1
|
Bjarnason S, Ruidiaz SF, McIvor J, Mercadante D, Heidarsson PO. Protein intrinsic disorder on a dynamic nucleosomal landscape. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:295-354. [PMID: 34656332 DOI: 10.1016/bs.pmbts.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complex nucleoprotein landscape of the eukaryotic cell nucleus is rich in dynamic proteins that lack a stable three-dimensional structure. Many of these intrinsically disordered proteins operate directly on the first fundamental level of genome compaction: the nucleosome. Here we give an overview of how disordered interactions with and within nucleosomes shape the dynamics, architecture, and epigenetic regulation of the genetic material, controlling cellular transcription patterns. We highlight experimental and computational challenges in the study of protein disorder and illustrate how integrative approaches are increasingly unveiling the fine details of nuclear interaction networks. We finally dissect sequence properties encoded in disordered regions and assess common features of disordered nucleosome-binding proteins. As drivers of many critical biological processes, disordered proteins are integral to a comprehensive molecular view of the dynamic nuclear milieu.
Collapse
Affiliation(s)
- Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Sarah F Ruidiaz
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Jordan McIvor
- School of Chemical Science, University of Auckland, Auckland, New Zealand
| | - Davide Mercadante
- School of Chemical Science, University of Auckland, Auckland, New Zealand.
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
2
|
PiP 2 favors an α-helical structure of non-recombinant Hsp12 of Saccharomyces cerevisiae. Protein Expr Purif 2021; 181:105830. [PMID: 33485946 DOI: 10.1016/j.pep.2021.105830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/23/2022]
Abstract
Hsp12 is a small heat shock protein of Saccharomyces cerevisiae upregulated in response to various stresses. Non recombinant Hsp12 has been purified and characterized. Using circular dichroism (CD), Isothermal Titration Calorimetry (ITC) and Differential Scanning Calorimetry (DSC), it has been demonstrated that the native Hsp12 is monomeric and intrinsically disordered (IDP). Hsp12 gains in structure in the presence of specific lipids (PiP2). The helical form binds to liposomes models membrane with high affinity, leading to their rigidification. These results suggest that hydrophobic and ionic interactions are involved. Hsp12 is most likely a membrane chaperone expressed during stresses in Saccharomyces cerevisiae.
Collapse
|
3
|
Järvelin AI, Noerenberg M, Davis I, Castello A. The new (dis)order in RNA regulation. Cell Commun Signal 2016; 14:9. [PMID: 27048167 PMCID: PMC4822317 DOI: 10.1186/s12964-016-0132-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
RNA-binding proteins play a key role in the regulation of all aspects of RNA metabolism, from the synthesis of RNA to its decay. Protein-RNA interactions have been thought to be mostly mediated by canonical RNA-binding domains that form stable secondary and tertiary structures. However, a number of pioneering studies over the past decades, together with recent proteome-wide data, have challenged this view, revealing surprising roles for intrinsically disordered protein regions in RNA binding. Here, we discuss how disordered protein regions can mediate protein-RNA interactions, conceptually grouping these regions into RS-rich, RG-rich, and other basic sequences, that can mediate both specific and non-specific interactions with RNA. Disordered regions can also influence RNA metabolism through protein aggregation and hydrogel formation. Importantly, protein-RNA interactions mediated by disordered regions can influence nearly all aspects of co- and post-transcriptional RNA processes and, consequently, their disruption can cause disease. Despite growing interest in disordered protein regions and their roles in RNA biology, their mechanisms of binding, regulation, and physiological consequences remain poorly understood. In the coming years, the study of these unorthodox interactions will yield important insights into RNA regulation in cellular homeostasis and disease.
Collapse
Affiliation(s)
- Aino I. Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Marko Noerenberg
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
4
|
Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an “Elephant and Blind Men” Situation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:215-60. [DOI: 10.1007/978-3-319-20164-1_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
|
6
|
Watanabe-Matsui M, Matsumoto T, Matsui T, Ikeda-Saito M, Muto A, Murayama K, Igarashi K. Heme binds to an intrinsically disordered region of Bach2 and alters its conformation. Arch Biochem Biophys 2015; 565:25-31. [DOI: 10.1016/j.abb.2014.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022]
|
7
|
Affiliation(s)
- Johnny Habchi
- Aix-Marseille Université , Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 13288, Marseille, France
| | | | | | | |
Collapse
|
8
|
Tompa P. Multisteric Regulation by Structural Disorder in Modular Signaling Proteins: An Extension of the Concept of Allostery. Chem Rev 2013; 114:6715-32. [DOI: 10.1021/cr4005082] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Peter Tompa
- VIB Department of Structural
Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Institute of Enzymology, Biological Research Center, Hungarian Academy
of Sciences, Budapest H-1113, Hungary
| |
Collapse
|
9
|
Identification and characterization of proteins involved in nuclear organization using Drosophila GFP protein trap lines. PLoS One 2013; 8:e53091. [PMID: 23341925 PMCID: PMC3547006 DOI: 10.1371/journal.pone.0053091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/23/2012] [Indexed: 12/22/2022] Open
Abstract
Background Strains from a collection of Drosophila GFP protein trap lines express GFP in the normal tissues where the endogenous protein is present. This collection can be used to screen for proteins distributed in the nucleus in a non-uniform pattern. Methodology/Principal Findings We analyzed four lines that show peripheral or punctate nuclear staining. One of these lines affects an uncharacterized gene named CG11138. The CG11138 protein shows a punctate distribution in the nuclear periphery similar to that of Drosophila insulator proteins but does not co-localize with known insulators. Interestingly, mutations in Lamin proteins result in alterations in CG11138 localization, suggesting that this protein may be a novel component of the nuclear lamina. A second line affects the Decondensation factor 31 (Df31) gene, which encodes a protein with a unique nuclear distribution that appears to segment the nucleus into four different compartments. The X-chromosome of males is confined to one of these compartments. We also find that Drosophila Nucleoplasmin (dNlp) is present in regions of active transcription. Heat shock leads to loss of dNlp from previously transcribed regions of polytene chromosome without redistribution to the heat shock genes. Analysis of Stonewall (Stwl), a protein previously found to be necessary for the maintenance of germline stem cells, shows that Stwl is present in a punctate pattern in the nucleus that partially overlaps with that of known insulator proteins. Finally we show that Stwl, dNlp, and Df31 form part of a highly interactive network. The properties of other components of this network may help understand the role of these proteins in nuclear biology. Conclusions/Significance These results establish screening of GFP protein trap alleles as a strategy to identify factors with novel cellular functions. Information gained from the analysis of CG11138 Stwl, dNlp, and Df31 sets the stage for future studies of these proteins.
Collapse
|
10
|
Tantos A, Tompa P. Identification of intrinsically disordered proteins by a special 2D electrophoresis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 896:215-22. [PMID: 22821526 DOI: 10.1007/978-1-4614-3704-8_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure under physiological conditions. They constitute a significant fraction of various proteomes and have significant roles in key cellular processes. Here we report the development of a two-dimensional electrophoresis technique for their de novo recognition and characterization. This technique consists of the combination of native and 8 M urea electrophoresis of heat-treated proteins where IDPs are expected to run into the diagonal of the gel, whereas globular proteins either precipitate upon heat treatment or unfold and run off the diagonal in the second dimension.
Collapse
Affiliation(s)
- Agnes Tantos
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|
11
|
Abstract
Based on early bioinformatic studies on a handful of species, the frequency of structural disorder of proteins is generally thought to be much higher in eukaryotes than in prokaryotes. To refine this view, we present here a comparative prediction study and analysis of 194 fully described eukaryotic proteomes and 87 reference prokaryotes for structural disorder. We found that structural disorder does distinguish eukaryotes from prokaryotes, but its frequency spans a very wide range in the two superkingdoms that largely overlap. The number of disordered binding regions and different Pfam domain types also contribute to distinguish eukaryotes from prokaryotes. Unexpectedly, the highest levels--and highest variability--of predicted disorder is found in protists, i.e. single-celled eukaryotes, often surpassing more complex eukaryote organisms, plants and animals. This trend contrasts with that of the number of domain types, which increases rather monotonously toward more complex organisms. The level of structural disorder appears to be strongly correlated with lifestyle, because some obligate intracellular parasites and endosymbionts have the lowest levels, whereas host-changing parasites have the highest level of predicted disorder. We conclude that protists have been the evolutionary hot-bed of experimentation with structural disorder, in a period when structural disorder was actively invented and the major functional classes of disordered proteins established.
Collapse
Affiliation(s)
- Rita Pancsa
- VIB Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Tompa
- VIB Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
12
|
Ng KP, Li KKC, Lee KAW. In vitro activity of the EWS oncogene transcriptional activation domain. Biochemistry 2009; 48:2849-57. [PMID: 19290668 DOI: 10.1021/bi802366h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aberrant chromosomal fusion of the Ewings sarcoma oncogene (EWS) to several different cellular partners gives rise to the Ewing's family of oncogenic proteins [EWS fusion proteins (EFPs)] and associated tumors (EFTs). EFPs are potent transcriptional activators dependent on the N-terminal region of EWS [the EWS activation domain (EAD)], and this function is thought to be central to EFT oncogenesis and maintenance. Thus, EFPs are promising therapeutic targets, and detailed molecular studies of the EAD will be pivotal for exploring this potential. For many reasons, the molecular mechanism of EAD action is poorly understood and one major obstacle to progress is the lack of an in vitro transcription assay. Using well-characterized EAD-dependent activators and soluble nuclear extracts, we have attempted to recapitulate EAD transcriptional activity in vitro. We report that while the EAD activates transcription strongly in vitro, the effect of EAD mutations is strikingly different from that observed in vivo. Our results therefore suggest that crude soluble extracts do not support bona fide EAD activity in vitro, and we discuss our findings in relation to future assay development and potential mechanisms of EAD action.
Collapse
Affiliation(s)
- King Pan Ng
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR China
| | | | | |
Collapse
|
13
|
|
14
|
Sandhu KS. Intrinsic disorder explains diverse nuclear roles of chromatin remodeling proteins. J Mol Recognit 2009; 22:1-8. [PMID: 18802931 DOI: 10.1002/jmr.915] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chromatin remodelers, a group of proteins involved in nucleosome re-positioning and modification, have extensive range of interacting partners. They form multimeric complexes and interact with modified histones, transcription, splicing, and replication factors, DNA, RNA, and the factors related to the maintenance of chromosome structure. Such diverse range of interactions is hard to explain with the presumed highly structured form of the protein. In the current analysis, the conformations of chromatin remodelers were explored using protein disorder prediction algorithms. The study revealed that a significant proportion (p < 2.2e-16) of these proteins harbor at least one long region of intrinsic disorder (>70 aa). These unstructured regions do not exhibit any preference to the N/C terminal or middle of the protein. They do not show any significant representation in the Protein Data Bank (PDB) structure repository. Limited examples from PDB indicate direct involvement of disordered regions in binding of chromatin remodeling proteins to naked or modified DNA, histones, and other chromatin-related factors. Furthermore, intrinsic disorder seen in these proteins correlates to the presence of low sequence complexity regions (p = 1.851e-10) particularly the tandem repeats of hydrophilic and charged amino acids. This probably hints at their evolutionary origin via repeat expansion. The disordered regions may enable these proteins to reversibly bind to various interacting partners and eventually contribute to functional diversity and specialization of chromatin remodeling complexes. These could also endow combinatorial action of multiple domains within a protein. We further discuss the prominent association of intrinsic disorder with other chromatin-related proteins and its functional relevance therein.
Collapse
Affiliation(s)
- Kuljeet Singh Sandhu
- Department of Animal Development and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvagen 18A, Uppsala 75236, Sweden.
| |
Collapse
|
15
|
Fuxreiter M, Tompa P, Simon I, Uversky VN, Hansen JC, Asturias FJ. Malleable machines take shape in eukaryotic transcriptional regulation. Nat Chem Biol 2008; 4:728-37. [PMID: 19008886 DOI: 10.1038/nchembio.127] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transcriptional control requires the spatially and temporally coordinated action of many macromolecular complexes. Chromosomal proteins, transcription factors, co-activators and components of the general transcription machinery, including RNA polymerases, often use structurally or stoichiometrically ill-defined regions for interactions that convey regulatory information in processes ranging from chromatin remodeling to mRNA processing. Determining the functional significance of intrinsically disordered protein regions and developing conceptual models of their action will help to illuminate their key role in transcription regulation. Complexes comprising disordered regions often display short recognition elements embedded in flexible and sequentially variable environments that can lead to structural and functional malleability. This provides versatility to recognize multiple targets having different structures, facilitate conformational rearrangements and physically communicate with many partners in response to environmental changes. All these features expand the capacities of ordered complexes and give rise to efficient regulatory mechanisms.
Collapse
Affiliation(s)
- Monika Fuxreiter
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Karolina ut 29, H-1113, H-1518 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
16
|
Csizmók V, Tompa P. Structural Disorder and Its Connection with Misfolding Diseases. PROTEIN FOLDING AND MISFOLDING: NEURODEGENERATIVE DISEASES 2008. [DOI: 10.1007/978-1-4020-9434-7_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|