1
|
Wang X, Hua X, Zhang H, Ren Y, Yang F, Zhu J. HABP4 overexpression promotes apoptosis in goat turbinate bone cells. Anim Biotechnol 2023; 34:4187-4195. [PMID: 35522841 DOI: 10.1080/10495398.2022.2062601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Hyaluronic acid-binding protein (HABP4) plays important roles in regulating cell cycle and apoptosis. However, its functions in regulating cell apoptosis remain unclear. To reveal the effects of HABP4 on cell proliferation, cell cycle and apoptosis, the HABP4 sequence was cloned, and we investigated the gain and loss functions of HABP4 in goat turbinate bone cells. Our results showed that a 1,496-bp HABP4 sequence was cloned successfully. The interference effect of siRNA1 on HABP4 was the strongest, reducing its mRNA expression level by 83%, decreasing the cells in the G0/G1 and S phases of the cell cycle and inhibiting cell growth and apoptosis. The overexpression of HABP4 produced contrasting results. Furthermore, an HABP4 knockdown caused the up-regulated expression of genes associated with apoptosis, including Bcl-2 and BCL2L11, but the down-regulation of Caspase3, Caspase7, Bax, PARP1, SOCS2 and P53 mRNA levels. Additionally, HABP4 overexpression significantly up-regulated the expression levels of Bax, Caspase3, Caspase7, BCL2L11, P53, SOCS2 and PARP1. However, the expression of Bcl-2 was down-regulated. These data provide an important foundation for further in-depth studies of HABP4 functions.
Collapse
Affiliation(s)
- Xianjun Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Xiang Hua
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Huanrong Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Yupeng Ren
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Falong Yang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
2
|
Melo-Hanchuk TD, Colleti C, Saito Â, Mendes MCS, Carvalheira JBC, Vassallo J, Kobarg J. Intracellular hyaluronic acid-binding protein 4 (HABP4): a candidate tumor suppressor in colorectal cancer. Oncotarget 2020; 11:4325-4337. [PMID: 33245729 PMCID: PMC7679031 DOI: 10.18632/oncotarget.27804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic Acid-binding protein 4 (HABP4) is a regulatory protein of 57 kDa that is functionally involved in transcription regulation and RNA metabolism and shows several characteristics common to oncoproteins or tumor suppressors, including altered expression in cancer tissues, nucleus/cytoplasm shuttling, intrinsic lack of protein structure, complex interactomes and post translational modifications. Its gene has been found in a region on chromosome 9q22.3-31, which contains SNP haplotypes occurring in individuals with a high risk for familial colon cancer. To test a possible role of HABP4 in tumorigenesis we generated knockout mice by the CRISPR/Cas9 method and treated the animals with azoxymethane (AOM)/dextran sodium sulfate (DSS) for induction of colon tumors. HABP4-/- mice, compared to wild type mice, had more and larger tumors, and expressed more of the proliferation marker proteins Cyclin-D1, CDK4 and PCNA. Furthermore, the cells of the bottom of the colon crypts in the HABP4-/- mice divided more rapidly. Next, we generated also HABP4-/- HCT 116 cells, in cell culture and found again an increased proliferation in clonogenic assays in comparison to wild-type cells. Our study of the protein expression levels of HABP4 in human colon cancer samples, through immunohistochemistry assays, showed, that 30% of the tumors analyzed had low expression of HABP4. Our data suggest that HABP4 is involved in proliferation regulation of colon cells in vitro and in vivo and that it is a promising new candidate for a tumor suppressor protein that can be explored both in the diagnosis and possibly therapy of colon cancer.
Collapse
Affiliation(s)
- Talita Diniz Melo-Hanchuk
- 2Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- *These authors contributed equally to this work
| | - Carolina Colleti
- 1School of Pharmaceutical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- *These authors contributed equally to this work
| | - Ângela Saito
- 3Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- *These authors contributed equally to this work
| | - Maria Carolina Santos Mendes
- 4Division of Oncology, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - José Barreto Campello Carvalheira
- 4Division of Oncology, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jose Vassallo
- 5Laboratory of Investigative Pathology, CIPED, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Jörg Kobarg
- 1School of Pharmaceutical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Correspondence to: Jörg Kobarg, email:
| |
Collapse
|
3
|
Clark PL, Plaxco KW, Sosnick TR. Water as a Good Solvent for Unfolded Proteins: Folding and Collapse are Fundamentally Different. J Mol Biol 2020; 432:2882-2889. [PMID: 32044346 DOI: 10.1016/j.jmb.2020.01.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022]
Abstract
The argument that the hydrophobic effect is the primary effect driving the folding of globular proteins is nearly universally accepted (including by the authors). But does this view also imply that water is a "poor" solvent for the unfolded states of these same proteins? Here we argue that the answer is "no," that is, folding to a well-packed, extensively hydrogen-bonded native structure differs fundamentally from the nonspecific chain collapse that defines a poor solvent. Thus, the observation that a protein folds in water does not necessitate that water is a poor solvent for its unfolded state. Indeed, chain-solvent interactions that are marginally more favorable than nonspecific intrachain interactions are beneficial to protein function because they destabilize deleterious misfolded conformations and inter-chain interactions.
Collapse
Affiliation(s)
- Patricia L Clark
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
| | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Abstract
Intrinsically disordered proteins (IDPs) can adopt a range of conformations from globules to swollen coils. This large range of conformational preferences for different IDPs raises the question of how conformational preferences are encoded by sequence. Global compositional features of a sequence such as the fraction of charged residues and the net charge per residue engender certain conformational biases. However, more specific sequence features such as the patterning of oppositely charged residues, expansion driving residues, or residues that can undergo posttranslational modifications can also influence the conformational ensembles of an IDP. Here, we outline how to calculate important global compositional features and patterning metrics that can be used to classify IDPs into different conformational classes and predict relative changes in conformation for sequences with the same amino acid composition. Although increased effort has been devoted to determining conformational properties of IDPs in recent years, quantitative predictions of conformation directly from sequence remain difficult and often inaccurate. Thus, if quantitative predictions of conformational properties are desired, then sequence-specific simulations must be performed.
Collapse
Affiliation(s)
- Kiersten M Ruff
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
5
|
Colleti C, Melo-Hanchuk TD, da Silva FRM, Saito Â, Kobarg J. Complex interactomes and post-translational modifications of the regulatory proteins HABP4 and SERBP1 suggest pleiotropic cellular functions. World J Biol Chem 2019; 10:44-64. [PMID: 31768228 PMCID: PMC6872977 DOI: 10.4331/wjbc.v10.i3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
The 57 kDa antigen recognized by the Ki-1 antibody, is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7% identity and 67.4% similarity with serpin mRNA binding protein 1, which is also named CGI-55, or plasminogen activator inhibitor type-1-RNA binding protein-1, indicating that they might be paralog proteins, possibly with similar or redundant functions in human cells. Through the identification of their protein interactomes, both regulatory proteins have been functionally implicated in transcriptional regulation, mRNA metabolism, specifically RNA splicing, the regulation of mRNA stability, especially, in the context of the progesterone hormone response, and the DNA damage response. Both proteins also show a complex pattern of post-translational modifications, involving Ser/Thr phosphorylation, mainly through protein kinase C, arginine methylation and SUMOylation, suggesting that their functions and locations are highly regulated. Furthermore, they show a highly dynamic cellular localization pattern with localizations in both the cytoplasm and nucleus as well as punctuated localizations in both granular cytoplasmic protein bodies, upon stress, and nuclear splicing speckles. Several reports in the literature show altered expressions of both regulatory proteins in a series of cancers as well as mutations in their genes that may contribute to tumorigenesis. This review highlights important aspects of the structure, interactome, post-translational modifications, sub-cellular localization and function of both regulatory proteins and further discusses their possible functions and their potential as tumor markers in different cancer settings.
Collapse
Affiliation(s)
- Carolina Colleti
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Talita Diniz Melo-Hanchuk
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Flávia Regina Moraes da Silva
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Ângela Saito
- Laboratório Nacional de Biociências, CNPEM, Campinas 13083-970, Brazil
| | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| |
Collapse
|
6
|
Commonly used FRET fluorophores promote collapse of an otherwise disordered protein. Proc Natl Acad Sci U S A 2019; 116:8889-8894. [PMID: 30992378 DOI: 10.1073/pnas.1813038116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The dimensions that unfolded proteins, including intrinsically disordered proteins (IDPs), adopt in the absence of denaturant remain controversial. We developed an analysis procedure for small-angle X-ray scattering (SAXS) profiles and used it to demonstrate that even relatively hydrophobic IDPs remain nearly as expanded in water as they are in high denaturant concentrations. In contrast, as demonstrated here, most fluorescence resonance energy transfer (FRET) measurements have indicated that relatively hydrophobic IDPs contract significantly in the absence of denaturant. We use two independent approaches to further explore this controversy. First, using SAXS we show that fluorophores employed in FRET can contribute to the observed discrepancy. Specifically, we find that addition of Alexa-488 to a normally expanded IDP causes contraction by an additional 15%, a value in reasonable accord with the contraction reported in FRET-based studies. Second, using our simulations and analysis procedure to accurately extract both the radius of gyration (Rg) and end-to-end distance (Ree) from SAXS profiles, we tested the recent suggestion that FRET and SAXS results can be reconciled if the Rg and Ree are "uncoupled" (i.e., no longer simply proportional), in contrast to the case for random walk homopolymers. We find, however, that even for unfolded proteins, these two measures of unfolded state dimensions remain proportional. Together, these results suggest that improved analysis procedures and a correction for significant, fluorophore-driven interactions are sufficient to reconcile prior SAXS and FRET studies, thus providing a unified picture of the nature of unfolded polypeptide chains in the absence of denaturant.
Collapse
|
7
|
Saito Â, Souza EE, Costa FC, Meirelles GV, Gonçalves KA, Santos MT, Bressan GC, McComb ME, Costello CE, Whelan SA, Kobarg J. Human Regulatory Protein Ki-1/57 Is a Target of SUMOylation and Affects PML Nuclear Body Formation. J Proteome Res 2017; 16:3147-3157. [PMID: 28695742 DOI: 10.1021/acs.jproteome.7b00001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ki-1/57 is a nuclear and cytoplasmic regulatory protein first identified in malignant cells from Hodgkin's lymphoma. It is involved in gene expression regulation on both transcriptional and mRNA metabolism levels. Ki-1/57 belongs to the family of intrinsically unstructured proteins and undergoes phosphorylation by PKC and methylation by PRMT1. Previous characterization of its protein interaction profile by yeast two-hybrid screening showed that Ki-1/57 interacts with proteins of the SUMOylation machinery, the SUMO E2 conjugating enzyme UBC9 and the SUMO E3 ligase PIAS3, which suggested that Ki-1/57 could be involved with this process. Here we identified seven potential SUMO target sites (lysine residues) on Ki-1/57 sequence and observed that Ki-1/57 is modified by SUMO proteins in vitro and in vivo. We showed that SUMOylation of Ki-1/57 occurred on lysines 213, 276, and 336. In transfected cells expressing FLAG-Ki-1/57 wild-type, its paralog FLAG-CGI-55 wild-type, or their non-SUMOylated triple mutants, the number of PML-nuclear bodies (PML-NBs) is reduced compared with the control cells not expressing the constructs. More interestingly, after treating cells with arsenic trioxide (As2O3), the number of PML-NBs is no longer reduced when the non-SUMOylated triple mutant Ki-1/57 is expressed, suggesting that the SUMOylation of Ki-1/57 has a role in the control of As2O3-induced PML-NB formation. A proteome-wide analysis of Ki-1/57 partners in the presence of either SUMO-1 or SUMO-2 suggests that the involvement of Ki-1/57 with the regulation of gene expression is independent of the presence of either SUMO-1 or SUMO-2; however, the presence of SUMO-1 strongly influences the interaction of Ki-1/57 with proteins associated with cellular metabolism, maintenance, and cell cycle.
Collapse
Affiliation(s)
- Ângela Saito
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) , Campinas, São Paulo 13083-970, Brazil
| | - Edmarcia E Souza
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas , Campinas, São Paulo 13083-859, Brazil
| | - Fernanda C Costa
- Instituto de Física de São Carlos, Universidade de São Paulo , São Carlos, São Paulo 13563-120, Brazil
| | - Gabriela V Meirelles
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) , Campinas, São Paulo 13083-970, Brazil
| | - Kaliandra A Gonçalves
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) , Campinas, São Paulo 13083-970, Brazil
| | - Marcos T Santos
- ONKOS Molecular Diagnostics, Inc. , R&D Department, Ribeirão Preto, São Paulo 14056-680, Brazil
| | - Gustavo C Bressan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa (UFV) , Viçosa, Minas Gerais 36570-000, Brazil
| | - Mark E McComb
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Stephen A Whelan
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas , Campinas, São Paulo 13083-859, Brazil.,Departamento de Bioquímica e Biologia Tecidual, Programa de Pós-graduação em Biologia Funcional e Molecular, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil
| |
Collapse
|
8
|
Bolger GB. The RNA-binding protein SERBP1 interacts selectively with the signaling protein RACK1. Cell Signal 2017; 35:256-263. [PMID: 28267599 DOI: 10.1016/j.cellsig.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022]
Abstract
The RACK1 protein interacts with numerous proteins involved in signal transduction, the cytoskeleton, and mRNA splicing and translation. We used the 2-hybrid system to identify additional proteins interacting with RACK1 and isolated the RNA-binding protein SERBP1. SERPB1 shares amino acid sequence homology with HABP4 (also known as Ki-1/57), a component of the RNA spicing machinery that has been shown previously to interact with RACK1. Several different isoforms of SERBP1, generated by alternative mRNA splicing, interacted with RACK1 with indistinguishable interaction strength, as determined by a 2-hybrid beta-galactosidase assay. Analysis of deletion constructs of SERBP1 showed that the C-terminal third of the SERBP1 protein, which contains one of its two substrate sites for protein arginine N-methyltransferase 1 (PRMT1), is necessary and sufficient for it to interact with RACK1. Analysis of single amino acid substitutions in RACK1, identified in a reverse 2-hybrid screen, showed very substantial overlap with those implicated in the interaction of RACK1 with the cAMP-selective phosphodiesterase PDE4D5. These data are consistent with SERBP1 interacting selectively with RACK1, mediated by an extensive interaction surface on both proteins.
Collapse
Affiliation(s)
- Graeme B Bolger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA; Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| |
Collapse
|
9
|
Cordeiro TN, Herranz-Trillo F, Urbanek A, Estaña A, Cortés J, Sibille N, Bernadó P. Structural Characterization of Highly Flexible Proteins by Small-Angle Scattering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:107-129. [DOI: 10.1007/978-981-10-6038-0_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Lenton S, Seydel T, Nylander T, Holt C, Härtlein M, Teixeira S, Zaccai G. Dynamic footprint of sequestration in the molecular fluctuations of osteopontin. J R Soc Interface 2015; 12:0506. [PMID: 26354827 PMCID: PMC4614460 DOI: 10.1098/rsif.2015.0506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/19/2015] [Indexed: 11/12/2022] Open
Abstract
The sequestration of calcium phosphate by unfolded proteins is fundamental to the stabilization of biofluids supersaturated with respect to hydroxyapatite, such as milk, blood or urine. The unfolded state of osteopontin (OPN) is thought to be a prerequisite for this activity, which leads to the formation of core-shell calcium phosphate nanoclusters. We report on the structures and dynamics of a native OPN peptide from bovine milk, studied by neutron spectroscopy and small-angle X-ray and neutron scattering. The effects of sequestration are quantified on the nanosecond- ångström resolution by elastic incoherent neutron scattering. The molecular fluctuations of the free phosphopeptide are in agreement with a highly flexible protein. An increased resilience to diffusive motions of OPN is corroborated by molecular fluctuations similar to those observed for globular proteins, yet retaining conformational flexibilities. The results bring insight into the modulation of the activity of OPN and phosphopeptides with a role in the control of biomineralization. The quantification of such effects provides an important handle for the future design of new peptides based on the dynamics-activity relationship.
Collapse
Affiliation(s)
- S Lenton
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France Environment, Physical Sciences and Applied Mathematics Research Institute, Keele University, Staffordshire ST5 5BG, UK
| | - T Seydel
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - T Nylander
- Division of Physical Chemistry, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - C Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - M Härtlein
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - S Teixeira
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France Environment, Physical Sciences and Applied Mathematics Research Institute, Keele University, Staffordshire ST5 5BG, UK
| | - G Zaccai
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble cedex 9, France C.N.R.S., Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|
11
|
Costa FC, Saito A, Gonçalves KA, Vidigal PM, Meirelles GV, Bressan GC, Kobarg J. Ki-1/57 and CGI-55 ectopic expression impact cellular pathways involved in proliferation and stress response regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2944-56. [PMID: 25205453 DOI: 10.1016/j.bbamcr.2014.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Ki-1/57 (HABP4) and CGI-55 (SERBP1) are regulatory proteins and paralogs with 40.7% amino acid sequence identity and 67.4% similarity. Functionally, they have been implicated in the regulation of gene expression on both the transcriptional and mRNA metabolism levels. A link with tumorigenesis is suggested, since both paralogs show altered expression levels in tumor cells and the Ki-1/57 gene is found in a region of chromosome 9q that represents a haplotype for familiar colon cancer. However, the target genes regulated by Ki-1/57 and CGI-55 are unknown. Here, we analyzed the alterations of the global transcriptome profile after Ki-1/57 or CGI-55 overexpression in HEK293T cells by DNA microchip technology. We were able to identify 363 or 190 down-regulated and 50 or 27 up-regulated genes for Ki-1/57 and CGI-55, respectively, of which 20 were shared between both proteins. Expression levels of selected genes were confirmed by qRT-PCR both after protein overexpression and siRNA knockdown. The majority of the genes with altered expression were associated to proliferation, apoptosis and cell cycle control processes, prompting us to further explore these contexts experimentally. We observed that overexpression of Ki-1/57 or CGI-55 results in reduced cell proliferation, mainly due to a G1 phase arrest, whereas siRNA knockdown of CGI-55 caused an increase in proliferation. In the case of Ki-1/57 overexpression, we found protection from apoptosis after treatment with the ER-stress inducer thapsigargin. Together, our data give important new insights that may help to explain these proteins putative involvement in tumorigenic events.
Collapse
Affiliation(s)
- Fernanda C Costa
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil.
| | - Angela Saito
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Kaliandra A Gonçalves
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Pedro M Vidigal
- Laboratório de Bioinformática, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil.
| | - Gabriela V Meirelles
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil.
| | - Gustavo C Bressan
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil; Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil; Departamento de Genética, Evolução e Bioagentes - Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| |
Collapse
|
12
|
Watson MC, Curtis JE. Probing the average local structure of biomolecules using small-angle scattering and scaling laws. Biophys J 2014; 106:2474-82. [PMID: 24896127 PMCID: PMC4052260 DOI: 10.1016/j.bpj.2014.03.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/16/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022] Open
Abstract
Small-angle neutron and x-ray scattering have become invaluable tools for probing the nanostructure of molecules in solution. It was recently shown that the definite integral of the scattering profile exhibits a scaling (power-law) behavior with respect to molecular mass. We derive the origin of this relationship, and discuss how the integrated scattering profile can be used to identify differing levels of disorder over local ≲30 Å length scales. We apply our analysis to globular and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Max C Watson
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland.
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland.
| |
Collapse
|
13
|
Bernadó P, Svergun DI. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. MOLECULAR BIOSYSTEMS 2011; 8:151-67. [PMID: 21947276 DOI: 10.1039/c1mb05275f] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Small-angle scattering of X-rays (SAXS) is an established method to study the overall structure and structural transitions of biological macromolecules in solution. For folded proteins, the technique provides three-dimensional low resolution structures ab initio or it can be used to drive rigid-body modeling. SAXS is also a powerful tool for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs), and is highly complementary to the high resolution methods of X-ray crystallography and NMR. Here we present the basic principles of SAXS and review the main approaches to the characterization of IDPs and flexible multidomain proteins using SAXS. Together with the standard approaches based on the analysis of overall parameters, a recently developed Ensemble Optimization Method (EOM) is now available. The latter method allows for the co-existence of multiple protein conformations in solution compatible with the scattering data. Analysis of the selected ensembles provides quantitative information about flexibility and also offers insights into structural features. Examples of the use of SAXS and combined approaches with NMR, X-ray crystallography, and computational methods to characterize completely or partially disordered proteins are presented.
Collapse
Affiliation(s)
- Pau Bernadó
- Institute for Research in Biomedicine, Parc Científic de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
14
|
Meirelles GV, Silva JC, Mendonça YDA, Ramos CHI, Torriani IL, Kobarg J. Human Nek6 is a monomeric mostly globular kinase with an unfolded short N-terminal domain. BMC STRUCTURAL BIOLOGY 2011; 11:12. [PMID: 21320329 PMCID: PMC3053220 DOI: 10.1186/1472-6807-11-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/14/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND The NIMA-related kinases (Neks) are widespread among eukaryotes. In mammalians they represent an evolutionarily conserved family of 11 serine/threonine kinases, with 40-45% amino acid sequence identity to the Aspergillus nidulans mitotic regulator NIMA within their catalytic domains. Neks have cell cycle-related functions and were recently described as related to pathologies, particularly cancer, consisting in potential chemotherapeutic targets. Human Nek6, -7 and -9 are involved in the control of mitotic spindle formation, acting together in a mitotic kinase cascade, but their mechanism of regulation remain elusive. RESULTS In this study we performed a biophysical and structural characterization of human Nek6 with the aim of obtaining its low resolution and homology models. SAXS experiments showed that hNek6 is a monomer of a mostly globular, though slightly elongated shape. Comparative molecular modeling together with disorder prediction analysis also revealed a flexible disordered N-terminal domain for hNek6, which we found to be important to mediate interactions with diverse partners. SEC-MALS experiments showed that hNek6 conformation is dependent on its activation/phosphorylation status, a higher phosphorylation degree corresponding to a bigger Stokes radius. Circular dichroism spectroscopy confirmed our in silico predictions of secondary structure content and thermal stability shift assays revealed a slightly higher stability of wild-type hNek6 compared to the activation loop mutant hNek6(S206A). CONCLUSIONS Our data present the first low resolution 3D structure of hNek6 protein in solution. SAXS, comparative modeling and SEC-MALS analysis revealed that hNek6 is a monomeric kinase of slightly elongated shape and a short unfolded N-terminal domain.
Collapse
Affiliation(s)
- Gabriela V Meirelles
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
| | - Júlio C Silva
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Yuri de A Mendonça
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Carlos HI Ramos
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Iris L Torriani
- Laboratório Nacional de Luz Síncrotron, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
15
|
Lens Z, Dewitte F, Monté D, Baert JL, Bompard C, Sénéchal M, Van Lint C, de Launoit Y, Villeret V, Verger A. Solution structure of the N-terminal transactivation domain of ERM modified by SUMO-1. Biochem Biophys Res Commun 2010; 399:104-10. [PMID: 20647002 DOI: 10.1016/j.bbrc.2010.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
ERM is a member of the PEA3 group of the Ets transcription factor family that plays important roles in development and tumorigenesis. The PEA3s share an N-terminal transactivation domain (TADn) whose activity is inhibited by small ubiquitin-like modifier (SUMO). However, the consequences of sumoylation and its underlying molecular mechanism remain unclear. The domain structure of ERM TADn alone or modified by SUMO-1 was analyzed using small-angle X-ray scattering (SAXS). Low resolution shapes determined ab initio from the scattering data indicated an elongated shape and an unstructured conformation of TADn in solution. Covalent attachment of SUMO-1 does not perturb the structure of TADn as indicated by the linear arrangement of the SUMO moiety with respect to TADn. Thus, ERM belongs to the growing family of proteins that contain intrinsically unstructured regions. The flexible nature of TADn may be instrumental for ERM recognition and binding to diverse molecular partners.
Collapse
Affiliation(s)
- Zoé Lens
- IRI USR CNRS, Parc CNRS de la Haute Borne, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gonçalves KA, Borges JC, Silva JC, Papa PF, Bressan GC, Torriani IL, Kobarg J. Solution structure of the human signaling protein RACK1. BMC STRUCTURAL BIOLOGY 2010; 10:15. [PMID: 20529362 PMCID: PMC2896345 DOI: 10.1186/1472-6807-10-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 06/08/2010] [Indexed: 01/09/2023]
Abstract
Background The adaptor protein RACK1 (receptor of activated kinase 1) was originally identified as an anchoring protein for protein kinase C. RACK1 is a 36 kDa protein, and is composed of seven WD repeats which mediate its protein-protein interactions. RACK1 is ubiquitously expressed and has been implicated in diverse cellular processes involving: protein translation regulation, neuropathological processes, cellular stress, and tissue development. Results In this study we performed a biophysical analysis of human RACK1 with the aim of obtaining low resolution structural information. Small angle X-ray scattering (SAXS) experiments demonstrated that human RACK1 is globular and monomeric in solution and its low resolution structure is strikingly similar to that of an homology model previously calculated by us and to the crystallographic structure of RACK1 isoform A from Arabidopsis thaliana. Both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation techniques showed that RACK1 is predominantly a monomer of around 37 kDa in solution, but also presents small amounts of oligomeric species. Moreover, hydrodynamic data suggested that RACK1 has a slightly asymmetric shape. The interaction of RACK1 and Ki-1/57 was tested by sedimentation equilibrium. The results suggested that the association between RACK1 and Ki-1/57(122-413) follows a stoichiometry of 1:1. The binding constant (KB) observed for RACK1-Ki-1/57(122-413) interaction was of around (1.5 ± 0.2) × 106 M-1 and resulted in a dissociation constant (KD) of (0.7 ± 0.1) × 10-6 M. Moreover, the fluorescence data also suggests that the interaction may occur in a cooperative fashion. Conclusion Our SAXS and analytical ultracentrifugation experiments indicated that RACK1 is predominantly a monomer in solution. RACK1 and Ki-1/57(122-413) interact strongly under the tested conditions.
Collapse
Affiliation(s)
- Kaliandra A Gonçalves
- Laboratório Nacional de Biociências (LNBio), Centro de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|