1
|
Shrestha HK, Appidi MR, Villalobos Solis MI, Wang J, Carper DL, Burdick L, Pelletier DA, Doktycz MJ, Hettich RL, Abraham PE. Metaproteomics reveals insights into microbial structure, interactions, and dynamic regulation in defined communities as they respond to environmental disturbance. BMC Microbiol 2021; 21:308. [PMID: 34749649 PMCID: PMC8574000 DOI: 10.1186/s12866-021-02370-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Background Microbe-microbe interactions between members of the plant rhizosphere are important but remain poorly understood. A more comprehensive understanding of the molecular mechanisms used by microbes to cooperate, compete, and persist has been challenging because of the complexity of natural ecosystems and the limited control over environmental factors. One strategy to address this challenge relies on studying complexity in a progressive manner, by first building a detailed understanding of relatively simple subsets of the community and then achieving high predictive power through combining different building blocks (e.g., hosts, community members) for different environments. Herein, we coupled this reductionist approach with high-resolution mass spectrometry-based metaproteomics to study molecular mechanisms driving community assembly, adaptation, and functionality for a defined community of ten taxonomically diverse bacterial members of Populus deltoides rhizosphere co-cultured either in a complex or defined medium. Results Metaproteomics showed this defined community assembled into distinct microbiomes based on growth media that eventually exhibit composition and functional stability over time. The community grown in two different media showed variation in composition, yet both were dominated by only a few microbial strains. Proteome-wide interrogation provided detailed insights into the functional behavior of each dominant member as they adjust to changing community compositions and environments. The emergence and persistence of select microbes in these communities were driven by specialization in strategies including motility, antibiotic production, altered metabolism, and dormancy. Protein-level interrogation identified post-translational modifications that provided additional insights into regulatory mechanisms influencing microbial adaptation in the changing environments. Conclusions This study provides high-resolution proteome-level insights into our understanding of microbe-microbe interactions and highlights specialized biological processes carried out by specific members of assembled microbiomes to compete and persist in changing environmental conditions. Emergent properties observed in these lower complexity communities can then be re-evaluated as more complex systems are studied and, when a particular property becomes less relevant, higher-order interactions can be identified. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02370-4.
Collapse
Affiliation(s)
- Him K Shrestha
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States.,Department of Genome Science and Technology, University of Tennessee-Knoxville, 37996, Knoxville, Tennessee, United States
| | - Manasa R Appidi
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States.,Department of Genome Science and Technology, University of Tennessee-Knoxville, 37996, Knoxville, Tennessee, United States
| | | | - Jia Wang
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States
| | - Dana L Carper
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States
| | - Leah Burdick
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States
| | - Paul E Abraham
- Biosciences Division, Oak Ridge National Laboratory, 37831, Oak Ridge, Tennessee, United States.
| |
Collapse
|
2
|
Zhao B, Reilly CP, Reilly JP. ETD-Cleavable Linker for Confident Cross-linked Peptide Identifications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1631-1642. [PMID: 31098958 DOI: 10.1007/s13361-019-02227-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Peptide cross-links formed using the homobifunctional-linker diethyl suberthioimidate (DEST) are shown to be ETD-cleavable. DEST has a spacer arm consisting of a 6-carbon alkyl chain and it cleaves at the amidino groups created upon reaction with primary amines. In ETD MS2 spectra, DEST cross-links can be recognized based on mass pairs consisting of peptide-NH2• and peptide+linker+NH3 ions, and backbone cleavages are more equally distributed over the two constituent peptides compared with collisional activation. Dead ends that are often challenging to distinguish from cross-links are diagnosed by intense reporter ions. ETD mass pairs can be used in MS3 experiments to confirm cross-link identifications. These features provide a simple but reliable approach to identify cross-links that should facilitate studies of protein complexes.
Collapse
Affiliation(s)
- Bingqing Zhao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Colin P Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - James P Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA.
| |
Collapse
|
3
|
Arnold RJ, Saraswat S, Reilly JP. Analysis of Methylation, Acetylation, and Other Modifications in Bacterial Ribosomal Proteins. Methods Mol Biol 2019; 1934:293-307. [PMID: 31256386 DOI: 10.1007/978-1-4939-9055-9_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A wide variety of posttranslational modifications of expressed proteins are known to occur in living organisms (Krishna R, Wold F. Post-translational modification of proteins. In: Meister A (ed) Advances in enzymology and related areas of molecular biology. Wiley, New York, 1993, pp 265-296). Although their presence in an organism cannot be predicted from the genome, these modifications can play critical roles in protein structure and function. The identification of posttranslational modifications is critical to our understanding of the functions of proteins involved in important biological pathways and mass spectrometry offers a fast, accurate method for observing them. A combined top-down/bottom-up approach can be used for identification and localization of posttranslational modifications of ribosomal proteins. This chapter describes procedures for analyzing Escherichia coli ribosomal proteins and their modifications by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. It also covers the analysis of gram-negative Caulobacter crescentus and gram-positive Bacillus subtilis ribosomal proteins by electrospray quadrupole time-of-flight (ESI-QTOF) mass spectrometry. Confirmation of the occurrence and localization of PTMs is obtained through mass spectrometric analysis of tryptic peptides.
Collapse
Affiliation(s)
- Randy J Arnold
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Suraj Saraswat
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - James P Reilly
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
4
|
Wang Q, Cen Z, Zhao J. The survival mechanisms of thermophiles at high temperatures: an angle of omics. Physiology (Bethesda) 2015; 30:97-106. [PMID: 25729055 DOI: 10.1152/physiol.00066.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thermophiles are referred to as microorganisms with optimal growth temperatures of >60 °C. Over the past few years, a number of studies have been conducted regarding thermophiles, especially using the omics strategies. This review provides a systematic view of the survival physiology of thermophiles from an "omics" perspective, which suggests that the adaptive ability of thermophiles is based on a cooperative mode with multi-dimensional regulations integrating genomics, transcriptomics, and proteomics.
Collapse
Affiliation(s)
- Quanhui Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and BGI-Shenzhen, Shenzhen, China
| | - Zhen Cen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| | - Jingjing Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| |
Collapse
|
5
|
Leon DR, Ytterberg AJ, Boontheung P, Kim U, Loo JA, Gunsalus RP, Ogorzalek Loo RR. Mining proteomic data to expose protein modifications in Methanosarcina mazei strain Gö1. Front Microbiol 2015; 6:149. [PMID: 25798134 PMCID: PMC4350412 DOI: 10.3389/fmicb.2015.00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022] Open
Abstract
Proteomic tools identify constituents of complex mixtures, often delivering long lists of identified proteins. The high-throughput methods excel at matching tandem mass spectrometry data to spectra predicted from sequence databases. Unassigned mass spectra are ignored, but could, in principle, provide valuable information on unanticipated modifications and improve protein annotations while consuming limited quantities of material. Strategies to "mine" information from these discards are presented, along with discussion of features that, when present, provide strong support for modifications. In this study we mined LC-MS/MS datasets of proteolytically-digested concanavalin A pull down fractions from Methanosarcina mazei Gö1 cell lysates. Analyses identified 154 proteins. Many of the observed proteins displayed post-translationally modified forms, including O-formylated and methyl-esterified segments that appear biologically relevant (i.e., not artifacts of sample handling). Interesting cleavages and modifications (e.g., S-cyanylation and trimethylation) were observed near catalytic sites of methanogenesis enzymes. Of 31 Methanosarcina protein N-termini recovered by concanavalin A binding or from a previous study, only M. mazei S-layer protein MM1976 and its M. acetivorans C2A orthologue, MA0829, underwent signal peptide excision. Experimental results contrast with predictions from algorithms SignalP 3.0 and Exprot, which were found to over-predict the presence of signal peptides. Proteins MM0002, MM0716, MM1364, and MM1976 were found to be glycosylated, and employing chromatography tailored specifically for glycopeptides will likely reveal more. This study supplements limited, existing experimental datasets of mature archaeal N-termini, including presence or absence of signal peptides, translation initiation sites, and other processing. Methanosarcina surface and membrane proteins are richly modified.
Collapse
Affiliation(s)
- Deborah R Leon
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, CA, USA
| | - A Jimmy Ytterberg
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, CA, USA
| | - Pinmanee Boontheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, CA, USA
| | - Unmi Kim
- Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles Los Angeles, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles Los Angeles, CA, USA ; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA ; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles Los Angeles, CA, USA
| | - Robert P Gunsalus
- Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles Los Angeles, CA, USA ; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles Los Angeles, CA, USA
| | - Rachel R Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA ; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles Los Angeles, CA, USA
| |
Collapse
|
6
|
Vaughan RC, Kao CC. Mapping protein-RNA interactions by RCAP, RNA-cross-linking and peptide fingerprinting. Methods Mol Biol 2015; 1297:225-236. [PMID: 25896007 DOI: 10.1007/978-1-4939-2562-9_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
RNA nanotechnology often feature protein RNA complexes. The interaction between proteins and large RNAs are difficult to study using traditional structure-based methods like NMR or X-ray crystallography. RCAP, an approach that uses reversible-cross-linking affinity purification method coupled with mass spectrometry, has been developed to map regions within proteins that contact RNA. This chapter details how RCAP is applied to map protein-RNA contacts within virions.
Collapse
Affiliation(s)
- Robert C Vaughan
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne St., 201A Simon Hall, Bloomington, IN, 47405, USA,
| | | |
Collapse
|
7
|
Cammarata M, Lin KY, Pruet J, Liu HW, Brodbelt J. Probing the Unfolding of Myoglobin and Domain C of PARP-1 with Covalent Labeling and Top-Down Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2014; 86:2534-42. [DOI: 10.1021/ac4036235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Michael Cammarata
- Department of Chemistry, University of Texas at Austin, 1 University
Station A5300, Austin, Texas 78212, United States
| | - Ke-Yi Lin
- Department of Chemistry, University of Texas at Austin, 1 University
Station A5300, Austin, Texas 78212, United States
| | - Jeff Pruet
- Department of Chemistry, University of Texas at Austin, 1 University
Station A5300, Austin, Texas 78212, United States
| | - Hung-wen Liu
- Department of Chemistry, University of Texas at Austin, 1 University
Station A5300, Austin, Texas 78212, United States
| | - Jennifer Brodbelt
- Department of Chemistry, University of Texas at Austin, 1 University
Station A5300, Austin, Texas 78212, United States
| |
Collapse
|
8
|
Strader MB, Hervey WJ, Costantino N, Fujigaki S, Chen CY, Akal-Strader A, Ihunnah CA, Makusky AJ, Court DL, Markey SP, Kowalak JA. A coordinated proteomic approach for identifying proteins that interact with the E. coli ribosomal protein S12. J Proteome Res 2013; 12:1289-99. [PMID: 23305560 DOI: 10.1021/pr3009435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial ribosomal protein S12 contains a universally conserved D88 residue on a loop region thought to be critically involved in translation due to its proximal location to the A site of the 30S subunit. While D88 mutants are lethal this residue has been found to be post-translationally modified to β-methylthioaspartic acid, a post-translational modification (PTM) identified in S12 orthologs from several phylogenetically distinct bacteria. In a previous report focused on characterizing this PTM, our results provided evidence that this conserved loop region might be involved in forming multiple proteins-protein interactions ( Strader , M. B. ; Costantino , N. ; Elkins , C. A. ; Chen , C. Y. ; Patel , I. ; Makusky , A. J. ; Choy , J. S. ; Court , D. L. ; Markey , S. P. ; Kowalak , J. A. A proteomic and transcriptomic approach reveals new insight into betamethylthiolation of Escherichia coli ribosomal protein S12. Mol. Cell. Proteomics 2011 , 10 , M110 005199 ). To follow-up on this study, the D88 containing loop was probed to identify candidate binders employing a two-step complementary affinity purification strategy. The first involved an endogenously expressed S12 protein containing a C-terminal tag for capturing S12 binding partners. The second strategy utilized a synthetic biotinylated peptide representing the D88 conserved loop region for capturing S12 loop interaction partners. Captured proteins from both approaches were detected by utilizing SDS-PAGE and one-dimensional liquid chromatography-tandem mass spectrometry. The results presented in this report revealed proteins that form direct interactions with the 30S subunit and elucidated which are likely to interact with S12. In addition, we provide evidence that two proteins involved in regulating ribosome and/or mRNA transcript levels under stress conditions, RNase R and Hfq, form direct interactions with the S12 conserved loop, suggesting that it is likely part of a protein binding interface.
Collapse
Affiliation(s)
- Michael Brad Strader
- Laboratory of Neurotoxicology, National Institute of Mental Health , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lauber MA, Rappsilber J, Reilly JP. Dynamics of ribosomal protein S1 on a bacterial ribosome with cross-linking and mass spectrometry. Mol Cell Proteomics 2012; 11:1965-76. [PMID: 23033476 PMCID: PMC3518124 DOI: 10.1074/mcp.m112.019562] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/19/2012] [Indexed: 11/23/2022] Open
Abstract
Ribosomal protein S1 has been shown to be a significant effector of prokaryotic translation. The protein is in fact capable of efficiently initiating translation, regardless of the presence of a Shine-Dalgarno sequence in mRNA. Structural insights into this process have remained elusive, as S1 is recalcitrant to traditional techniques of structural analysis, such as x-ray crystallography. Through the application of protein cross-linking and high resolution mass spectrometry, we have detailed the ribosomal binding site of S1 and have observed evidence of its dynamics. Our results support a previous hypothesis that S1 acts as the mRNA catching arm of the prokaryotic ribosome. We also demonstrate that in solution the major domains of the 30S subunit are remarkably flexible, capable of moving 30-50Å with respect to one another.
Collapse
Affiliation(s)
- Matthew A. Lauber
- From the ‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Juri Rappsilber
- §Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, UK and Institut für Biotechnologie, Technische Universität Berlin, 13353 Berlin, Germany
| | - James P. Reilly
- From the ‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
10
|
Jaffee EG, Lauber MA, Running WE, Reilly JP. In Vitro and In Vivo Chemical Labeling of Ribosomal Proteins: A Quantitative Comparison. Anal Chem 2012; 84:9355-61. [DOI: 10.1021/ac302115m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ethan G. Jaffee
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7000,
United States
| | - Matthew A. Lauber
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7000,
United States
| | - William E. Running
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7000,
United States
| | - James P. Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7000,
United States
| |
Collapse
|
11
|
Vaughan R, Li Y, Fan B, Ranjith-Kumar CT, Kao CC. RNA binding by the NS3 protease of the hepatitis C virus. Virus Res 2012; 169:80-90. [PMID: 22814430 DOI: 10.1016/j.virusres.2012.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/08/2012] [Accepted: 07/09/2012] [Indexed: 12/22/2022]
Abstract
The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is essential for the processing of the HCV polyprotein, the replication of HCV RNA, and to short circuit innate immunity signaling. NS3 contains an N-terminal domain with protease activity and a C-terminal domain with helicase activity. The two domains communicate with each other along with other HCV and cellular proteins. Herein we show that RNAs can bind directly to the active site cleft of the NS3 protease domain (NS3P) and inhibit proteolysis of peptide substrates. RNAs that are less apt to form intramolecular structures have a stronger inhibitory activity than RNAs with more stable base paired regions. Two mutations in the protease domain that resulted in decreased affinity to ssRNA were also defective in RNA-induced ATPase activity from the helicase domain of NS3. The coordinated effects on inhibition of protease activity and stimulation of ATPase activity raise the possibility that RNA serves as a regulatory switch for the two processes.
Collapse
Affiliation(s)
- Robert Vaughan
- The Biochemistry Interdisciplinary Program, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
12
|
Running WE, Ni P, Kao CC, Reilly JP. Chemical reactivity of brome mosaic virus capsid protein. J Mol Biol 2012; 423:79-95. [PMID: 22750573 DOI: 10.1016/j.jmb.2012.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/01/2012] [Accepted: 06/20/2012] [Indexed: 12/12/2022]
Abstract
Viral particles are biological machines that have evolved to package, protect, and deliver the viral genome into the host via regulated conformational changes of virions. We have developed a procedure to modify lysine residues with S-methylthioacetimidate across the pH range from 5.5 to 8.5. Lysine residues that are not completely modified are involved in tertiary or quaternary structural interactions, and their extent of modification can be quantified as a function of pH. This procedure was applied to the pH-dependent structural transitions of brome mosaic virus (BMV). As the reaction pH increases from 5.5 to 8.5, the average number of modified lysine residues in the BMV capsid protein increases from 6 to 12, correlating well with the known pH-dependent swelling behavior of BMV virions. The extent of reaction of each of the capsid protein's lysine residues has been quantified at eight pH values using coupled liquid chromatography-tandem mass spectrometry. Each lysine can be assigned to one of three structural classes identified by inspection of the BMV virion crystal structure. Several lysine residues display reactivity that indicates their involvement in dynamic interactions that are not obvious in the crystal structure. The influence of several capsid protein mutants on the pH-dependent structural transition of BMV has also been investigated. Mutant H75Q exhibits an altered swelling transition accompanying solution pH increases. The H75Q capsids show increased reactivity at lysine residues 64 and 130, residues distal from the dimer interface occupied by H75, across the entire pH range.
Collapse
Affiliation(s)
- W E Running
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
13
|
Lauber MA, Reilly JP. Structural analysis of a prokaryotic ribosome using a novel amidinating cross-linker and mass spectrometry. J Proteome Res 2011; 10:3604-16. [PMID: 21618984 DOI: 10.1021/pr200260n] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of the Escherichia coli ribosome, a 2.5 MDa ribonucleoprotein complex containing more than 50 proteins, was probed using the novel amidinating cross-linker diethyl suberthioimidate (DEST) and mass spectrometry. Peptide cross-links derived from this complex structure were identified at high confidence (FDR 0.8%) from precursor mass measurements and collision-induced dissociation (CID) fragmentation spectra. The acquired cross-linking data were found to be in excellent agreement with the crystal structure of the E. coli ribosome. DEST cross-links are particularly amenable to strong cation exchange (SCX) chromatography, facilitating a large-scale analysis. SCX enrichment and fractionation were shown to increase the number of cross-link spectra matches in our analysis 10-fold. Evidence is presented that these techniques can be used to study complex interactomes.
Collapse
Affiliation(s)
- Matthew A Lauber
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
14
|
Xu Y, Falk IN, Hallen MA, Fitzgerald MC. Mass Spectrometry- and Lysine Amidination-Based Protocol for Thermodynamic Analysis of Protein Folding and Ligand Binding Interactions. Anal Chem 2011; 83:3555-62. [DOI: 10.1021/ac200211t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Xu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Irene N. Falk
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Mark A. Hallen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael C. Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
15
|
Lauber MA, Reilly JP. Novel amidinating cross-linker for facilitating analyses of protein structures and interactions. Anal Chem 2011; 82:7736-43. [PMID: 20795639 DOI: 10.1021/ac101586z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel bifunctional thioimidate cross-linking reagent (diethyl suberthioimidate) that modifies amines without sacrificing their native basicity is developed. Intermolecular cross-linking of neurotensin and intramolecular cross-linking of cytochrome c under physiological conditions is investigated with this reagent. Because it does not perturb the electrostatic properties of a protein, it is unlikely to lead to artifactual conclusions about native protein structure. The interpeptide cross-links formed with this reagent are easily separated from other tryptic fragments using strong cation exchange chromatography, and they have a readily identified mass spectrometric signature. The use of this novel amidinating protein cross-linking reagent holds great promise for efficient, large-scale structural analysis of complex systems.
Collapse
Affiliation(s)
- Matthew A Lauber
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
16
|
Strader MB, Costantino N, Elkins CA, Chen CY, Patel I, Makusky AJ, Choy JS, Court DL, Markey SP, Kowalak JA. A proteomic and transcriptomic approach reveals new insight into beta-methylthiolation of Escherichia coli ribosomal protein S12. Mol Cell Proteomics 2010; 10:M110.005199. [PMID: 21169565 DOI: 10.1074/mcp.m110.005199] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-methylthiolation is a novel post-translational modification mapping to a universally conserved Asp 88 of the bacterial ribosomal protein S12. This S12 specific modification has been identified on orthologs from multiple bacterial species. The origin and functional significance was investigated with both a proteomic strategy to identify candidate S12 interactors and expression microarrays to search for phenotypes that result from targeted gene knockouts of select candidates. Utilizing an endogenous recombinant E. coli S12 protein with an affinity tag as bait, mass spectrometric analysis identified candidate S12 binding partners including RimO (previously shown to be required for this post-translational modification) and YcaO, a conserved protein of unknown function. Transcriptomic analysis of bacterial strains with deleted genes for RimO and YcaO identified an overlapping transcriptional phenotype suggesting that YcaO and RimO likely share a common function. As a follow up, quantitative mass spectrometry additionally indicated that both proteins dramatically impacted the modification status of S12. Collectively, these results indicate that the YcaO protein is involved in β-methylthiolation of S12 and its absence impairs the ability of RimO to modify S12. Additionally, the proteomic data from this study provides direct evidence that the E. coli specific β-methylthiolation likely occurs when S12 is assembled as part of a ribosomal subunit.
Collapse
Affiliation(s)
- Michael Brad Strader
- Laboratory of Neurotoxicology, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang L, Reilly JP. De novo sequencing of tryptic peptides derived from Deinococcus radiodurans ribosomal proteins using 157 nm photodissociation MALDI TOF/TOF mass spectrometry. J Proteome Res 2010; 9:3025-34. [PMID: 20377247 DOI: 10.1021/pr901206j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vacuum ultraviolet photodissociation of peptide ions in a matrix assisted laser desorption ionization (MALDI) tandem time-of-flight (TOF) mass spectrometer is used to characterize peptide mixtures derived from Deinococcus radiodurans ribosomal proteins. Tryptic peptides from 52 proteins were separated by reverse-phase liquid chromatography and spotted onto a MALDI plate. From 192 sample spots, 492 peptide ions were isolated, fragmented by both photodissociation and postsource decay (PSD), and then de novo sequenced. Three-hundred seventy-two peptides yielded sequences with 5 or more amino acids. Homology searches of these sequences against the whole bacterial proteome identified 49 ribosomal proteins, 45 of which matched with two or more peptides. Peptide de novo sequencing identified slightly more proteins than conventional database searches using Mascot and was particularly advantageous in identifying unexpected peptide modifications. In the present analysis, 52 peptide modifications were identified by de novo sequencing, most of which were not recognized by database searches.
Collapse
Affiliation(s)
- Liangyi Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
18
|
Running WE, Reilly JP. Variation of the chemical reactivity of Thermus thermophilus HB8 ribosomal proteins as a function of pH. Proteomics 2010; 10:3669-87. [DOI: 10.1002/pmic.201000342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Tian B, Wang H, Ma X, Hu Y, Sun Z, Shen S, Wang F, Hua Y. Proteomic analysis of membrane proteins from a radioresistant and moderate thermophilic bacterium Deinococcus geothermalis. MOLECULAR BIOSYSTEMS 2010; 6:2068-77. [DOI: 10.1039/c004875e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Lauber MA, Running WE, Reilly JP. B. subtilis ribosomal proteins: structural homology and post-translational modifications. J Proteome Res 2009; 8:4193-206. [PMID: 19653700 DOI: 10.1021/pr801114k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomal proteins of the model gram-positive bacterium B. subtilis 168 were extensively characterized in a proteomic study. Mass spectra of the 52 proteins expected to be constitutive components of the 70S ribosome were recorded. Peptide MS/MS analysis with an average sequence coverage of 85% supported the identification of these proteins and facilitated the unambiguous assignment of post-translational modifications, including the methylation of S7, L11, and L16 and the N-terminal acetylation of S9. In addition, the high degree of structural homology between B. subtilis and other eubacterial ribosomal proteins was demonstrated through chemical labeling with S-methylthioacetimidate. One striking difference from previous characterizations of bacterial ribosomal proteins is that dozens of protein masses were found to be in error and not easily accounted for by post-translational modifications. This, in turn, led us to discover an inordinate number of sequencing errors in the reference genome of B. subtilis 168. We have found that these errors have been corrected in a recently revised version of the genome.
Collapse
Affiliation(s)
- Matthew A Lauber
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
21
|
Simons SP, McLellan TJ, Aeed PA, Zaniewski RP, Desbonnet CR, Wondrack LM, Marr ES, Subashi TA, Dougherty TJ, Xu Z, Wang IK, LeMotte PK, Maguire BA. Purification of the large ribosomal subunit via its association with the small subunit. Anal Biochem 2009; 395:77-85. [PMID: 19646947 DOI: 10.1016/j.ab.2009.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 11/17/2022]
Abstract
We have developed an affinity purification of the large ribosomal subunit from Deinococcus radiodurans that exploits its association with FLAG-tagged 30S subunits. Thus, capture is indirect so that no modification of the 50S is required and elution is achieved under mild conditions (low magnesium) that disrupt the association, avoiding the addition of competitor ligands or coelution of common contaminants. Efficient purification of highly pure 50S is achieved, and the chromatography simultaneously sorts the 50S into three classes according to their association status (unassociated, loosely associated, or tightly associated), improving homogeneity.
Collapse
MESH Headings
- Bacterial Proteins/analysis
- Centrifugation, Density Gradient
- Chromatography, Affinity
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- Databases, Protein
- Deinococcus/ultrastructure
- Gene Expression
- Magnesium Chloride
- Oligopeptides
- Peptide Fragments/analysis
- Peptides/genetics
- RNA, Bacterial/analysis
- RNA, Ribosomal/analysis
- Recombinant Fusion Proteins
- Ribosomal Proteins/analysis
- Ribosomal Proteins/genetics
- Ribosome Subunits, Large, Bacterial/chemistry
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
- Spectrometry, Mass, Electrospray Ionization
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Samuel P Simons
- Department of Exploratory Medicinal Sciences, Pfizer Global Research and Development, Groton, CT 06340, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|