1
|
Zheng L, Boeren S, Liu C, Bakker W, Wang H, Rietjens IMCM, Saccenti E. Proteomics-based identification of biomarkers reflecting endogenous and exogenous exposure to the advanced glycation end product precursor methylglyoxal in SH-SY5Y human neuroblastoma cells. Int J Biol Macromol 2024; 272:132859. [PMID: 38838889 DOI: 10.1016/j.ijbiomac.2024.132859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products, is endogenously produced and prevalent in various food products. This study aimed to characterize protein modifications in SH-SY5Y human neuroblastoma cells induced by MGO and identify potential biomarkers for its exposure and toxicity. A shot-gun proteomic analysis was applied to characterize protein modifications in cells incubated with and without exogenous MGO. Seventy-seven proteins were identified as highly susceptible to MGO modification, among which eight, including vimentin and histone H2B type 2-F, showing concentration-dependent modifications by externally added MGO, were defined as biomarkers for exogenous MGO exposure. Remarkably, up to 10 modification sites were identified on vimentin. Myosin light polypeptide 6 emerged as a biomarker for MGO toxicity, with modifications exclusively observed under cytotoxic MGO levels. Additionally, proteins like serine/threonine-protein kinase SIK2 and calcyphosin, exhibiting comparable or even higher modification levels in control compared to exogenous MGO-treated cells, were defined as biomarkers for endogenous exposure. Bioinformatics analysis revealed that motor proteins, cytoskeleton components, and glycolysis proteins were overrepresented among those highly susceptible to MGO modification. These results identify biomarkers for both endogenous and exogenous MGO exposure and provide insights into the cellular effects of endogenously formed versus externally added MGO.
Collapse
Affiliation(s)
- Liang Zheng
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands.
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Chen Liu
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands; Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Haomiao Wang
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
2
|
Bargagli E, Cameli P, Carleo A, Refini RM, Bergantini L, D'alessandro M, Vietri L, Perillo F, Volterrani L, Rottoli P, Bini L, Landi C. The effect of cigarette smoking on bronchoalveolar lavage protein profiles from patients with different interstitial lung diseases. Panminerva Med 2020; 62:109-115. [DOI: 10.23736/s0031-0808.19.03754-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Galani V, Varouktsi A, Papadatos SS, Mitselou A, Sainis I, Constantopoulos S, Dalavanga Y. The role of apoptosis defects in malignant mesothelioma pathogenesis with an impact on prognosis and treatment. Cancer Chemother Pharmacol 2019; 84:241-253. [DOI: 10.1007/s00280-019-03878-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/18/2019] [Indexed: 01/09/2023]
|
4
|
Approaching a Unified Theory for Particle-Induced Inflammation. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2016. [DOI: 10.1007/978-4-431-55732-6_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Kinnula VL, Ishikawa N, Bergmann U, Ohlmeier S. Proteomic approaches for studying human parenchymal lung diseases. Expert Rev Proteomics 2014; 6:619-29. [DOI: 10.1586/epr.09.80] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Calcium signaling-related proteins are associated with broncho-pulmonary dysplasia progression. J Proteomics 2013; 94:401-12. [DOI: 10.1016/j.jprot.2013.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/04/2013] [Accepted: 10/05/2013] [Indexed: 02/07/2023]
|
7
|
Ji C, Wu H, Wei L, Zhao J, Yu J. Proteomic and metabolomic analysis reveal gender-specific responses of mussel Mytilus galloprovincialis to 2,2',4,4'-tetrabromodiphenyl ether (BDE 47). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:449-457. [PMID: 23938206 DOI: 10.1016/j.aquatox.2013.07.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame-retardants (BFRs) that are widely used in industrial products and have posed potential risk on the coastal environment of the Laizhou Bay in China. They are of great concern due to their toxicities, such as hepatotoxicity, carcinogenecity, neurotoxicity, immunotoxicity and endocrine disrupting effects in animals. In this work, we focused on the gender-specific responses of BDE 47 in mussel Mytilus galloprovincialis using a combined proteomic and metabolomic approach. Metabolic responses indicated that BDE 47 mainly caused disturbance in energy metabolism in male mussel gills. For female mussel samples, disruption in both osmotic regulation and energy metabolism was found in terms of differential metabolic profiles. Proteomic responses revealed that BDE 47 induced cell apoptosis and reduced reactive oxygen species (ROS) production in both male and female mussels, disturbance in protein homeostasis in male mussels as well as disturbance in female mussel proteolysis based on the differential proteomic biomarkers. Overall, these results confirmed the gender-specific responses in mussels to BDE 47 exposures. This work demonstrated that an integrated metabolomic and proteomic approach could provide an important insight into the toxicological effects of environmental pollutant to organisms.
Collapse
Affiliation(s)
- Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China
| | | | | | | | | |
Collapse
|
8
|
Ermini L, Bhattacharjee J, Spagnoletti A, Bechi N, Aldi S, Ferretti C, Bianchi L, Bini L, Rosati F, Paulesu L, Ietta F. Oxygen governs Galβ1-3GalNAc epitope in human placenta. Am J Physiol Cell Physiol 2013; 305:C931-40. [PMID: 23948708 DOI: 10.1152/ajpcell.00407.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is becoming increasingly apparent that the dynamics of glycans reflect the physiological state of cells involved in several cell functions including growth, response to signal molecules, migration, as well as adhesion to, interaction with, and recognition of other cells. The presence of glycoconjugates in human placenta suggests their major role in maternal-fetal exchanges, intercellular adhesion, cellular metabolism, and villous vessel branching. Although several studies have described glycoconjugate distribution in the human placenta descriptions of their physiological function and control mechanisms during placental development are lacking. In this study we investigated the developmental distribution and regulation of placental core 1 O- and N-glycans focusing on early and late first trimester human pregnancy. To define the control mechanisms of the oligosaccharide chains during early placentation process, chorionic villous explants and human trophoblast cell lines were exposed to various oxygen levels. We found that oxygen tension regulates changes in core-1 O-glycan (the disaccharide Galβ1-3GalNAc) epitope expression levels. Moreover, by double affinity chromatography and subsequent analysis with mass spectrometry, we identified in the heat shock protein 90-α (HSP90α) a good candidate as carrier of the Galβ1-3GalNAc epitope at low oxygen tension. Our results support a fundamental role of oxygen tension in modulating glycosylation of proteins during placental development.
Collapse
Affiliation(s)
- Leonardo Ermini
- Department of Life Sciences, University of Siena, Siena, Italy; and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fornander L, Ghafouri B, Lindahl M, Graff P. Airway irritation among indoor swimming pool personnel: trichloramine exposure, exhaled NO and protein profiling of nasal lavage fluids. Int Arch Occup Environ Health 2012; 86:571-80. [DOI: 10.1007/s00420-012-0790-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/11/2012] [Indexed: 11/30/2022]
|
10
|
Application of proteomics to soft tissue sarcomas. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:876401. [PMID: 22778956 PMCID: PMC3388341 DOI: 10.1155/2012/876401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/21/2012] [Indexed: 01/27/2023]
Abstract
Soft tissue sarcomas are rare and account for less than 1% of all malignant cancers. Other than development of intensive therapies, the clinical outcome of patients with soft tissue sarcoma remains very poor, particularly when diagnosed at a late stage. Unique mutations have been associated with certain soft tissue sarcomas, but their etiologies remain unknown. The proteome is a functional translation of a genome, which directly regulates the malignant features of tumors. Thus, proteomics is a promising approach for investigating soft tissue sarcomas. Various proteomic approaches and clinical materials have been used to address clinical and biological issues, including biomarker development, molecular target identification, and study of disease mechanisms. Several cancer-associated proteins have been identified using conventional technologies such as 2D-PAGE, mass spectrometry, and array technology. The functional backgrounds of proteins identified were assessed extensively using in vitro experiments, thus supporting expression analysis. These observations demonstrate the applicability of proteomics to soft tissue sarcoma studies. However, the sample size in each study was insufficient to allow conclusive results. Given the low frequency of soft tissue sarcomas, multi-institutional collaborations are required to validate the results of proteomic approaches.
Collapse
|
11
|
Kosanam H, Sato M, Batruch I, Smith C, Keshavjee S, Liu M, Diamandis EP. Differential proteomic analysis of bronchoalveolar lavage fluid from lung transplant patients with and without chronic graft dysfunction. Clin Biochem 2012; 45:223-30. [DOI: 10.1016/j.clinbiochem.2011.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/09/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
|
12
|
Canals D, Perry DM, Jenkins RW, Hannun YA. Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol 2011; 163:694-712. [PMID: 21615386 DOI: 10.1111/j.1476-5381.2011.01279.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sphingolipids represent a class of diverse bioactive lipid molecules that are increasingly appreciated as key modulators of diverse physiologic and pathophysiologic processes that include cell growth, cell death, autophagy, angiogenesis, and stress and inflammatory responses. Sphingomyelinases and ceramidases are key enzymes of sphingolipid metabolism that regulate the formation and degradation of ceramide, one of the most intensely studied classes of sphingolipids. Improved understanding of these enzymes that control not only the levels of ceramide but also the complex interconversion of sphingolipid metabolites has provided the foundation for the functional analysis of the roles of sphingolipids. Our current understanding of the roles of various sphingolipids in the regulation of different cellular processes has come from loss-of-function/gain-of-function studies utilizing genetic deletion/downregulation/overexpression of enzymes of sphingolipid metabolism (e.g. knockout animals, RNA interference) and from the use of pharmacologic inhibitors of these same enzymes. While genetic approaches to evaluate the functional roles of sphingolipid enzymes have been instrumental in advancing the field, the use of pharmacologic inhibitors has been equally important in identifying new roles for sphingolipids in important cellular processes.The latter also promises the development of novel therapeutic targets with implications for cancer therapy, inflammation, diabetes, and neurodegeneration. In this review, we focus on the status and use of pharmacologic compounds that inhibit sphingomyelinases and ceramidases, and we will review the history, current uses and future directions for various small molecule inhibitors, and will highlight studies in which inhibitors of sphingolipid metabolizing enzymes have been used to effectively treat models of human disease.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | |
Collapse
|
13
|
Teeguarden JG, Webb-Robertson BJ, Waters KM, Murray AR, Kisin ER, Varnum SM, Jacobs JM, Pounds JG, Zanger RC, Shvedova AA. Comparative proteomics and pulmonary toxicity of instilled single-walled carbon nanotubes, crocidolite asbestos, and ultrafine carbon black in mice. Toxicol Sci 2010; 120:123-35. [PMID: 21135415 DOI: 10.1093/toxsci/kfq363] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Reflecting their exceptional potential to advance a range of biomedical, aeronautic, and other industrial products, carbon nanotube (CNT) production and the potential for human exposure to aerosolized CNTs are increasing. CNTs have toxicologically significant structural and chemical similarities to asbestos (AB) and have repeatedly been shown to cause pulmonary inflammation, granuloma formation, and fibrosis after inhalation/instillation/aspiration exposure in rodents, a pattern of effects similar to those observed following exposure to AB. To determine the degree to which responses to single-walled CNTs (SWCNT) and AB are similar or different, the pulmonary response of C57BL/6 mice to repeated exposures to SWCNTs, crocidolite AB, and ultrafine carbon black (UFCB) were compared using high-throughput global high performance liquid chromatography fourier transform ion cyclotron resonance mass spectrometry (HPLC-FTICR-MS) proteomics, histopathology, and bronchoalveolar lavage cytokine analyses. Mice were exposed to material suspensions (40 micrograms per mouse) twice a week for 3 weeks by pharyngeal aspiration. Histologically, the incidence and severity of inflammatory and fibrotic responses were greatest in mice treated with SWCNTs. SWCNT treatment affected the greatest changes in abundance of identified lung tissue proteins. The trend in number of proteins affected (SWCNT [376] > AB [231] > UFCB [184]) followed the potency of these materials in three biochemical assays of inflammation (cytokines). SWCNT treatment uniquely affected the abundance of 109 proteins, but these proteins largely represent cellular processes affected by AB treatment as well, further evidence of broad similarity in the tissue-level response to AB and SWCNTs. Two high-sensitivity markers of inflammation, one (S100a9) observed in humans exposed to AB, were found and may be promising biomarkers of human response to SWCNT exposure.
Collapse
|
14
|
|
15
|
Current World Literature. Curr Opin Pulm Med 2009; 15:521-7. [DOI: 10.1097/mcp.0b013e3283304c7b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|