological Sciences & NIH-sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| | - Manyu Huang
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, Henan, China
| | - Yan Ma
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, Henan, China
| | - Zhiping Guo
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, Henan, China
| | - Xiao Wang
- Department of Biological Sciences & NIH-sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| | - Wuyin Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, Henan, China
| | - Jian-Ying Zhang
- Department of Biological Sciences & NIH-sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
23
|
Moody R, Wilson K, Kampan NC, McNally OM, Jobling TW, Jaworowski A, Stephens AN, Plebanski M. Mapping Epitopes Recognised by Autoantibodies Shows Potential for the Diagnosis of High-Grade Serous Ovarian Cancer and Monitoring Response to Therapy for This Malignancy. Cancers (Basel) 2021; 13:cancers13164201. [PMID: 34439354 PMCID: PMC8392293 DOI: 10.3390/cancers13164201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Most women are diagnosed with high-grade serous ovarian cancer (HGSOC) at stage III, when the cancer has already spread, contributing to poor survival outcomes. However, while earlier diagnosis increases survival rates, there is a lack of early diagnosis biomarkers. Previously, autoantibodies specific for phosphorylated heat shock factor 1 (HSF1-PO4) were suggested as a potential diagnostic biomarker for early-stage HGSOC. In the present study, specific regions within HSF1 were identified, tested and confirmed as useful biomarkers, with comparable diagnostic potential to the full protein, across two separate clinical cohorts. Additionally, antibody responses to HSF1-PO4 and the corresponding peptides were found to increase following a round of standard first-line chemotherapy. Together, our data suggest that the identified short peptide sequences could be used as practical alternatives to support early diagnosis or monitor responses to chemotherapy. Abstract Autoantibodies recognising phosphorylated heat shock factor 1 (HSF1-PO4) protein are suggested as potential new diagnostic biomarkers for early-stage high-grade serous ovarian cancer (HGSOC). We predicted in silico B-cell epitopes in human and murine HSF1. Three epitope regions were synthesised as peptides. Circulating immunoglobulin A (cIgA) against the predicted peptide epitopes or HSF1-PO4 was measured using ELISA, across two small human clinical trials of HGSOC patients at diagnosis. To determine whether chemotherapy would promote changes in reactivity to either HSF1-PO4 or the HSF-1 peptide epitopes, IgA responses were further assessed in a sample of patients after a full cycle of chemotherapy. Anti-HSF1-PO4 responses correlated with antibody responses to the three selected epitope regions, regardless of phosphorylation, with substantial cross-recognition of the corresponding human and murine peptide epitope variants. Assessing reactivity to individual peptide epitopes, compared to HSF1-PO4, improved assay sensitivity. IgA responses to HSF1-PO4 further increased significantly post treatment, indicating that HSF1-PO4 is a target for immunity in response to chemotherapy. Although performed in a small cohort, these results offer potential insights into the interplay between autoimmunity and ovarian cancer and offer new peptide biomarkers for early-stage HGSOC diagnosis, to monitor responses to chemotherapy, and widely for pre-clinical HGSOC research.
Collapse
Affiliation(s)
- Rhiane Moody
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Orla M. McNally
- Gynaeoncology Unit, Royal Women’s Hospital, Parkville, VIC 3052, Australia;
| | - Thomas W. Jobling
- Department of Gynaecological Oncology, Monash Medical Centre, Bentleigh East, VIC 3165, Australia;
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
- Correspondence:
| |
Collapse
|
24
|
Bareke H, Juanes-Velasco P, Landeira-Viñuela A, Hernandez AP, Cruz JJ, Bellido L, Fonseca E, Niebla-Cárdenas A, Montalvillo E, Góngora R, Fuentes M. Autoimmune Responses in Oncology: Causes and Significance. Int J Mol Sci 2021; 22:ijms22158030. [PMID: 34360795 PMCID: PMC8347170 DOI: 10.3390/ijms22158030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Specific anti-tumor immune responses have proven to be pivotal in shaping tumorigenesis and tumor progression in solid cancers. These responses can also be of an autoimmune nature, and autoantibodies can sometimes be present even before the onset of clinically overt disease. Autoantibodies can be generated due to mutated gene products, aberrant expression and post-transcriptional modification of proteins, a pro-immunogenic milieu, anti-cancer treatments, cross-reactivity of tumor-specific lymphocytes, epitope spreading, and microbiota-related and genetic factors. Understanding these responses has implications for both basic and clinical immunology. Autoantibodies in solid cancers can be used for early detection of cancer as well as for biomarkers of prognosis and treatment response. High-throughput techniques such as protein microarrays make parallel detection of multiple autoantibodies for increased specificity and sensitivity feasible, affordable, and quick. Cancer immunotherapy has revolutionized cancer treatments and has made a considerable impact on reducing cancer-associated morbidity and mortality. However, immunotherapeutic interventions such as immune checkpoint inhibition can induce immune-related toxicities, which can even be life-threatening. Uncovering the reasons for treatment-induced autoimmunity can lead to fine-tuning of cancer immunotherapy approaches to evade toxic events while inducing an effective anti-tumor immune response.
Collapse
Affiliation(s)
- Halin Bareke
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Institute of Health Sciences, Marmara University, Istanbul 34722, Turkey;
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Angela-Patricia Hernandez
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Juan Jesús Cruz
- Medical Oncology Service, Hospital Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain; (J.J.C.); (L.B.); (E.F.)
| | - Lorena Bellido
- Medical Oncology Service, Hospital Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain; (J.J.C.); (L.B.); (E.F.)
| | - Emilio Fonseca
- Medical Oncology Service, Hospital Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain; (J.J.C.); (L.B.); (E.F.)
| | - Alfonssina Niebla-Cárdenas
- Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Salamanca, 37007 Salamanca, Spain;
| | - Enrique Montalvillo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Rafael Góngora
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (P.J.-V.); (A.L.-V.); (A.-P.H.); (E.M.); (R.G.)
- Proteomics Unit, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-294-811
| |
Collapse
|
25
|
Sena P, Mancini S, Bertacchini J, Carnevale G, Pedroni M, Roncucci L. Autoimmunity Profiles as Prognostic Indicators in Patients with Colorectal Cancer versus Those with Cancer at Other Sites: A Prospective Study. Cancers (Basel) 2021; 13:cancers13133239. [PMID: 34209517 PMCID: PMC8269181 DOI: 10.3390/cancers13133239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary The clinical utility of tumor-associated autoantibodies (TAABs) detected in patient sera with different types of cancer has not yet been established. Their possible use in early cancer detection, oncological follow-up, and patient prognosis is highly desirable. We developed a prospective study to investigate the role of TAABs in a five-year survival analysis in different types of cancer patients. Overall, overproduction of TAABs is associated with advanced oncological disease, the presence of metastasis, and poorer prognosis of cancer patients. There is evidence that more intensive follow-up programs provide different results for colorectal cancer than other cancers, because more intensive follow-up improves survival and is cost-effective in colorectal cancer. It is necessary to emphasize that there are many important aspects of follow-up in addition to detection of recurrence, and this must lead to proposals to change the way follow-up care is delivered. Abstract Colorectal cancer represents a paradigmatic model of inflammatory carcinogenesis accompanied by the production of several kinds of tumor-associated autoantibodies (TAABs). The specific aim of this study is to define the clinical impact of the presence of non-specific circulating TAABs in a cohort of cancer patients and to establish whether significant differences were present between colorectal cancer and cancers at other sites. For this aim a prospective study was developed and a five-year survival analysis performed. Indirect immunofluorescence on rat tissues for non-organ specific autoantibodies (NOSAs: liver-kidney-stomach), on rat colon substrates (colon-related autoantibodies, CAAs) and on HEp-2 cell lines was performed. NOSA positivity was more frequent in patients with colorectal cancer than in those with cancer at other sites. Survival analysis demonstrated a significantly worse prognosis in cancer patients positive for TAABs. CAA positivity is a predictor of survival, independently from the presence of comorbidities, and HEp-2 reactivity was a strong predictor of survival in a stepwise Cox-regression model, including stage at diagnosis. Overall overproduction of TAABs is associated with advanced oncological disease, the presence of metastasis, and poorer prognosis of cancer patients.
Collapse
Affiliation(s)
- Paola Sena
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (P.S.); (J.B.); (G.C.)
| | - Stefano Mancini
- Department of Internal Medicine and Rehabilitation, Santa Maria Bianca Hospital, AUSL Modena, Via A. Fogazzaro 6, 41037 Mirandola, Italy;
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (P.S.); (J.B.); (G.C.)
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (P.S.); (J.B.); (G.C.)
| | - Monica Pedroni
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Luca Roncucci
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
- Correspondence:
| |
Collapse
|
26
|
Al-Dossary AA, Tawfik EA, Isichei AC, Sun X, Li J, Alshehri AA, Alomari M, Almughem FA, Aldossary AM, Sabit H, Almalik AM. Engineered EV-Mimetic Nanoparticles as Therapeutic Delivery Vehicles for High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13123075. [PMID: 34203051 PMCID: PMC8234974 DOI: 10.3390/cancers13123075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, we begin with the role of natural extracellular vesicles (EVs) in high-grade serous ovarian cancer (HGSOC). Then, we narrow our focus on the advantages of using EV-mimetic nanoparticles as a delivery vehicle for RNAi therapy and other chemotherapeutics. Furthermore, we discuss the challenges of the clinical translation of engineering EV mimetic drug delivery systems and the promising directions of further development. Abstract High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy among women. Several obstacles impede the early diagnosis and effective treatment options for ovarian cancer (OC) patients, which most importantly include the development of platinum-drug-resistant strains. Currently, extensive efforts are being put into the development of strategies capable of effectively circumventing the physical and biological barriers present in the peritoneal cavity of metastatic OC patients, representing a late stage of gastrointestinal and gynecological cancer with an extremely poor prognosis. Naturally occurring extracellular vesicles (EVs) have been shown to play a pivotal role in progression of OC and are now being harnessed as a delivery vehicle for cancer chemotherapeutics. However, there are limitations to their clinical application due to current challenges in their preparation techniques. Intriguingly, there is a recent drive towards the use of engineered synthetic EVs for the delivery of chemotherapeutics and RNA interference therapy (RNAi), as they show the promise of overcoming the obstacles in the treatment of OC patients. This review discusses the therapeutic application of EVs in OC and elucidates the potential use of engineered EV-mimetic nanoparticles as a delivery vehicle for RNAi therapy and other chemotherapeutics, which would potentially improve clinical outcomes of OC patients.
Collapse
Affiliation(s)
- Amal A. Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
- Correspondence: ; Tel.: +966-1-333-31137
| | - Essam A. Tawfik
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Adaugo C. Isichei
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Xin Sun
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; (X.S.); (J.L.)
| | - Jiahe Li
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; (X.S.); (J.L.)
| | - Abdullah A. Alshehri
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Munther Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Fahad A. Almughem
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Ahmad M. Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Hussein Sabit
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Abdulaziz M. Almalik
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| |
Collapse
|
27
|
Li J, Qin B, Huang M, Ma Y, Li D, Li W, Guo Z. Tumor-Associated Antigens (TAAs) for the Serological Diagnosis of Osteosarcoma. Front Immunol 2021; 12:665106. [PMID: 33995397 PMCID: PMC8119874 DOI: 10.3389/fimmu.2021.665106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common form of malignant bone tumor found in childhood and adolescence. Although its incidence rate is low among cancers, the prognosis of OS is usually poor. Although some biomarkers, such as p53, have been identified in OS, the association between the biomarkers and clinical outcome is not well understood. Thus, it is necessary to establish a method to identify patients diagnosed with OS at an early stage. It is becoming obvious that anti-tumor-associated antigens (TAAs) autoantibodies (TAAbs) in sera could be used as serological biomarkers in the detection of many different types of cancers. This notion indicates that TAAbs are considered as immunological “sentinels” associated with tumorigenesis underlying molecular events. It provides new insights into the molecular and cellular biology of the differential diagnosis of cancers. What’s more, it is reported that a customized TAA array could significantly increase the sensitivity/specificity. TAA arrays also have great application prospects in detecting cancer at an early stage, monitoring cancer progression, discovering new therapeutic targets, and designing personalized treatment. In this review, we provide an overview of the TAAs identified in OS as well as the possibility that TAAs and TAAbs system be used as biomarkers in the immunodiagnosis and prognosis of OS.
Collapse
Affiliation(s)
- Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, China
| | - Bo Qin
- Transitional Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Manyu Huang
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, China
| | - Yan Ma
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, China
| | - Dongsheng Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, China
| | - Wuyin Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, China
| | - Zhiping Guo
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, China
| |
Collapse
|
28
|
Jiang D, Zhang X, Liu M, Wang Y, Wang T, Pei L, Wang P, Ye H, Shi J, Song C, Wang K, Wang X, Dai L, Zhang J. Discovering Panel of Autoantibodies for Early Detection of Lung Cancer Based on Focused Protein Array. Front Immunol 2021; 12:658922. [PMID: 33968062 PMCID: PMC8102818 DOI: 10.3389/fimmu.2021.658922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
Substantial studies indicate that autoantibodies to tumor-associated antigens (TAAbs) arise in early stage of lung cancer (LC). However, since single TAAbs as non-invasive biomarkers reveal low diagnostic performances, a panel approach is needed to provide more clues for early detection of LC. In the present research, potential TAAbs were screened in 150 serum samples by focused protein array based on 154 proteins encoded by cancer driver genes. Indirect enzyme-linked immunosorbent assay (ELISA) was used to verify and validate TAAbs in two independent datasets with 1,054 participants (310 in verification cohort, 744 in validation cohort). In both verification and validation cohorts, eight TAAbs were higher in serum of LC patients compared with normal controls. Moreover, diagnostic models were built and evaluated in the training set and the test set of validation cohort by six data mining methods. In contrast to the other five models, the decision tree (DT) model containing seven TAAbs (TP53, NPM1, FGFR2, PIK3CA, GNA11, HIST1H3B, and TSC1), built in the training set, yielded the highest diagnostic value with the area under the receiver operating characteristic curve (AUC) of 0.897, the sensitivity of 94.4% and the specificity of 84.9%. The model was further assessed in the test set and exhibited an AUC of 0.838 with the sensitivity of 89.4% and the specificity of 78.2%. Interestingly, the accuracies of this model in both early and advanced stage were close to 90%, much more effective than that of single TAAbs. Protein array based on cancer driver genes is effective in screening and discovering potential TAAbs of LC. The TAAbs panel with TP53, NPM1, FGFR2, PIK3CA, GNA11, HIST1H3B, and TSC1 is excellent in early detection of LC, and they might be new target in LC immunotherapy.
Collapse
Affiliation(s)
- Di Jiang
- Department of Oncology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Xue Zhang
- Department of Oncology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Man Liu
- Department of Oncology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Yulin Wang
- Department of Oncology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Tingting Wang
- Department of Clinical Laboratory, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Lu Pei
- Department of Clinical Laboratory, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Peng Wang
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China.,Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hua Ye
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China.,Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jianxiang Shi
- Department of Oncology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Chunhua Song
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China.,Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Kaijuan Wang
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China.,Department of Epidemiology and Biostatistics in School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiao Wang
- Department of Oncology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Liping Dai
- Department of Oncology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Jianying Zhang
- Department of Oncology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Cui C, Duan Y, Qiu C, Wang P, Sun G, Ye H, Dai L, Han Z, Song C, Wang K, Shi J, Zhang J. Identification of Novel Autoantibodies Based on the Human Proteomic Chips and Evaluation of Their Performance in the Detection of Gastric Cancer. Front Oncol 2021; 11:637871. [PMID: 33718231 PMCID: PMC7953047 DOI: 10.3389/fonc.2021.637871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Autoantibodies against tumor-associated antigens (TAAbs) can be used as potential biomarkers in the detection of cancer. Our study aims to identify novel TAAbs for gastric cancer (GC) based on human proteomic chips and construct a diagnostic model to distinguish GC from healthy controls (HCs) based on serum TAAbs. The human proteomic chips were used to screen the candidate TAAbs. Enzyme-linked immunosorbent assay (ELISA) was used to verify and validate the titer of the candidate TAAbs in the verification cohort (80 GC cases and 80 HCs) and validation cohort (192 GC cases, 128 benign gastric disease cases, and 192 HCs), respectively. Then, the diagnostic model was established by Logistic regression analysis based on OD values of candidate autoantibodies with diagnostic value. Eleven candidate TAAbs were identified, including autoantibodies against INPP5A, F8, NRAS, MFGE8, PTP4A1, RRAS2, RGS4, RHOG, SRARP, RAC1, and TMEM243 by proteomic chips. The titer of autoantibodies against INPP5A, F8, NRAS, MFGE8, PTP4A1, and RRAS2 were significantly higher in GC cases while the titer of autoantibodies against RGS4, RHOG, SRARP, RAC1, and TMEM243 showed no difference in the verification group. Next, six potential TAAbs were validated in the validation cohort. The titer of autoantibodies against F8, NRAS, MFGE8, RRAS2, and PTP4A1 was significantly higher in GC cases. Finally, an optimal prediction model with four TAAbs (anti-NRAS, anti-MFGE8, anti-PTP4A1, and anti-RRAS2) showed an optimal diagnostic performance of GC with AUC of 0.87 in the training group and 0.83 in the testing group. The proteomic chip approach is a feasible method to identify TAAbs for the detection of cancer. Moreover, the panel consisting of anti-NRAS, anti-MFGE8, anti-PTP4A1, and anti-RRAS2 may be useful to distinguish GC cases from HCs.
Collapse
Affiliation(s)
- Chi Cui
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
| | - Yaru Duan
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Cuipeng Qiu
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peng Wang
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Guiying Sun
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hua Ye
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Liping Dai
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhuo Han
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chunhua Song
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Kaijuan Wang
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jianxiang Shi
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Jianying Zhang
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Wu Y, Wang C, Wang P, Wang C, Zhang Y, Han L. A high-performance microfluidic detection platform to conduct a novel multiple-biomarker panel for ovarian cancer screening. RSC Adv 2021; 11:8124-8133. [PMID: 35423342 PMCID: PMC8695074 DOI: 10.1039/d0ra10200h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/30/2021] [Indexed: 11/22/2022] Open
Abstract
Ovarian cancer is an important leading cause of cancer-related deaths among females, and a single biomarker does not have the sensitivity and specificity required for an effective ovarian cancer screening. Herein, we investigate a high-performance microfluidic detection platform to conduct a novel panel of multiple biomarkers for the early detection of ovarian carcinoma, which include CA125, HE4, OPN, MSLN, Hsp70, CA153, AFP, IL-6, and IL-8 using a microfluidic chip. High-throughput microfluidic chips and graphene oxide-assembled substrate are used to microprint repeatable capture antibody arrays and conduct multiple biomarkers in microscale volume samples. The proposed microfluidic platform achieves an ultralow detection limit of ∼1 pg mL−1 and 0.01 U mL−1 with excellent detection selectivity and a short detection time of 30 min. The analysis of serum biomarkers in 18 ovarian cancer patients and 4 healthy persons indicates a clear subgroup sorting between the high-grade serous ovarian carcinoma, borderline, and benign tumor patients, and healthy persons. The proposed detection platform and the biomarker panel are promising to conduct an early detection of ovarian cancer. A high-performance microfluidic detection platform is developed to conduct a novel panel of multiple biomarkers for the early detection of ovarian carcinoma, which is promising for the early detection of ovarian cancer.![]()
Collapse
Affiliation(s)
- Yu Wu
- Peking University Third Hospital
- Beijing 100191
- China
| | - Chunhua Wang
- Institute of Marine Science and Technology
- Shandong University
- Qingdao 266273
- China
| | - Pan Wang
- Peking University Third Hospital
- Beijing 100191
- China
| | - Chao Wang
- Institute of Marine Science and Technology
- Shandong University
- Qingdao 266273
- China
| | - Yu Zhang
- Institute of Marine Science and Technology
- Shandong University
- Qingdao 266273
- China
| | - Lin Han
- Institute of Marine Science and Technology
- Shandong University
- Qingdao 266273
- China
| |
Collapse
|
31
|
Bast RC, Lu Z, Han CY, Lu KH, Anderson KS, Drescher CW, Skates SJ. Biomarkers and Strategies for Early Detection of Ovarian Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:2504-2512. [PMID: 33051337 PMCID: PMC7710577 DOI: 10.1158/1055-9965.epi-20-1057] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/29/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Early detection of ovarian cancer remains an important unmet medical need. Effective screening could reduce mortality by 10%-30%. Used individually, neither serum CA125 nor transvaginal sonography (TVS) is sufficiently sensitive or specific. Two-stage strategies have proven more effective, where a significant rise above a woman's baseline CA125 prompts TVS and an abnormal sonogram prompts surgery. Two major screening trials have documented that this strategy has adequate specificity, but sensitivity for early-stage (I-II) disease must improve to have a greater impact on mortality. To improve the first stage, different panels of protein biomarkers have detected cases missed by CA125. Autoantibodies against TP53 have detected 20% of early-stage ovarian cancers 8 months before elevation of CA125 and 22 months before clinical diagnosis. Panels of autoantibodies and antigen-autoantibody complexes are being evaluated with the goal of detecting >90% of early-stage ovarian cancers, alone or in combination with CA125, while maintaining 98% specificity in control subjects. Other biomarkers, including micro-RNAs, ctDNA, methylated DNA, and combinations of ctDNA alterations, are being tested to provide an optimal first-stage test. New technologies are also being developed with greater sensitivity than TVS to image small volumes of tumor.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chae Young Han
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Charles W Drescher
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Steven J Skates
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
32
|
Dongying Q, Lan L, Qian D. Targeting of ovarian cancer cell through functionalized gold nanoparticles by novel glypican-3- binding peptide as a ultrasound contrast agents. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Han W, Liu X, Wang L, Zhou X. Engineering of lipid microbubbles-coated copper and selenium nanoparticles: Ultrasound-stimulated radiation of anticancer activity ian human ovarian cancer cells. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Oaxaca-Camacho AR, Ochoa-Mojica OR, Aguilar-Lemarroy A, Jave-Suárez LF, Muñoz-Valle JF, Padilla-Camberos E, Núñez-Hernández JA, Herrera-Rodríguez SE, Martínez-Velázquez M, Carranza-Aranda AS, Cruz-Ramos JA, Gutiérrez-Ortega A, Hernández-Gutiérrez R. Serum Analysis of Women with Early-Stage Breast Cancer Using a Mini-Array of Tumor-Associated Antigens. BIOSENSORS 2020; 10:bios10100149. [PMID: 33096879 PMCID: PMC7590061 DOI: 10.3390/bios10100149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 05/30/2023]
Abstract
Background: Several studies have shown that patients with cancer have antibodies in serum that react with cellular autoantigens, known as Tumor-Associated Antigens (TAA). The present work aimed to determine whether a mini-array comprising four recombinant TAA increases the detection of specific serum antibodies for the diagnosis of early-stage breast cancer. Methods: The mini-array included Alpha 1-AntiTrypsin (A1AT), TriosePhosphate Isomerase 1 (TPI1), Peptidyl-Prolyl cis-trans Isomerase A (PPIA), and PeroxiReDoXin 2 (PRDX2) full-length recombinant proteins. The proteins were produced after gene cloning, expression, and purification, and were verified by Western blot assays. Then, Dot-Blot was performed to find antibodies against the four TAA in 12 sera from women with early-stage breast cancer (stage II) and 12 sera from healthy women. Results: Antibody detection against individual TAA in early-stage breast cancer sera ranged from 58.3% to 83.3%. However, evaluation of the four TAA showed that there was a positive antibody reaction reaching a sensitivity of 100% and a specificity of 85% in early-stage breast cancer, suggesting that this mini-array must be evaluated as a clinical diagnostic tool for early-stage breast cancer in a larger sample size. Conclusion: Our results suggest that TAA mini-arrays may provide a promising and powerful method for improving the detection of breast cancer in Mexican women.
Collapse
Affiliation(s)
- Alma Rosa Oaxaca-Camacho
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| | - Oscar René Ochoa-Mojica
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| | - Adriana Aguilar-Lemarroy
- Centro de Investigación Biomédica de Occidente (CIBO), División de Inmunología, Instituto Mexicano del Seguro Social (IMSS), 44340 Guadalajara, Mexico; (A.A.-L.); (L.F.J.-S.)
| | - Luis F. Jave-Suárez
- Centro de Investigación Biomédica de Occidente (CIBO), División de Inmunología, Instituto Mexicano del Seguro Social (IMSS), 44340 Guadalajara, Mexico; (A.A.-L.); (L.F.J.-S.)
| | - José Francisco Muñoz-Valle
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (J.F.M.-V.); (A.S.C.-A.); (J.A.C.-R.)
| | - Eduardo Padilla-Camberos
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| | - Juan Antonio Núñez-Hernández
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| | - Sara E. Herrera-Rodríguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| | - Moisés Martínez-Velázquez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| | - Ahtziri Socorro Carranza-Aranda
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (J.F.M.-V.); (A.S.C.-A.); (J.A.C.-R.)
| | - José Alfonso Cruz-Ramos
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, Mexico; (J.F.M.-V.); (A.S.C.-A.); (J.A.C.-R.)
- Instituto Jalisciense de Cancerología (IJC), Departamento de Enseñanza, Capacitación e Investigación, 44280 Guadalajara, Mexico
| | - Abel Gutiérrez-Ortega
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| | - Rodolfo Hernández-Gutiérrez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), 44270 Guadalajara, Mexico; (A.R.O.-C.); (O.R.O.-M.); (E.P.-C.); (J.A.N.-H.); (S.E.H.-R.); (M.M.-V.); (A.G.-O.)
| |
Collapse
|
35
|
Rauf F, Anderson KS, LaBaer J. Autoantibodies in Early Detection of Breast Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:2475-2485. [PMID: 32994341 PMCID: PMC7710604 DOI: 10.1158/1055-9965.epi-20-0331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
In spite of the progress made in treatment and early diagnosis, breast cancer remains a major public health issue worldwide. Although modern image-based screening modalities have significantly improved early diagnosis, around 15% to 20% of breast cancers still go undetected. In underdeveloped countries, lack of resources and cost concerns prevent implementing mammography for routine screening. Noninvasive, low-cost, blood-based markers for early breast cancer diagnosis would be an invaluable alternative that would complement mammography screening. Tumor-specific autoantibodies are excellent biosensors that could be exploited to monitor disease-specific changes years before disease onset. Although clinically informative autoantibody markers for early breast cancer screening have yet to emerge, progress has been made in the development of tools to discover and validate promising autoantibody signatures. This review focuses on the current progress toward the development of autoantibody-based early screening markers for breast cancer.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Femina Rauf
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Karen S Anderson
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Joshua LaBaer
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona.
| |
Collapse
|
36
|
Syu GD, Dunn J, Zhu H. Developments and Applications of Functional Protein Microarrays. Mol Cell Proteomics 2020; 19:916-927. [PMID: 32303587 PMCID: PMC7261817 DOI: 10.1074/mcp.r120.001936] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Protein microarrays are crucial tools in the study of proteins in an unbiased, high-throughput manner, as they allow for characterization of up to thousands of individually purified proteins in parallel. The adaptability of this technology has enabled its use in a wide variety of applications, including the study of proteome-wide molecular interactions, analysis of post-translational modifications, identification of novel drug targets, and examination of pathogen-host interactions. In addition, the technology has also been shown to be useful in profiling antibody specificity, as well as in the discovery of novel biomarkers, especially for autoimmune diseases and cancers. In this review, we will summarize the developments that have been made in protein microarray technology in both in basic and translational research over the past decade. We will also introduce a novel membrane protein array, the GPCR-VirD array, and discuss the future directions of functional protein microarrays.
Collapse
Affiliation(s)
- Guan-Da Syu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan R.O.C..
| | - Jessica Dunn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231.
| |
Collapse
|
37
|
Wang L, Li X. Identification of an energy metabolism‑related gene signature in ovarian cancer prognosis. Oncol Rep 2020; 43:1755-1770. [PMID: 32186777 PMCID: PMC7160557 DOI: 10.3892/or.2020.7548] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
Changes in energy metabolism may be potential biomarkers and therapeutic targets for cancer as they frequently occur within cancer cells. However, basic cancer research has failed to reach a consistent conclusion on the function(s) of mitochondria in energy metabolism. The significance of energy metabolism in the prognosis of ovarian cancer remains unclear; thus, there remains an urgent need to systematically analyze the characteristics and clinical value of energy metabolism in ovarian cancer. Based on gene expression patterns, the present study aimed to analyze energy metabolism‑associated characteristics to evaluate the prognosis of patients with ovarian cancer. A total of 39 energy metabolism‑related genes significantly associated with prognosis were obtained, and three molecular subtypes were identified by nonnegative matrix factorization clustering, among which the C1 subtype was associated with poor clinical outcomes of ovarian cancer. The immune response was enhanced in the tumor microenvironment. A total of 888 differentially expressed genes were identified in C1 compared with the other subtypes, and the results of the pathway enrichment analysis demonstrated that they were enriched in the 'PI3K‑Akt signaling pathway', 'cAMP signaling pathway', 'ECM‑receptor interaction' and other pathways associated with the development and progression of tumors. Finally, eight characteristic genes (tolloid‑like 1 gene, type XVI collagen, prostaglandin F2α, cartilage intermediate layer protein 2, kinesin family member 26b, interferon inducible protein 27, growth arrest‑specific gene 1 and chemokine receptor 7) were obtained through LASSO feature selection; and a number of them have been demonstrated to be associated with ovarian cancer progression. In addition, Cox regression analysis was performed to establish an 8‑gene signature, which was determined to be an independent prognostic factor for patients with ovarian cancer and could stratify sample risk in the training, test and external validation datasets (P<0.01; AUC >0.8). Gene Set Enrichment Analysis results revealed that the 8‑gene signature was involved in important biological processes and pathways of ovarian cancer. In conclusion, the present study established an 8‑gene signature associated with metabolic genes, which may provide new insights into the effects of energy metabolism on ovarian cancer. The 8‑gene signature may serve as an independent prognostic factor for ovarian cancer patients.
Collapse
Affiliation(s)
- Lei Wang
- Department of Obstetrics and Gynecology, ShengJing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiuqin Li
- Department of Obstetrics and Gynecology, ShengJing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
38
|
Music M, Iafolla M, Soosaipillai A, Batruch I, Prassas I, Pintilie M, Hansen AR, Bedard PL, Lheureux S, Spreafico A, Razak AA, Siu LL, Diamandis EP. Predicting response and toxicity to PD-1 inhibition using serum autoantibodies identified from immuno-mass spectrometry. F1000Res 2020; 9:337. [PMID: 33299547 PMCID: PMC7707117 DOI: 10.12688/f1000research.22715.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Validated biomarkers are needed to identify patients at increased risk of immune-related adverse events (irAEs) to immune checkpoint blockade (ICB). Antibodies directed against endogenous antigens can change after exposure to ICB. Methods: Patients with different solid tumors stratified into cohorts received pembrolizumab every 3 weeks in a Phase II trial (INSPIRE study). Blood samples were collected prior to first pembrolizumab exposure (baseline) and approximately 7 weeks (pre-cycle 3) into treatment. In a discovery analysis, autoantibody target immuno-mass spectrometry was performed in baseline and pre-cycle 3 pooled sera of 24 INSPIRE patients based on clinical benefit (CBR) and irAEs. Results: Thyroglobulin (Tg) and thyroid peroxidase (TPO) were identified as the candidate autoantibody targets. In the overall cohort of 78 patients, the frequency of CBR and irAEs from pembrolizumab was 31% and 24%, respectively. Patients with an anti-Tg titer increase ≥1.5x from baseline to pre-cycle 3 were more likely to have irAEs relative to patients without this increase in unadjusted, cohort adjusted, and multivariable models (OR=17.4, 95% CI 1.8-173.8, p=0.015). Similarly, patients with an anti-TPO titer ≥ 1.5x from baseline to pre-cycle 3 were more likely to have irAEs relative to patients without the increase in unadjusted and cohort adjusted (OR=6.1, 95% CI 1.1-32.7, p=0.035) models. Further, the cohort adjusted analysis showed patients with anti-Tg titer greater than median (10.0 IU/mL) at pre-cycle 3 were more likely to have irAEs (OR=4.7, 95% CI 1.2-17.8, p=0.024). Patients with pre-cycle 3 anti-TPO titers greater than median (10.0 IU/mL) had a significant difference in overall survival (23.8 vs 11.5 months; HR=1.8, 95% CI 1.0-3.2, p=0.05). Conclusions: Patient increase ≥1.5x of anti-Tg and anti-TPO titers from baseline to pre-cycle 3 were associated with irAEs from pembrolizumab, and patients with elevated pre-cycle 3 anti-TPO titers had an improvement in overall survival.
Collapse
Affiliation(s)
- Milena Music
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Marco Iafolla
- Division of Medical Oncology and Hematology, University Health Network, Canada, Toronto, ON, Canada
| | - Antoninus Soosaipillai
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Toronto, ON, Canada
| | - Ihor Batruch
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Toronto, ON, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Toronto, ON, Canada
| | - Melania Pintilie
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Canada, Toronto, ON, Canada
| | - Aaron R. Hansen
- Division of Medical Oncology and Hematology, University Health Network, Canada, Toronto, ON, Canada
| | - Philippe L. Bedard
- Division of Medical Oncology and Hematology, University Health Network, Canada, Toronto, ON, Canada
| | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, University Health Network, Canada, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, University Health Network, Canada, Toronto, ON, Canada
| | - Albiruni Abdul Razak
- Division of Medical Oncology and Hematology, University Health Network, Canada, Toronto, ON, Canada
| | - Lillian L. Siu
- Division of Medical Oncology and Hematology, University Health Network, Canada, Toronto, ON, Canada
| | - Eleftherios P. Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Toronto, ON, Canada
- Department of Clinical Biochemistry, University Health Network, Canada, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Moody R, Wilson K, Jaworowski A, Plebanski M. Natural Compounds with Potential to Modulate Cancer Therapies and Self-Reactive Immune Cells. Cancers (Basel) 2020; 12:cancers12030673. [PMID: 32183059 PMCID: PMC7139800 DOI: 10.3390/cancers12030673] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-related deaths are approaching 10 million each year. Survival statistics for some cancers, such as ovarian cancer, have remained unchanged for decades, with women diagnosed at stage III or IV having over 80% chance of a lethal cancer recurrence after standard first-line treatment (reductive surgery and chemotherapy). New treatments and adjunct therapies are needed. In ovarian cancer, as in other cancers, the immune response, particularly cytotoxic (CD8+) T cells are correlated with a decreased risk of recurrence. As well as completely new antigen targets resulting from DNA mutations (neo-antigens), these T cells recognize cancer-associated overexpressed, re-expressed or modified self-proteins. However, there is concern that activation of self-reactive responses may also promote off-target pathology. This review considers the complex interplay between cancer-reactive and self-reactive immune cells and discusses the potential uses for various leading immunomodulatory compounds, derived from plant-based sources, as a cancer therapy option or to modulate potential autoimmune pathology. Along with reviewing well-studied compounds such as curcumin (from turmeric), epigallocatechin gallate (EGCG, from green tea) and resveratrol (from grapes and certain berries), it is proposed that compounds from novel sources, for example, native Australian plants, will provide a useful source for the fine modulation of cancer immunity in patients.
Collapse
|
40
|
Proteome Profiling Uncovers an Autoimmune Response Signature That Reflects Ovarian Cancer Pathogenesis. Cancers (Basel) 2020; 12:cancers12020485. [PMID: 32092936 PMCID: PMC7072578 DOI: 10.3390/cancers12020485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Harnessing the immune response to tumor antigens in the form of autoantibodies, which occurs early during tumor development, has relevance to the detection of cancer at early stages. We conducted an initial screen of antigens associated with an autoantibody response in serous ovarian cancer using recombinant protein arrays. The top 25 recombinants that exhibited increased reactivity with cases compared to controls revealed TP53 and MYC, which are ovarian cancer driver genes, as major network nodes. A mass spectrometry based independent analysis of circulating immunoglobulin (Ig)-bound proteins in ovarian cancer and of ovarian cancer cell surface MHC-II bound peptides also revealed a TP53–MYC related network of antigens. Our findings support the occurrence of a humoral immune response to antigens linked to ovarian cancer driver genes that may have utility for early detection applications.
Collapse
|
41
|
Kobayashi M, Katayama H, Fahrmann JF, Hanash SM. Development of autoantibody signatures for common cancers. Semin Immunol 2020; 47:101388. [DOI: 10.1016/j.smim.2020.101388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022]
|
42
|
Yadav S, Kashaninejad N, Masud MK, Yamauchi Y, Nguyen NT, Shiddiky MJ. Autoantibodies as diagnostic and prognostic cancer biomarker: Detection techniques and approaches. Biosens Bioelectron 2019; 139:111315. [DOI: 10.1016/j.bios.2019.111315] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/25/2023]
|
43
|
A decade of Nucleic Acid Programmable Protein Arrays (NAPPA) availability: News, actors, progress, prospects and access. J Proteomics 2018; 198:27-35. [PMID: 30553075 DOI: 10.1016/j.jprot.2018.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022]
Abstract
Understanding the dynamic of the proteome is a critical challenge because it requires high sensitive methodologies in high-throughput formats in order to decipher its modifications and complexity. While molecular biology provides relevant information about cell physiology that may be reflected in post-translational changes, High-Throughput (HT) experimental proteomic techniques are essential to provide valuable functional information of the proteins, peptides and the interconnections between them. Hence, many methodological developments and innovations have been reported during the last decade. To study more dynamic protein networks and fine interactions, Nucleic Acid Programmable Protein Arrays (NAPPA) was introduced a decade ago. The tool is rapidly maturing and serving as a gateway to characterize biological systems and diseases thanks primarily to its accuracy, reproducibility, throughput and flexibility. Currently, NAPPA technology has proved successful in several research areas adding valuable information towards innovative diagnostic and therapeutic applications. Here, the basic and latest advances within this modern technology in basic, translational research are reviewed, in addition to presenting its exciting new directions. Our final goal is to encourage more scientists/researchers to incorporate this method, which can help to remove bottlenecks in their particular research or biomedical projects. SIGNIFICANCE: Nucleic Acid Programmable Protein Arrays (NAPPA) is becoming an essential tool for functional proteomics and protein-protein interaction studies. The technology impacts decisively on projects aiming massive screenings and the latest innovations like the multiplexing capability or printing consistency make this a promising method to be integrated in novel and combinatorial proteomic approaches.
Collapse
|
44
|
Kaaks R, Fortner RT, Hüsing A, Barrdahl M, Hopper M, Johnson T, Tjønneland A, Hansen L, Overvad K, Fournier A, Boutron-Ruault MC, Kvaskoff M, Dossus L, Johansson M, Boeing H, Trichopoulou A, Benetou V, La Vecchia C, Sieri S, Mattiello A, Palli D, Tumino R, Matullo G, Onland-Moret NC, Gram IT, Weiderpass E, Sánchez MJ, Sanchez CN, Duell EJ, Ardanaz E, Larranaga N, Lundin E, Idahl A, Jirström K, Nodin B, Travis RC, Riboli E, Merritt M, Aune D, Terry K, Cramer DW, Anderson KS. Tumor-associated autoantibodies as early detection markers for ovarian cancer? A prospective evaluation. Int J Cancer 2018; 143:515-526. [PMID: 29473162 PMCID: PMC6019150 DOI: 10.1002/ijc.31335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
Abstract
Immuno-proteomic screening has identified several tumor-associated autoantibodies (AAb) that may have diagnostic capacity for invasive epithelial ovarian cancer, with AAbs to P53 proteins and cancer-testis antigens (CTAGs) as prominent examples. However, the early detection potential of these AAbs has been insufficiently explored in prospective studies. We performed ELISA measurements of AAbs to CTAG1A, CTAG2, P53 and NUDT11 proteins, for 194 patients with ovarian cancer and 705 matched controls from the European EPIC cohort, using serum samples collected up to 36 months prior to diagnosis under usual care. CA125 was measured using electrochemo-luminiscence. Diagnostic discrimination statistics were calculated by strata of lead-time between blood collection and diagnosis. With lead times ≤6 months, ovarian cancer detection sensitivity at 0.98 specificity (SE98) varied from 0.19 [95% CI 0.08-0.40] for CTAG1A, CTAG2 and NUDT1 to 0.23 [0.10-0.44] for P53 (0.33 [0.11-0.68] for high-grade serous tumors). However, at longer lead-times, the ability of these AAb markers to distinguish future ovarian cancer cases from controls declined rapidly; at lead times >1 year, SE98 estimates were close to zero (all invasive cases, range: 0.01-0.11). Compared to CA125 alone, combined logistic regression scores of AAbs and CA125 did not improve detection sensitivity at equal level of specificity. The added value of these selected AAbs as markers for ovarian cancer beyond CA125 for early detection is therefore limited.
Collapse
Affiliation(s)
- Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany
| | | | - Anika Hüsing
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Myrto Barrdahl
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Marika Hopper
- Virginia G. Piper Center for Personal Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Anne Tjønneland
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Louise Hansen
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark
| | - Agnès Fournier
- CESP, INSERM U1018, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, Villejuif Cedex, F-94805, France
- Gustave Roussy, Villejuif, F-94805, France
| | - Marie-Christine Boutron-Ruault
- CESP, INSERM U1018, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, Villejuif Cedex, F-94805, France
- Gustave Roussy, Villejuif, F-94805, France
| | - Marina Kvaskoff
- CESP, INSERM U1018, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, Villejuif Cedex, F-94805, France
- Gustave Roussy, Villejuif, F-94805, France
| | - Laure Dossus
- International Agency for Research on Cancer, Lyon, France
| | | | - Heiner Boeing
- German Institute of Human Nutrition, Potsdam-Rehbrücke (DIfE), Department of Epidemiology, Nuthetal, Germany
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassiliki Benetou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Carlo La Vecchia
- Hellenic Health Foundation, Athens, Greece
- Department of Clinical Sciences and Community Health Università degli Studi di Milano, Milano, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1 20133 Milano, Italy
| | - Amalia Mattiello
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for the Study and Prevention of Cancer (ISPO), Florence, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, “Civic – M.P. Arezzo” Hospital, ASP Ragusa, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Torino and Human Genetics Foundation – HuGeF, Torino, Italy
| | - N. Charlotte Onland-Moret
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inger T. Gram
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Elisabete Weiderpass
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs. GRANADA. Hopitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- CIBER de Epidemiolgía y Salud Pública (CIBERESP), Spain
| | - Carmen Navarro Sanchez
- CIBER de Epidemiolgía y Salud Pública (CIBERESP), Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain
| | - Eric J. Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Ardanaz
- CIBER de Epidemiolgía y Salud Pública (CIBERESP), Spain
- Centro de Investigación Biomédica En Red (CIBER), Navarra Public Health Institute, Pamplona, Spain. IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Nerea Larranaga
- Public Health Division and BioDonostia Research Institute and CIBERESP, Basque Regional Health Department, San Sebastian, Spain
| | - Eva Lundin
- Department of Medical Biosciences, Umeå University, 901 85 Umeå, Sweden
| | - Annika Idahl
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Sweden
| | - Karin Jirström
- Department of Surgery, Skane University Hospital, Lund University, Malmö, Sweden
| | - Björn Nodin
- Department of Surgery, Skane University Hospital, Lund University, Malmö, Sweden
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Elio Riboli
- Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Melissa Merritt
- Faculty of Medicine, School of Public Health, Imperial College London, London, UK
- University of Hawaii Cancer Center, Cancer Epidemiology Program, Honolulu, HI, USA
| | - Dagfinn Aune
- Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Kathryn Terry
- Ob/Gyn Epidemiology Center, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel W. Cramer
- Ob/Gyn Epidemiology Center, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Karen S. Anderson
- Virginia G. Piper Center for Personal Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
45
|
Bassaro L, Russell SJ, Pastwa E, Somiari SA, Somiari RI. Screening for Multiple Autoantibodies in Plasma of Patients with Breast Cancer. Cancer Genomics Proteomics 2018; 14:427-435. [PMID: 29109092 DOI: 10.21873/cgp.20052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Autoantibodies have potential as circulating biomarkers for early cancer detection. This study aimed to screen for known autoantibodies in human plasma using an Autoantibody Profiling System (APS) and quantify the levels in plasma of donors with/without breast cancer. MATERIALS AND METHODS Plasma from nine female donors diagnosed with breast cancer (test group) and nine matched donors with no personal history of cancer (reference group) were screened with an APS containing probes for 30 autoantibodies. Autoantibody levels ≥1.5 times the mean concentration of the group were considered elevated, and test/reference ratios ≥1.3 were considered higher in the test group compared to the reference group. RESULTS Twenty percent of the probes detected elevated levels of autoantibodies against proteins involved in different cancer mechanisms. Amongst these, the levels of autoantibodies against interleukin 29 (IL29), osteoprotegerin (OPG), survivin (SUR), growth hormone (GRH) and resistin (RES) were significantly higher in the cancer group compared to the reference group (p<0.05), whereas the level of autoantibody against cytotoxic T-lymphocyte associated antigen-4 (CTLA4) was not significantly different between the two groups (p=0.38). CONCLUSION Disease-relevant autoantibodies were detected in the plasma of patients with breast cancer and donors without breast cancer. This means that identifying the type and level of autoantibodies in samples will be important in determining their significance in the disease process. A microtiter plate-based array system could be a fast and inexpensive screening method for identifying and quantifying autoantibodies in human plasma.
Collapse
Affiliation(s)
- Lauren Bassaro
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, Johnstown, PA, U.S.A
| | - Stephen J Russell
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, Johnstown, PA, U.S.A
| | - Elzbieta Pastwa
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, Johnstown, PA, U.S.A
| | - Stella A Somiari
- Biobanking & Biospecimen Science Research Unit, Windber Research Institute, Windber, PA, U.S.A
| | - Richard I Somiari
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, Johnstown, PA, U.S.A.
| |
Collapse
|
46
|
Development of an alpha-fetoprotein and Golgi protein 73 multiplex detection assay using xMAP technology. Clin Chim Acta 2018; 482:209-214. [PMID: 29630871 DOI: 10.1016/j.cca.2018.03.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/24/2018] [Accepted: 03/30/2018] [Indexed: 12/18/2022]
Abstract
AIM OF THE STUDY Development of a new method to simultaneously detect Alpha-fetoprotein (AFP) and Golgi protein 73 (GP73) from peripheral blood. MATERIAL AND METHODS Anti human AFP and GP73 monoclonal antibodies was used to develop a sandwich immunity reaction using xMAP technology for the simultaneous detection of plasma AFP and GP73. The assay evaluated the sensitivity, cross reactivity, range of detection, precision, recovery and linearity dilution effect. The assay utilized plasma samples and compared its performance with commercially available Enzyme Linked Immunosorbent Assay (ELISA) kits. RESULTS The assay was successful in detecting AFP and GP73 simultaneously. Validation experiments demonstrated the limit of detection was AFP 0.006 μg/l and GP73 0.482 μg/l. The functional sensitivity was AFP 0.010 μg/l and GP73 0.640 μg/l. The range of detection was AFP 0.01-50 μg/l and GP73 0.64-100 μg/l. No cross reactivity was observed. The intra- and inter-assay variation for AFP was 0.19-3.46% and 3.1-5.8% and for GP73 was 1.5-3.2% and 1.1-7.6% respectively. The recovery for AFP was 96-106% and GP73 was 89-110%. 80 clinical plasma samples from healthy controls, and patients with liver cirrhosis and Hepatocellular Carcinoma (HCC) were evaluated. For healthy controls (n = 25), the AFP was 2.40 (1.55, 3.30) μg/l and GP73 was 42.60 (39.10, 57.40) μg/l. For patients with liver cirrhosis (n = 19), the AFP was 2.60 (1.70, 4.20) μg/l and GP73 was 136.10 (92.10, 261.70) μg/l, and for HCC patients (n = 36), the AFP was 13.65 (3.35, 158.88) μg/l and GP73 was 186.25 (96.73, 262.03) μg/l. The new assay demonstrated a good correlation with commercially available ELISA kits (correlation coefficients (r) were 0.997 (AFP, p < 0.001) and 0.959 (GP73, p < 0.001). CONCLUSIONS The method demonstrated a sensitive, effective and accurate method for the simultaneous detection of AFP and GP73, and could be used clinically for routine detection and monitoring of patients with chronic hepatitis B.
Collapse
|
47
|
Abstract
INTRODUCTION High-content protein microarrays in principle enable the functional interrogation of the human proteome in a broad range of applications, including biomarker discovery, profiling of immune responses, identification of enzyme substrates, and quantifying protein-small molecule, protein-protein and protein-DNA/RNA interactions. As with other microarrays, the underlying proteomic platforms are under active technological development and a range of different protein microarrays are now commercially available. However, deciphering the differences between these platforms to identify the most suitable protein microarray for the specific research question is not always straightforward. Areas covered: This review provides an overview of the technological basis, applications and limitations of some of the most commonly used full-length, recombinant protein and protein fragment microarray platforms, including ProtoArray Human Protein Microarrays, HuProt Human Proteome Microarrays, Human Protein Atlas Protein Fragment Arrays, Nucleic Acid Programmable Arrays and Immunome Protein Arrays. Expert commentary: The choice of appropriate protein microarray platform depends on the specific biological application in hand, with both more focused, lower density and higher density arrays having distinct advantages. Full-length protein arrays offer advantages in biomarker discovery profiling applications, although care is required in ensuring that the protein production and array fabrication methodology is compatible with the required downstream functionality.
Collapse
Affiliation(s)
- Jessica G Duarte
- a Cancer Immunobiology Laboratory, Olivia Newton-John Cancer Research Institute/School of Cancer Medicine , La Trobe University , Heidelberg , Australia
| | - Jonathan M Blackburn
- b Institute of Infectious Disease and Molecular Medicine & Department of Integrative Biomedical Sciences, Faculty of Health Sciences , University of Cape Town , Observatory, South Africa
| |
Collapse
|
48
|
Henderson MC, Silver M, Borman S, Tran Q, Letsios E, Mulpuri R, Reese DE, Wolf JK. A Combinatorial Proteomic Biomarker Assay to Detect Ovarian Cancer in Women. BIOMARKERS IN CANCER 2018; 10:1179299X18756646. [PMID: 35237085 PMCID: PMC8842374 DOI: 10.1177/1179299x18756646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/10/2018] [Indexed: 11/16/2022]
Abstract
Ovarian cancer is often fatal and incidence in the general population is low, underscoring the necessity (and the challenges) for advancements in screening and early detection. The goal of this study was to design a serum-based biomarker panel and corresponding multivariate algorithm that can be used to accurately detect ovarian cancer. A combinatorial protein biomarker assay (CPBA) that uses CA125, HE4, and 3 tumor-associated autoantibodies resulted in an area under the curve of 0.98. The CPBA Ov algorithm was trained using subjects who were suspected to have gynecological cancer and were scheduled for surgery. As a surgical rule-out test, the clinical performance achieves 100% sensitivity and 83.7% specificity. Although sample size (n = 60) is a limiting factor, the CPBA Ov algorithm performed better than either CA-125 alone or the Risk of Ovarian Malignancy Algorithm.
Collapse
|
49
|
Photocleavage-based affinity purification of biomarkers from serum: Application to multiplex allergy testing. PLoS One 2018; 13:e0191987. [PMID: 29389948 PMCID: PMC5794080 DOI: 10.1371/journal.pone.0191987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/15/2018] [Indexed: 11/19/2022] Open
Abstract
Multiplex serological immunoassays, such as implemented on microarray or microsphere-based platforms, provide greater information content and higher throughput, while lowering the cost and blood volume required. These features are particularly attractive in pediatric food allergy testing to facilitate high throughput multi-allergen analysis from finger- or heel-stick collected blood. However, the miniaturization and microfluidics necessary for creating multiplex assays make them highly susceptible to the “matrix effect” caused by interference from non-target agents in serum and other biofluids. Such interference can result in lower sensitivity, specificity, reproducibility and quantitative accuracy. These problems have in large part prevented wide-spread implementation of multiplex immunoassays in clinical laboratories. We report the development of a novel method to eliminate the matrix effect by utilizing photocleavable capture antibodies to purify and concentrate blood-based biomarkers (a process termed PC-PURE) prior to detection in a multiplex immunoassay. To evaluate this approach, it was applied to blood-based allergy testing. Patient total IgE was purified and enriched using PC-PURE followed by multiplex microsphere-based detection of allergen-specific IgEs (termed the AllerBead assay). AllerBead was formatted to detect the eight most common pediatric food allergens: milk, soy, wheat, egg, peanuts, tree nuts, fin fish and shellfish, which account for >90% of all pediatric food allergies. 205 serum samples obtained from Boston Children’s Hospital were evaluated. When PC-PURE was employed with AllerBead, excellent agreement was obtained with the standard, non-multiplex, ImmunoCAP® assay (average sensitivity above published negative predictive cutoffs = 96% and average Pearson r = 0.90; average specificity = 97%). In contrast, poor ImmunoCAP®-correlation was observed when PC-PURE was not utilized (average sensitivity above published negative predictive cutoffs = 59% and average Pearson r = 0.61; average specificity = 97%). This approach should be adaptable to improve a wide range of multiplex immunoassays such as in cancer, infectious disease and autoimmune disease.
Collapse
|
50
|
Ferdosi S, Rehder DS, Maranian P, Castle EP, Ho TH, Pass HI, Cramer DW, Anderson KS, Fu L, Cole DEC, Le T, Wu X, Borges CR. Stage Dependence, Cell-Origin Independence, and Prognostic Capacity of Serum Glycan Fucosylation, β1-4 Branching, β1-6 Branching, and α2-6 Sialylation in Cancer. J Proteome Res 2018; 17:543-558. [PMID: 29129073 PMCID: PMC5978412 DOI: 10.1021/acs.jproteome.7b00672] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycans represent a promising but only marginally accessed source of cancer markers. We previously reported the development of a molecularly bottom-up approach to plasma and serum (P/S) glycomics based on glycan linkage analysis that captures features such as α2-6 sialylation, β1-6 branching, and core fucosylation as single analytical signals. Based on the behavior of P/S glycans established to date, we hypothesized that the alteration of P/S glycans observed in cancer would be independent of the tissue in which the tumor originated yet exhibit stage dependence that varied little between cancers classified on the basis of tumor origin. Herein, the diagnostic utility of this bottom-up approach as applied to lung cancer patients (n = 127 stage I; n = 20 stage II; n = 81 stage III; and n = 90 stage IV) as well as prostate (n = 40 stage II), serous ovarian (n = 59 stage III), and pancreatic cancer patients (n = 15 rapid autopsy) compared to certifiably healthy individuals (n = 30), nominally healthy individuals (n = 166), and risk-matched controls (n = 300) is reported. Diagnostic performance in lung cancer was stage-dependent, with markers for terminal (total) fucosylation, α2-6 sialylation, β1-4 branching, β1-6 branching, and outer-arm fucosylation most able to differentiate cases from controls. These markers behaved in a similar stage-dependent manner in other types of cancer as well. Notable differences between certifiably healthy individuals and case-matched controls were observed. These markers were not significantly elevated in liver fibrosis. Using a Cox proportional hazards regression model, the marker for α2-6 sialylation was found to predict both progression and survival in lung cancer patients after adjusting for age, gender, smoking status, and stage. The potential mechanistic role of aberrant P/S glycans in cancer progression is discussed.
Collapse
Affiliation(s)
- Shadi Ferdosi
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Douglas S. Rehder
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Paul Maranian
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Erik P. Castle
- Department of Urology, Mayo Clinic, Phoenix, Arizona 85054, United States
| | - Thai H. Ho
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, Arizona 85054, United States
| | - Harvey I. Pass
- Cardiothoracic Surgery, NYU Langone Medical Center, New York, New York 10016, United States
| | - Daniel W. Cramer
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, United States
| | - Karen S. Anderson
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Lei Fu
- Department of Clinical Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David E. C. Cole
- Department of Clinical Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tao Le
- University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Xifeng Wu
- University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Chad R. Borges
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|