1
|
Yuan C, Deng D, Yang J, Liu S, Qian Q, Chen M, Zhou S, Li Y, Li M. A Novel Variant and a Missense Variant Identified in the DKC1 Gene in Three Chinese Familieswith Dyskeratosis Congenita. Clin Cosmet Investig Dermatol 2022; 15:1837-1845. [PMID: 36111181 PMCID: PMC9469802 DOI: 10.2147/ccid.s371794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022]
Abstract
Purpose Dyskeratosis congenita (DC) is an inherited telomere biology disorder characterized clinically by mucocutaneous triad of reticulate hyperpigmentation, nail changes and oral leukoplakia. Bone marrow failure, pulmonary fibrosis and malignancies are the mainly life-threatening causes. There are X-linked recessive, autosomal dominant and autosomal recessive patterns of DC. DKC1 is the most common pathogenic mutation gene responsible for X-linked DC, and it encodes a protein, dyskerin, which is a component of telomerase holoenzyme complex essential for telomere maintenance. Patients with DC have very short telomeres, but the precise pathogenic mechanism remains unclear. This study aimed to identify the causative mutations in the DKC1 gene in three Chinese families with the X-linked form of DC. Patients and Methods Three Chinese families with DC were included in this study. Whole exome sequencing and Sanger sequencing were performed to clarify the mutation of DKC1 gene. Measurement of relative telomere length through qPCR. Predictions of protein structure and function were performed using bioinformatics tools, including I-TASSER, Polyphen-2 and SIFT. Results There were four males with DC and a female carrier in three Chinese pedigrees. The novel mutation c.92A>C (p. Q31P) and the missense mutation c.1058C>T (p. A353V) in DKC1 were identified. Both mutations locally changed the structure of dyskerin. Variant Q31P and A353V were predicted to have “deleterious” and “natural” effects on the function of dyskerin, respectively. Conclusion The novel variant and missense variant detected in the DKC1 gene improve our understanding of DC and broaden the mutation spectrum of the DKC1 gene.
Collapse
Affiliation(s)
- Chunyu Yuan
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University, Suzhou Dushu Lake Hospital), Suzhou Ctiy, Jiangsu, People's Republic of China
| | - Dongmei Deng
- Health Management Center, The Fifth People's Hospital of Hainan Province, Haikou Ctiy, Hainan, People's Republic of China
| | - Jianqiu Yang
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University, Suzhou Dushu Lake Hospital), Suzhou Ctiy, Jiangsu, People's Republic of China
| | - Simeng Liu
- Department of Dermatology, Aerospace Center Hospital, Beijing Ctiy, People's Republic of China
| | - Qihong Qian
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou Ctiy, Jiangsu, People's Republic of China
| | - Min Chen
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University, Suzhou Dushu Lake Hospital), Suzhou Ctiy, Jiangsu, People's Republic of China
| | - Shengru Zhou
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University, Suzhou Dushu Lake Hospital), Suzhou Ctiy, Jiangsu, People's Republic of China
| | - Yujiang Li
- Department of Dermatology, Sanmenxia Central Hospital, Sanmenxia Ctiy, Henan, People's Republic of China
| | - Min Li
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University, Suzhou Dushu Lake Hospital), Suzhou Ctiy, Jiangsu, People's Republic of China.,Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou Ctiy, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Wang L, Li J, Xiong Q, Zhou YA, Li P, Wu C. Case Report: A Missense Mutation in Dyskeratosis Congenita 1 Leads to a Benign Form of Dyskeratosis Congenita Syndrome With the Mucocutaneous Triad. Front Pediatr 2022; 10:834268. [PMID: 35463902 PMCID: PMC9019361 DOI: 10.3389/fped.2022.834268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita (DC) is a rare inheritable disorder characterized by bone marrow failure and mucocutaneous triad (reticular skin pigmentation, nail dystrophy, and oral leukoplakia). Dyskeratosis congenita 1 (DKC1) is responsible for 4.6% of the DC with an X-linked inheritance pattern. Almost 70 DKC1 variations causing DC have been reported in the Human Gene Mutation Database. RESULTS Here we described a 14-year-old boy in a Chinese family with a phenotype of abnormal skin pigmentation on the neck, oral leukoplakia, and nail dysplasia in his hands and feet. Genetic analysis and sequencing revealed hemizygosity for a recurrent missense mutation c.1156G > A (p.Ala386Thr) in DKC1 gene. The heterozygous mutation (c.1156G > A) from his mother and wild-type sequence from his father were obtained in the same site of DKC1. This mutation was determined as disease causing based on silico software, but the pathological phenotypes of the proband were milder than previously reported at this position (HGMDCM060959). Homology modeling revealed that the altered amino acid was located near the PUA domain, which might affect the affinity for RNA binding. CONCLUSION This DKC1 mutation (c.1156G > A, p.Ala386Thr) was first reported in a Chinese family with mucocutaneous triad phenotype. Our study reveals the pathogenesis of DKC1 c.1156G > A mutation to DC with a benign phenotype, which expands the disease variation database, the understanding of genotype-phenotype correlations, and facilitates the clinical diagnosis of DC in China.
Collapse
Affiliation(s)
- Liqing Wang
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Shanxi University, Taiyuan, China.,The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jianwei Li
- Bluttransfusion, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Qiuhong Xiong
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Shanxi University, Taiyuan, China.,The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yong-An Zhou
- Bluttransfusion, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Ping Li
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Shanxi University, Taiyuan, China.,The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Shanxi University, Taiyuan, China.,The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
3
|
Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA (NEW YORK, N.Y.) 2021; 27:1441-1458. [PMID: 34556550 PMCID: PMC8594475 DOI: 10.1261/rna.078953.121] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dyskerin and its homologs are ancient and conserved enzymes that catalyze the most common post-transcriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently-it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlights the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural, and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency, and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential, and cancer.
Collapse
Affiliation(s)
- Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
4
|
Zhao XY, Zhong WL, Zhang J, Ma G, Hu H, Yu B. Dyskeratosis Congenita with DKC1 Mutation: A Case Report. Indian J Dermatol 2020; 65:426-427. [PMID: 33165394 PMCID: PMC7640797 DOI: 10.4103/ijd.ijd_716_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Xing-Yun Zhao
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China.,Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen, China
| | - Wei-Long Zhong
- Department of Dermatology, Peking University First Hospital, Beijing, China. E-mail:
| | - Jie Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Gang Ma
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hao Hu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China.,Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen, China
| |
Collapse
|
5
|
Hapangama DK, Kamal A, Saretzki G. Implications of telomeres and telomerase in endometrial pathology. Hum Reprod Update 2017; 23:166-187. [PMID: 27979878 PMCID: PMC5850744 DOI: 10.1093/humupd/dmw044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eukaryotic chromosomal ends are linear and are protected by nucleoprotein complexes known as telomeres. The complex structural anatomy and the diverse functions of telomeres as well as the unique reverse transcriptase enzyme, telomerase that maintains telomeres are under intensive scientific scrutiny. Both are involved in many human diseases including cancer, but also in ageing and chronic disease such as diabetes. Their intricate involvement in many cellular processes and pathways is being dynamically deciphered in many organs including the endometrium. This review summarizes our current knowledge on the topic of telomeres and telomerase and their potential role in providing plausible explanations for endometrial aberrations related to common gynaecological pathologies. OBJECTIVE AND RATIONALE This review outlines the recent major findings in telomere and telomerase functions in the context of endometrial biology. It highlights the contemporary discoveries in hormonal regulation, normal endometrial regeneration, stem cells and common gynaecological diseases such as endometriosis, infertility, recurrent reproductive failure and endometrial cancer (EC). SEARCH METHODS The authors carried out systematic PubMed (Medline) and Ovid searches using the key words: telomerase, telomeres, telomere length, human telomerase reverse transcriptase, telomeric RNA component, with endometrium, hormonal regulation, endometrial stem/progenitor cells, endometrial regeneration, endometriosis, recurrent miscarriage, infertility, endometrial hyperplasia, EC and uterine cancer. Publications used in this review date from 1995 until 31st June 2016. OUTCOMES The human endometrium is a unique somatic organ, which displays dynamic telomerase activity (TA) related to the menstrual cycle. Telomerase is implicated in almost all endometrial pathologies and appears to be crucial to endometrial stem cells. In particular, it is vital for normal endometrial regeneration, providing a distinct route to formulate possible curative, non-hormonal therapies to treat chronic endometrial conditions. Furthermore, our current understanding of telomere maintenance in EC is incomplete. Data derived from other malignancies on the role of telomerase in carcinogenesis cannot be extrapolated to EC because unlike in other cancers, TA is already present in proliferating healthy endometrial cells. WIDER IMPLICATIONS Since telomerase is pivotal to endometrial regeneration, further studies elucidating the role of telomeres, telomerase, their associated proteins and their regulation in normal endometrial regeneration as well as their role in endometrial pathologies are essential. This approach may allow future development of novel treatment strategies that are not only non-hormonal but also potentially curative.
Collapse
Affiliation(s)
- D K Hapangama
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,Liverpool Women's Hospital NHS Foundation Trust, Crown Street, Liverpool L8 7SS, UK
| | - A Kamal
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,The National Center for Early Detection of Cancer, Oncology Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - G Saretzki
- Institute for Ageing and Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|