1
|
Ilyin NP, Petersen EV, Kolesnikova TO, Demin KA, Khatsko SL, Apuhtin KV, Kalueff AV. Developing Peripheral Biochemical Biomarkers of Brain Disorders: Insights from Zebrafish Models. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:377-391. [PMID: 38622104 DOI: 10.1134/s0006297924020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
High prevalence of human brain disorders necessitates development of the reliable peripheral biomarkers as diagnostic and disease-monitoring tools. In addition to clinical studies, animal models markedly advance studying of non-brain abnormalities associated with brain pathogenesis. The zebrafish (Danio rerio) is becoming increasingly popular as an animal model organism in translational neuroscience. These fish share some practical advantages over mammalian models together with high genetic homology and evolutionarily conserved biochemical and neurobehavioral phenotypes, thus enabling large-scale modeling of human brain diseases. Here, we review mounting evidence on peripheral biomarkers of brain disorders in zebrafish models, focusing on altered biochemistry (lipids, carbohydrates, proteins, and other non-signal molecules, as well as metabolic reactions and activity of enzymes). Collectively, these data strongly support the utility of zebrafish (from a systems biology standpoint) to study peripheral manifestations of brain disorders, as well as highlight potential applications of biochemical biomarkers in zebrafish models to biomarker-based drug discovery and development.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia.
| | - Tatyana O Kolesnikova
- Neuroscience Program, Sirius University of Science and Technology, Sochi, 354340, Russia.
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Pesochny, 197758, Russia
| | | | - Kirill V Apuhtin
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.
- Neuroscience Division, Sirius University of Science and Technology, Sirius Federal Territory, 354340, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Ural Federal University, Ekaterinburg, 620002, Russia
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
2
|
Chowdhury S, Saikia SK. Use of Zebrafish as a Model Organism to Study Oxidative Stress: A Review. Zebrafish 2022; 19:165-176. [PMID: 36049069 DOI: 10.1089/zeb.2021.0083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Dioxygen is an integral part of every living organism, but its concentration varies from organ to organ. Production of metabolites from dioxygen may result in oxidative stress. Since oxidative stress has the potential to damage various biomolecules in the cell, therefore, it has presently become an active field of research. Oxidative stress has been studied in a wide range of model organisms from vertebrates to invertebrates, from rodents to piscine organisms, and from in vivo to in vitro models. But zebrafish (adults, larvae, or embryonic stage) emerged out to be the most promising vertebrate model organism to study oxidative stress because of its vast advantages (transparent embryo, cost-effectiveness, similarity to human genome, easy developmental processes, numerous offspring per spawning, and many more). This is evidenced by voluminous number of researches on oxidative stress in zebrafish exposed to chemicals, radiations, nanoparticles, pesticides, heavy metals, etc. On these backgrounds, this review attempts to highlight the potentiality of zebrafish as model of oxidative stress compared with other companion models. Several areas, from biomedical to environmental research, have been covered to explain it as a more convenient and reliable animal model for experimental research on oxidative mechanisms.
Collapse
Affiliation(s)
- Sabarna Chowdhury
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| | - Surjya Kumar Saikia
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| |
Collapse
|
3
|
Mauro M, Lazzara V, Arizza V, Luparello C, Ferrantelli V, Cammilleri G, Inguglia L, Vazzana M. Human Drug Pollution in the Aquatic System: The Biochemical Responses of Danio rerio Adults. BIOLOGY 2021; 10:biology10101064. [PMID: 34681162 PMCID: PMC8533377 DOI: 10.3390/biology10101064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary The release of medicinal products for human use in the aquatic environment is now a serious problem, and can be fatal for the organisms that live there. Danio rerio is a freshwater fish that provides the possibility to study the effects of these pollutants on the health of aquatic organisms. The results of the various existing scientific studies are scarce and conflicting. Here, we review the scientific studies that have analyzed these effects, highlighting that the impacts of drugs are evident in the biochemical responses of these animals. Abstract To date, drug pollution in aquatic systems is an urgent issue, and Danio rerio is a model organism to study the toxicological effects of environmental pollutants. The scientific literature has analyzed the effect of human drug pollution on the biochemical responses in the tissues of D. rerio adults. However, the information is still scarce and conflicting, making it difficult to understand its real impact. The scientific studies are not consistent with each other and, until now, no one has grouped their results to create a baseline of knowledge of the possible impacts. In this review, the analysis of literature data highlights that the effects of drugs on adult zebrafishes depend on various factors, such as the tissue analyzed, the drug concentration and the sex of the individuals. Furthermore, the most influenced biochemical responses concern enzymes (e.g., antioxidants and hydrolase enzymes) and total protein and hormonal levels. Pinpointing the situation to date would improve the understanding of the chronic effects of human drug pollution, helping both to reduce it in the aquatic systems and then to draw up regulations to control this type of pollution.
Collapse
Affiliation(s)
- Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
- Correspondence: (M.M.); (V.F.)
| | - Valentina Lazzara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, 90129 Palermo, Italy;
- Correspondence: (M.M.); (V.F.)
| | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, 90129 Palermo, Italy;
| | - Luigi Inguglia
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| |
Collapse
|
4
|
Bownik A, Wlodkowic D. Applications of advanced neuro-behavioral analysis strategies in aquatic ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145577. [PMID: 33770877 DOI: 10.1016/j.scitotenv.2021.145577] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Despite mounting evidence of pleiotropic ecological risks, the understanding of the eco-neurotoxic impact of most industrially relevant chemicals is still very limited. In particularly the acute and chronic exposures to industrial pollutants on nervous systems and thus potential alterations in ecological fitness remain profoundly understudied. Since the behavioral phenotype is the highest-level and functional manifestation of integrated neurological functions, the alterations in neuro-behavioral traits have been postulated as very sensitive and physiologically integrative endpoints to assess eco-neurotoxicological risks associated with industrial pollutants. Due to a considerable backlog of risk assessments of existing and new production chemicals there is a need for a paradigm shift from high cost, low throughput ecotoxicity test models to next generation systems amenable to higher throughput. In this review we concentrate on emerging aspects of laboratory-based neuro-behavioral phenotyping approaches that can be amenable for rapid prioritizing pipelines. We outline the importance of development and applications of innovative neuro-behavioral assays utilizing small aquatic biological indicators and demonstrate emerging concepts of high-throughput chemo-behavioral phenotyping. We also discuss new analytical approaches to effectively and rapidly evaluate the impact of pollutants on higher behavioral functions such as sensory-motor assays, decision-making and cognitive behaviors using innovative model organisms. Finally, we provide a snapshot of most recent analytical approaches that can be applied to elucidate mechanistic rationale that underlie the observed neuro-behavioral alterations upon exposure to pollutants. This review is intended to outline the emerging opportunities for innovative multidisciplinary research and highlight the existing challenges as well barriers to future development.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | | |
Collapse
|
5
|
Kandil A, Hanora A, Azab M, Enany S. Proteomic analysis of bacterial communities associated with atopic dermatitis. J Proteomics 2020; 229:103944. [DOI: 10.1016/j.jprot.2020.103944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
|
6
|
Vieira LR, Hissa DC, de Souza TM, Sá CA, Evaristo JAM, Nogueira FCS, Carvalho AFU, Farias DF. Proteomics analysis of zebrafish larvae exposed to 3,4-dichloroaniline using the fish embryo acute toxicity test. ENVIRONMENTAL TOXICOLOGY 2020; 35:849-860. [PMID: 32170993 DOI: 10.1002/tox.22921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
The zebrafish (Danio rerio) is a small teleost fish that is becoming increasingly popular in laboratories worldwide and several attributes have also placed the zebrafish under the spotlight of (eco)toxicological studies. Since the 1990s, international organizations such as ISO and OECD have published guidelines for the use of zebrafish in ecotoxicological assessment of environmental toxicants such as the Fish Embryo Acute Toxicity (FET) test, OECD n° 236 guideline. This protocol uses 3,4-dichloroaniline (DCA), an aniline pesticide whose toxicity to fish species at early life stages is well known, as a positive control. Despite its use, little is known about its molecular mechanisms, especially in the context of the FET test. Therefore, this study aimed to investigate such changes in zebrafish larvae exposed to DCA (4 mg/L) for 96 hours using gel-free proteomics. Twenty-four proteins detected in both groups were identified as significantly affected by DCA exposure, and, when considering group-specific entities, 48 proteins were exclusive to DCA (group-specific proteins) while 248 were only detected in the control group. Proteins modulated by DCA treatment were found to be involved in metabolic processes, especially lipids and hormone metabolism (eg, Apoa1 and Apoa1b and vitelogenins), as well as proteins important for developmental processes and organogenesis (eg, Myhc4, Acta2, Sncb, and Marcksb). The results presented here may therefore provide a better understanding of the relationships between molecular changes and phenotype in zebrafish larvae treated with DCA, the reference compound of the FET test.
Collapse
Affiliation(s)
- Leonardo R Vieira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Denise C Hissa
- Department of Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Terezinha Maria de Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Oncology, Maastricht University, Maastricht, The Netherlands
| | - Chayenne A Sá
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Joseph A M Evaristo
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana F U Carvalho
- Department of Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Davi F Farias
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
7
|
Geary B, Magee K, Cash P, Husi H, Young IS, Whitfield PD, Doherty MK. Acute stress alters the rates of degradation of cardiac muscle proteins. J Proteomics 2018; 191:124-130. [PMID: 29577999 DOI: 10.1016/j.jprot.2018.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/26/2018] [Accepted: 03/10/2018] [Indexed: 12/18/2022]
Abstract
Stressful experiences can have detrimental effects on many aspects of health and wellbeing. The zebrafish (Danio rerio) is a widely used model for stress research and a stress phenotype can be induced by manipulating the environmental conditions and social interactions. In this study we have combined a zebrafish stress model with the measurement of degradation rates of soluble cardiac muscle proteins. The results showed that the greater the stress response in the zebrafish the lower the level of overall protein degradation. On comparing the rates of degradation for individual proteins it was found that four main pathways were altered in response to stress conditions with decreased degradation for proteins involved in glucose metabolism, gluconeogenesis, the ubiquitin-proteasome system (UPS) and peroxisomal proliferator-activated receptor (PPAR) signalling pathways. Taken together, these data indicate that under stress conditions zebrafish preserve cardiac muscle proteins required for the 'fight or flight' response together with proteins that play a role in stress mitigation. SIGNIFICANCE: This study is the first to investigate the impact of stressful experiences on the dynamics of protein turnover in cardiac muscle. Using an established zebrafish model of human stress it has been possible to map key pathways at the protein level. The results show that the rates of degradation of cardiac proteins involved in glucose metabolism, UPS activity, hypoxia and PPAR signalling are decreased in stressed zebrafish. These findings indicate that proteins involved in the 'fight or flight' response to stress are conserved by the heart together with proteins that play a role in stress mitigation. This work provides the basis for more detailed investigations aimed at understanding the molecular effects of stress, which has implications for human health and disease.
Collapse
Affiliation(s)
- Bethany Geary
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, UK
| | - Kieran Magee
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Phillip Cash
- Division of Applied Medicine, University of Aberdeen, Aberdeen, UK
| | - Holger Husi
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, UK
| | - Iain S Young
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Phillip D Whitfield
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, UK
| | - Mary K Doherty
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, UK.
| |
Collapse
|
8
|
Lee CJ, Tyler CR, Paull GC. Can simple tank changes benefit the welfare of laboratory zebrafish Danio rerio? JOURNAL OF FISH BIOLOGY 2018; 92:653-659. [PMID: 29363145 DOI: 10.1111/jfb.13535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
This study examined the effects of simple changes in the tank environment on the wellbeing of laboratory-maintained zebrafish Danio rerio. Groups of D. rerio were either housed in stable environments (where they were maintained in the same tanks throughout the study) or in environments subject to change (where they were periodically moved to novel but identical tanks) and the effects of these treatments on morphometry, reproductive success and aggressive behaviour assessed. No effect of simple tank changes was found on body condition, reproductive output or aggression, for the periods of time studied, indicating that more complex scenarios in housing tank conditions are required for significant welfare benefits for captive D. rerio.
Collapse
Affiliation(s)
- C J Lee
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QG, U.K
| | - C R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QG, U.K
| | - G C Paull
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QG, U.K
| |
Collapse
|
9
|
Song C, Liu BP, Zhang YP, Peng Z, Wang J, Collier AD, Echevarria DJ, Savelieva KV, Lawrence RF, Rex CS, Meshalkina DA, Kalueff AV. Modeling consequences of prolonged strong unpredictable stress in zebrafish: Complex effects on behavior and physiology. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:384-394. [PMID: 28847526 DOI: 10.1016/j.pnpbp.2017.08.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
Abstract
Chronic stress is the major pathogenetic factor of human anxiety and depression. Zebrafish (Danio rerio) have become a novel popular model species for neuroscience research and CNS drug discovery. The utility of zebrafish for mimicking human affective disorders is also rapidly growing. Here, we present a new zebrafish model of clinically relevant, prolonged unpredictable strong chronic stress (PUCS). The 5-week PUCS induced overt anxiety-like and motor retardation-like behaviors in adult zebrafish, also elevating whole-body cortisol and proinflammatory cytokines - interleukins IL-1β and IL-6. PUCS also elevated whole-body levels of the anti-inflammatory cytokine IL-10 and increased the density of dendritic spines in zebrafish telencephalic neurons. Chronic treatment of fish with an antidepressant fluoxetine (0.1mg/L for 8days) normalized their behavioral and endocrine phenotypes, as well as corrected stress-elevated IL-1β and IL-6 levels, similar to clinical and rodent data. The CNS expression of the bdnf gene, the two genes of its receptors (trkB, p75), and the gfap gene of glia biomarker, the glial fibrillary acidic protein, was unaltered in all three groups. However, PUCS elevated whole-body BDNF levels and the telencephalic dendritic spine density (which were corrected by fluoxetine), thereby somewhat differing from the effects of chronic stress in rodents. Together, these findings support zebrafish as a useful in-vivo model of chronic stress, also calling for further cross-species studies of both shared/overlapping and distinct neurobiological responses to chronic stress.
Collapse
Affiliation(s)
- Cai Song
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China; Graduate Institute of Neural and Cognitive Science, China Medical University and Hospital, Taichung 00001, Taiwan.
| | - Bai-Ping Liu
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Yong-Ping Zhang
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Zhilan Peng
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - JiaJia Wang
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Adam D Collier
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA
| | - David J Echevarria
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Katerina V Savelieva
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA
| | - Robert F Lawrence
- Afraxis, Inc. 6605 Nancy Ridge Rd. Suite 224, San Diego, CA 92121, USA
| | - Christopher S Rex
- Afraxis, Inc. 6605 Nancy Ridge Rd. Suite 224, San Diego, CA 92121, USA
| | - Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 3960002, Russia
| | - Allan V Kalueff
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China; ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 3960002, Russia; Ural Federal University, Ekaterinburg 620002, Russia.
| |
Collapse
|
10
|
Dale K, Rasinger J, Thorstensen K, Penglase S, Ellingsen S. Vitamin E reduces endosulfan-induced toxic effects on morphology and behavior in early development of zebrafish (Danio rerio). Food Chem Toxicol 2017; 101:84-93. [DOI: 10.1016/j.fct.2017.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022]
|
11
|
Kwon OK, Kim S, Lee S. Global proteomic analysis of lysine acetylation in zebrafish (Danio rerio) embryos. Electrophoresis 2016; 37:3137-3145. [DOI: 10.1002/elps.201600210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/25/2016] [Accepted: 09/05/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu Republic of Korea
| | - Sunjoo Kim
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu Republic of Korea
| |
Collapse
|
12
|
Wu Z, Lian J, Han Y, Zhou N, Li X, Yang A, Tong P, Chen H. Crosslinking of peanut allergen Ara h 2 by polyphenol oxidase: digestibility and potential allergenicity assessment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3567-3574. [PMID: 26597340 DOI: 10.1002/jsfa.7542] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/29/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Peanut is one of the eight major food allergens. Its allergen, Ara h 2, can be recognized by over 90% of serum IgE samples from peanut-allergic patients. Therefore, reducing the allergenicity of Ara h 2 is especially important. RESULTS In the present study, polyphenol oxidase (PPO), a protein cross-linking reaction catalyst that acts on tyrosine residue, was used to modify Ara h 2. After crosslinking, the microstructure, digestibility, IgG binding capability and IgE binding capability of Ara h 2 were analyzed. Cross-linking decreased the potential allergenicity of Ara h 2 by masking the allergen epitope, while the antigenicity of Ara h 2 changed slightly. After crosslinking, the apparent diameter of Ara h 2 was altered from 300 to 1700 nm or 220 nm, indicating that polymerization could either be inter- or intramolecular. Regarding digestibility, crosslinked Ara h 2 was relatively more easily digested by gastric fluid compared with the untreated Ara h 2, but much more difficult in the intestinal fluid. CONCLUSION The crosslinking reaction catalyzed by PPO, as a non-thermal process, may be beneficial for avoiding food allergy. The reaction could mask allergen epitopes, decreasing the allergenicity of Ara h 2. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Jun Lian
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yuanlong Han
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
- Jiangxi Synergy Pharmaceutical Co., Ltd, Fengxin, 330700, China
| | - Ningling Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
- Department of Food Science, Nanchang University, Nanchang, 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| |
Collapse
|