1
|
Püschel J, Dubrovska A, Gorodetska I. The Multifaceted Role of Aldehyde Dehydrogenases in Prostate Cancer Stem Cells. Cancers (Basel) 2021; 13:4703. [PMID: 34572930 PMCID: PMC8472046 DOI: 10.3390/cancers13184703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are the only tumor cells possessing self-renewal and differentiation properties, making them an engine of tumor progression and a source of tumor regrowth after treatment. Conventional therapies eliminate most non-CSCs, while CSCs often remain radiation and drug resistant, leading to tumor relapse and metastases. Thus, targeting CSCs might be a powerful tool to overcome tumor resistance and increase the efficiency of current cancer treatment strategies. The identification and isolation of the CSC population based on its high aldehyde dehydrogenase activity (ALDH) is widely accepted for prostate cancer (PCa) and many other solid tumors. In PCa, several ALDH genes contribute to the ALDH activity, which can be measured in the enzymatic assay by converting 4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) aminoacetaldehyde (BAAA) into the fluorescent product BODIPY-aminoacetate (BAA). Although each ALDH isoform plays an individual role in PCa biology, their mutual functional interplay also contributes to PCa progression. Thus, ALDH proteins are markers and functional regulators of CSC properties, representing an attractive target for cancer treatment. In this review, we discuss the current state of research regarding the role of individual ALDH isoforms in PCa development and progression, their possible therapeutic targeting, and provide an outlook for the future advances in this field.
Collapse
Affiliation(s)
- Jakob Püschel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| |
Collapse
|
2
|
Prisco F, De Biase D, Piegari G, Oriente F, Cimmino I, De Pasquale V, Costanzo M, Santoro P, Gizzarelli M, Papparella S, Paciello O. Leishmania spp.-Infected Dogs Have Circulating Anti-Skeletal Muscle Autoantibodies Recognizing SERCA1. Pathogens 2021; 10:463. [PMID: 33921323 PMCID: PMC8070147 DOI: 10.3390/pathogens10040463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Leishmania spp. infection is associated with an inflammatory myopathy (IM) in dogs. The pathomechanism underlying this disorder is still elusive, however, the pattern of cellular infiltration and MHC I and II upregulation indicate an immune-mediated myositis. This study aimed to investigate the presence of autoantibodies targeting the skeletal muscle in sera of leishmania-infected dogs and individuate the major autoantigen. We tested sera from 35 leishmania-infected dogs and sera from 10 negative controls for the presence of circulating autoantibodies with indirect immunofluorescence. Immunoblot and mass spectrometry were used to identify the main target autoantigen. Immunocolocalization and immunoblot on immunoprecipitated muscle proteins were performed to confirm the individuated major autoantigen. We identified circulating autoantibodies that recognize skeletal muscle antigen(s) in sera of leishmania-infected dogs. The major antigen was identified as the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1). We also found that canine SERCA1 presents several identical traits to the calcium-translocating P-type ATPase of Leishmania infantum. In the present study, we defined circulating anti-SERCA1 autoantibodies as part of the pathogenesis of the leishmania-associated IM in dogs. Based on our data, we hypothesize that antigen mimicry is the mechanism underlying the production of these autoantibodies in leishmania-infected dogs.
Collapse
Affiliation(s)
- Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (G.P.); (V.D.P.); (M.G.); (S.P.); (O.P.)
| | - Davide De Biase
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (G.P.); (V.D.P.); (M.G.); (S.P.); (O.P.)
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (G.P.); (V.D.P.); (M.G.); (S.P.); (O.P.)
| | - Francesco Oriente
- Research Unit (URT) Genomic of Diabetes, Department of Translational Medicine, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, 80131 Naples, Italy; (F.O.); (I.C.)
| | - Ilaria Cimmino
- Research Unit (URT) Genomic of Diabetes, Department of Translational Medicine, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, 80131 Naples, Italy; (F.O.); (I.C.)
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (G.P.); (V.D.P.); (M.G.); (S.P.); (O.P.)
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, 80131 Naples, Italy;
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Pasquale Santoro
- Veterinary Diagnostic Laboratory (Di.Lab.), 80125 Naples, Italy;
| | - Manuela Gizzarelli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (G.P.); (V.D.P.); (M.G.); (S.P.); (O.P.)
| | - Serenella Papparella
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (G.P.); (V.D.P.); (M.G.); (S.P.); (O.P.)
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (G.P.); (V.D.P.); (M.G.); (S.P.); (O.P.)
| |
Collapse
|
3
|
Zacchia M, Marchese E, Trani EM, Caterino M, Capolongo G, Perna A, Ruoppolo M, Capasso G. Proteomics and metabolomics studies exploring the pathophysiology of renal dysfunction in autosomal dominant polycystic kidney disease and other ciliopathies. Nephrol Dial Transplant 2021; 35:1853-1861. [PMID: 31219585 DOI: 10.1093/ndt/gfz121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
The primary cilium (PC) was considered as a vestigial organelle with no significant physiological importance, until the discovery that PC perturbation disturbs several signalling pathways and results in the dysfunction of a variety of organs. Genetic studies have demonstrated that mutations affecting PC proteins or its anchoring structure, the basal body, underlie a class of human disorders (known as ciliopathies) characterized by a constellation of clinical signs. Further investigations have demonstrated that the PC is involved in a broad range of biological processes, in both developing and mature tissues. Kidney disease is a common clinical feature of cilia disorders, supporting the hypothesis of a crucial role of the PC in kidney homoeostasis. Clinical proteomics and metabolomics are an expanding research area. Interestingly, the application of these methodologies to the analysis of urine, a biological sample that can be collected in a non-invasive fashion and possibly in large amounts, makes these studies feasible also in patients. The present article describes the most recent proteomic and metabolomic studies exploring kidney dysfunction in the setting of ciliopathies, showing the potential of these methodologies in the elucidation of disease pathophysiology and in the discovery of biomarkers.
Collapse
Affiliation(s)
- Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuela Marchese
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Martina Trani
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE, Center for Genetic Engineering, Naples, Italy.,DiSciMuS RFC, Casoria, 80026, Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Perna
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE, Center for Genetic Engineering, Naples, Italy.,DiSciMuS RFC, Casoria, 80026, Naples, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Biogem Scarl, Ariano Irpino, Italy
| |
Collapse
|
4
|
Exploring Key Challenges of Understanding the Pathogenesis of Kidney Disease in Bardet-Biedl Syndrome. Kidney Int Rep 2020; 5:1403-1415. [PMID: 32954066 PMCID: PMC7486190 DOI: 10.1016/j.ekir.2020.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Bardet–Biedl syndrome (BBS) is a rare pleiotropic inherited disorder known as a ciliopathy. Kidney disease is a cardinal clinical feature; however, it is one of the less investigated traits. This study is a comprehensive analysis of the literature aiming to collect available information providing mechanistic insights into the pathogenesis of kidney disease by analyzing clinical and basic science studies focused on this issue. The analysis revealed that the syndrome is either clinically and genetically heterogenous, with 24 genes discovered to date, but with 3 genes (BBS1, BBS2, and BBS10) accounting for almost 50% of diagnoses; genotype–phenotype correlation studies showed that patients with BBS1 mutations have a less severe renal phenotype than the other 2 most common loci; in addition, truncating rather than missense mutations are more likely to cause kidney disease. However, significant intrafamilial clinical variability has been described, with no clear explanation to date. In mice kidneys, Bbs genes have relative low expression levels, in contrast with other common affected organs, like the retina; surprisingly, Bbs1 is the only locus with basal overexpression in the kidney. In vitro studies indicate that signalling pathways involved in embryonic kidney development and repair are affected in the context of BBS depletion; in mice, kidney disease does not have a full penetrance; when present, it resembles human phenotype and shows an age-dependent progression. Data on the exact contribution of local versus systemic consequences of Bbs dysfunction are scanty and further investigations are required to get firm conclusions.
Collapse
|
5
|
Di Somma A, Caterino M, Soni V, Agarwal M, di Pasquale P, Zanetti S, Molicotti P, Cannas S, Nandicoori VK, Duilio A. The bifunctional protein GlmU is a key factor in biofilm formation induced by alkylating stress in Mycobacterium smegmatis. Res Microbiol 2019; 170:171-181. [DOI: 10.1016/j.resmic.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
|
6
|
Costanzo M, Cevenini A, Marchese E, Imperlini E, Raia M, Del Vecchio L, Caterino M, Ruoppolo M. Label-Free Quantitative Proteomics in a Methylmalonyl-CoA Mutase-Silenced Neuroblastoma Cell Line. Int J Mol Sci 2018; 19:ijms19113580. [PMID: 30428564 PMCID: PMC6275031 DOI: 10.3390/ijms19113580] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023] Open
Abstract
Methylmalonic acidemias (MMAs) are inborn errors of metabolism due to the deficient activity of methylmalonyl-CoA mutase (MUT). MUT catalyzes the formation of succinyl-CoA from methylmalonyl-CoA, produced from propionyl-CoA catabolism and derived from odd chain fatty acids β-oxidation, cholesterol, and branched-chain amino acids degradation. Increased methylmalonyl-CoA levels allow for the presymptomatic diagnosis of the disease, even though no approved therapies exist. MMA patients show hyperammonemia, ketoacidosis, lethargy, respiratory distress, cognitive impairment, and hepatomegaly. The long-term consequences concern neurologic damage and terminal kidney failure, with little chance of survival. The cellular pathways affected by MUT deficiency were investigated using a quantitative proteomics approach on a cellular model of MUT knockdown. Currently, a consistent reduction of the MUT protein expression was obtained in the neuroblastoma cell line (SH-SY5Y) by using small-interfering RNA (siRNA) directed against an MUT transcript (MUT siRNA). The MUT absence did not affect the cell viability and apoptotic process in SH-SY5Y. In the present study, we evaluate and quantify the alterations in the protein expression profile as a consequence of MUT-silencing by a mass spectrometry-based label-free quantitative analysis, using two different quantitative strategies. Both quantitative methods allowed us to observe that the expression of the proteins involved in mitochondrial oxido-reductive homeostasis balance was affected by MUT deficiency. The alterated functional mitochondrial activity was observed in siRNA_MUT cells cultured with a propionate-supplemented medium. Finally, alterations in the levels of proteins involved in the metabolic pathways, like carbohydrate metabolism and lipid metabolism, were found.
Collapse
Affiliation(s)
- Michele Costanzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
- Associazione Culturale DiSciMuS RFC, Casoria, 80026 Naples, Italy.
| | - Armando Cevenini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Emanuela Marchese
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
- Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Università degli Studi della Campania "L. Vanvitelli", 80138 Naples, Italy.
| | | | - Maddalena Raia
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | | | - Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
- Associazione Culturale DiSciMuS RFC, Casoria, 80026 Naples, Italy.
| | - Margherita Ruoppolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
- Associazione Culturale DiSciMuS RFC, Casoria, 80026 Naples, Italy.
| |
Collapse
|
7
|
Unravelling pathways downstream Sox6 induction in K562 erythroid cells by proteomic analysis. Sci Rep 2017; 7:14088. [PMID: 29074889 PMCID: PMC5658338 DOI: 10.1038/s41598-017-14336-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
The Sox6 transcription factor is crucial for terminal maturation of definitive red blood cells. Sox6-null mouse fetuses present misshapen and nucleated erythrocytes, due to impaired actin assembly and cytoskeleton stability. These defects are accompanied with a reduced survival of Sox6−/− red blood cells, resulting in a compensated anemia. Sox6-overexpression in K562 cells and in human primary ex vivo erythroid cultures enhances erythroid differentiation and leads to hemoglobinization, the hallmark of erythroid maturation. To obtain an overview on processes downstream to Sox6 expression, we performed a differential proteomic analysis on human erythroid K562 cells overexpressing Sox6. Sox6-overexpression induces dysregulation of 64 proteins, involved in cytoskeleton remodeling and in protein synthesis, folding and trafficking, key processes for erythroid maturation. Moreover, 43 out of 64 genes encoding for differentially expressed proteins contain within their proximal regulatory regions sites that are bound by SOX6 according to ENCODE ChIP-seq datasets and are possible direct SOX6 targets. SAR1B, one of the most induced proteins upon Sox6 overexpression, shares a conserved regulatory module, composed by a double SOX6 binding site and a GATA1 consensus, with the adjacent SEC24 A gene. Since both genes encode for COPII components, this element could concur to the coordinated expression of these proteins during erythropoiesis.
Collapse
|
8
|
Capobianco V, Caterino M, Iaffaldano L, Nardelli C, Sirico A, Del Vecchio L, Martinelli P, Pastore L, Pucci P, Sacchetti L. Proteome analysis of human amniotic mesenchymal stem cells (hA-MSCs) reveals impaired antioxidant ability, cytoskeleton and metabolic functionality in maternal obesity. Sci Rep 2016; 6:25270. [PMID: 27125468 PMCID: PMC4850482 DOI: 10.1038/srep25270] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/13/2016] [Indexed: 12/20/2022] Open
Abstract
Maternal obesity increases the risk of obesity and/or obesity-related diseases in the offspring of animal models. The aim of this study was to identify metabolic dysfunctions that could represent an enhanced risk for human obesity or obesity-related diseases in newborn or in adult life, similar to what occurs in animal models. To this aim, we studied the proteome of 12 obese (Ob-) and 6 non-obese (Co-) human amniotic mesenchymal stem cells (hA-MSCs) obtained from women at delivery by cesarean section (pre-pregnancy body mass index [mean ± SD]: 42.7 ± 7.7 and 21.3 ± 3.3 kg/m2, respectively). The proteome, investigated by two-dimensional fluorescence difference gel electrophoresis/mass spectrometry, revealed 62 differently expressed proteins in Ob- vs Co-hA-MSCs (P < 0.05), nine of which were confirmed by western blotting. Bioinformatics analysis showed that these 62 proteins are involved in several statistically significant pathways (P < 0.05), including the stress response, cytoskeleton and metabolic pathways. Oxidative stress was shown to be an early triggering factor of tissue fat accumulation and obesity-related disorders in the offspring of obese animal models. Our finding of a reduced stress response in Ob-hA-MSCs suggests that a similar mechanism could occur also in humans. Long-term follow-up studies of newborns of obese mothers are required to verify this hypothesis.
Collapse
Affiliation(s)
- Valentina Capobianco
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Marianna Caterino
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Laura Iaffaldano
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Carmela Nardelli
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Angelo Sirico
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Via S. Pansini 5, 80131 Naples, Italy
| | - Luigi Del Vecchio
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Pasquale Martinelli
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Via S. Pansini 5, 80131 Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Pietro Pucci
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy.,Dipartimento di Scienze chimiche, Via Cintia, Complesso Monte Sant'Angelo 21, 80126 Naples, Italy
| | - Lucia Sacchetti
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
9
|
Di Pasquale P, Caterino M, Di Somma A, Squillace M, Rossi E, Landini P, Iebba V, Schippa S, Papa R, Selan L, Artini M, Palamara AT, Palamara A, Duilio A. Exposure of E. coli to DNA-Methylating Agents Impairs Biofilm Formation and Invasion of Eukaryotic Cells via Down Regulation of the N-Acetylneuraminate Lyase NanA. Front Microbiol 2016; 7:147. [PMID: 26904018 PMCID: PMC4749703 DOI: 10.3389/fmicb.2016.00147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/26/2016] [Indexed: 12/26/2022] Open
Abstract
DNA methylation damage can be induced by endogenous and exogenous chemical agents, which has led every living organism to develop suitable response strategies. We investigated protein expression profiles of Escherichia coli upon exposure to the alkylating agent methyl-methane sulfonate (MMS) by differential proteomics. Quantitative proteomic data showed a massive downregulation of enzymes belonging to the glycolytic pathway and fatty acids degradation, strongly suggesting a decrease of energy production. A strong reduction in the expression of the N-acetylneuraminate lyases (NanA) involved in the sialic acid metabolism was also observed. Using a null NanA mutant and DANA, a substrate analog acting as competitive inhibitor, we demonstrated that down regulation of NanA affects biofilm formation and adhesion properties of E. coli MV1161. Exposure to alkylating agents also decreased biofilm formation and bacterial adhesion to Caco-2 eukaryotic cell line by the adherent invasive E. coli (AIEC) strain LF82. Our data showed that methylation stress impairs E. coli adhesion properties and suggest a possible role of NanA in biofilm formation and bacteria host interactions.
Collapse
Affiliation(s)
- Pamela Di Pasquale
- Department of Chemical Sciences, University of Naples "Federico II" Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II" Naples, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples "Federico II" Naples, Italy
| | - Marta Squillace
- Department of Chemical Sciences, University of Naples "Federico II" Naples, Italy
| | - Elio Rossi
- Department of Biosciences, University of Milan Milan, Italy
| | - Paolo Landini
- Department of Biosciences, University of Milan Milan, Italy
| | - Valerio Iebba
- Department of Public Health and Infectious Diseases, Pasteur Institute Cenci, Bolognetti Foundation, Sapienza University of Rome Rome, Italy
| | - Serena Schippa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Rome, Italy
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Rome, Italy
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Rome, Italy
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Pasteur Institute Cenci, Bolognetti Foundation, Sapienza University of RomeRome, Italy; IRCCS, San Raffaele Pisana Telematic UniversityRome, Italy
| | | | - Angela Duilio
- Department of Chemical Sciences, University of Naples "Federico II" Naples, Italy
| |
Collapse
|
10
|
Caterino M, Pastore A, Strozziero MG, Di Giovamberardino G, Imperlini E, Scolamiero E, Ingenito L, Boenzi S, Ceravolo F, Martinelli D, Dionisi-Vici C, Ruoppolo M. The proteome of cblC defect: in vivo elucidation of altered cellular pathways in humans. J Inherit Metab Dis 2015; 38:969-79. [PMID: 25585586 DOI: 10.1007/s10545-014-9806-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/26/2022]
Abstract
Methylmalonic acidemia with homocystinuria, cobalamin deficiency type C (cblC) (MMACHC) is the most common inborn error of cobalamin metabolism. Despite a multidrug treatment, the long-term follow-up of early-onset patients is often unsatisfactory, with progression of neurological and ocular impairment. Here, the in-vivo proteome of control and MMACHC lymphocytes (obtained from patients under standard treatment with OHCbl, betaine, folate and L-carnitine) was quantitatively examined by two dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry. Twenty three proteins were found up-regulated and 38 proteins were down-regulated. Consistent with in vivo studies showing disturbance of glutathione metabolism, a deregulation in proteins involved in cellular detoxification, especially in glutathione metabolism was found. In addition, relevant changes were observed in the expression levels of proteins involved in intracellular trafficking and protein folding, energy metabolism, cytoskeleton organization and assembly. This study demonstrates relevant changes in the proteome profile of circulating lymphocytes isolated from treated cblC patients. Some results confirm previous observations in vivo on fibroblast, thus concluding that some dysregulation is ubiquitous. On the other hand, new findings could be tissue-specific. These observations expand our current understanding of the cblC disease and may ignite new research and therapeutic strategies to treat this disorder.
Collapse
|
11
|
Caterino M, Aspesi A, Pavesi E, Imperlini E, Pagnozzi D, Ingenito L, Santoro C, Dianzani I, Ruoppolo M. Analysis of the interactome of ribosomal protein S19 mutants. Proteomics 2014; 14:2286-96. [DOI: 10.1002/pmic.201300513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 06/16/2014] [Accepted: 07/24/2014] [Indexed: 02/03/2023]
Affiliation(s)
| | - Anna Aspesi
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | - Elisa Pavesi
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | | | | | | | - Claudio Santoro
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | - Irma Dianzani
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | - Margherita Ruoppolo
- CEINGE Biotecnologie Avanzate scarl; Napoli Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Universita’ di Napoli “Federico II”; Napoli Italy
| |
Collapse
|
12
|
Epigenomic alterations in localized and advanced prostate cancer. Neoplasia 2013; 15:373-83. [PMID: 23555183 DOI: 10.1593/neo.122146] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 12/20/2022] Open
Abstract
Although prostate cancer (PCa) is the second leading cause of cancer death among men worldwide, not all men diagnosed with PCa will die from the disease. A critical challenge, therefore, is to distinguish indolent PCa from more advanced forms to guide appropriate treatment decisions. We used Enhanced Reduced Representation Bisulfite Sequencing, a genome-wide high-coverage single-base resolution DNA methylation method to profile seven localized PCa samples, seven matched benign prostate tissues, and six aggressive castration-resistant prostate cancer (CRPC) samples. We integrated these data with RNA-seq and whole-genome DNA-seq data to comprehensively characterize the PCa methylome, detect changes associated with disease progression, and identify novel candidate prognostic biomarkers. Our analyses revealed the correlation of cytosine guanine dinucleotide island (CGI)-specific hypermethylation with disease severity and association of certain breakpoints (deletion, tandem duplications, and interchromosomal translocations) with DNA methylation. Furthermore, integrative analysis of methylation and single-nucleotide polymorphisms (SNPs) uncovered widespread allele-specific methylation (ASM) for the first time in PCa. We found that most DNA methylation changes occurred in the context of ASM, suggesting that variations in tumor epigenetic landscape of individuals are partly mediated by genetic differences, which may affect PCa disease progression. We further selected a panel of 13 CGIs demonstrating increased DNA methylation with disease progression and validated this panel in an independent cohort of 20 benign prostate tissues, 16 PCa, and 8 aggressive CRPCs. These results warrant clinical evaluation in larger cohorts to help distinguish indolent PCa from advanced disease.
Collapse
|
13
|
Reis LM, Tyler RC, Zori R, Burgess J, Mueller J, Semina EV. A case of 22q11.2 deletion syndrome with Peters anomaly, congenital glaucoma, and heterozygous mutation in CYP1B1. Ophthalmic Genet 2013; 36:92-4. [PMID: 24024747 DOI: 10.3109/13816810.2013.835432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We read with interest the recent publication by Tarlan and colleagues 1 describing a patient with 22q11.2 deletion syndrome and ocular features of right microphthalmia and left anterior segment dysgenesis. While anterior segment dysgenesis disorders are occasionally reported with 22q11.2 deletions, 2-5 this remains a rare association. We report here an 8-year-old patient with 22q11.2 deletion syndrome and bilateral Peters anomaly with congenital glaucoma; in addition, our patient was found to have a single heterozygous mutation in CYP1B1, c.83C > T, p.(Ser28Trp).
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin , Milwaukee, WI , USA
| | | | | | | | | | | |
Collapse
|
14
|
Caterino M, Corbo C, Imperlini E, Armiraglio M, Pavesi E, Aspesi A, Loreni F, Dianzani I, Ruoppolo M. Differential proteomic analysis in human cells subjected to ribosomal stress. Proteomics 2013; 13:1220-7. [PMID: 23412928 DOI: 10.1002/pmic.201200242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 12/10/2012] [Accepted: 01/25/2013] [Indexed: 12/17/2022]
Abstract
The biochemical phenotype of cells affected by ribosomal stress has not yet been studied in detail. Here we report a comparative proteomic analysis of cell lines silenced for the RPS19 gene versus cell lines transfected with scramble shRNA cells performed using the DIGE technology integrated to bioinformatics tools. Importantly, to achieve the broadest possible understanding of the outcome, we carried out two independent DIGE experiments using two different pH ranges, thus, allowing the identification of 106 proteins. Our data revealed the deregulation of proteins involved in cytoskeleton reorganization, PTMs, and translation process. A subset (26.9%) of these proteins is translated from transcripts that include internal ribosome entry site motifs. This supports the hypothesis that during ribosomal stress translation of specific messenger RNAs is altered.
Collapse
|
15
|
Transrepression activity of T-box1 in a gene regulation network in mouse cells. Gene 2012; 510:162-70. [DOI: 10.1016/j.gene.2012.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 11/24/2022]
|
16
|
Maynard TM, Gopalakrishna D, Meechan DW, Paronett EM, Newbern JM, LaMantia AS. 22q11 Gene dosage establishes an adaptive range for sonic hedgehog and retinoic acid signaling during early development. Hum Mol Genet 2012; 22:300-12. [PMID: 23077214 DOI: 10.1093/hmg/dds429] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We asked whether key morphogenetic signaling pathways interact with 22q11 gene dosage to modulate the severity of cranial or cardiac anomalies in DiGeorge/22q1 deletion syndrome (22q11DS). Sonic hedgehog (Shh) and retinoic acid (RA) signaling is altered in the brain and heart-clinically significant 22q11DS phenotypic sites-in LgDel mouse embryos, an established 22q11DS model. LgDel embryos treated with cyclopamine, an Shh inhibitor, or carrying mutations in Gli3(Xtj), an Shh-signaling effector, have morphogenetic anomalies that are either not seen, or seen at significantly lower frequencies in control or single-mutant embryos. Similarly, RA exposure or genetic loss of RA function via heterozygous mutation of the RA synthetic enzyme Raldh2 induces novel cranial anomalies and enhances cardiovascular phenotypes in LgDel but not other genotypes. These changes are not seen in heterozygous Tbx1 mutant embryos-a 22q11 gene thought to explain much of 22q11DS pathogenesis-in which Shh or RA signaling has been similarly modified. Our results suggest that full dosage of 22q11 genes beyond Tbx1 establish an adaptive range for morphogenetic signaling via Shh and RA. When this adaptive range is constricted by diminished dosage of 22q11 genes, embryos are sensitized to otherwise benign changes in Shh and RA signaling. Such sensitization, in the face of environmental or genetic factors that modify Shh or RA signaling, may explain variability in 22q11DS morphogenetic phenotypes.
Collapse
Affiliation(s)
- Thomas M Maynard
- GW Institute for Neuroscience and Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | | | | | | | | | | |
Collapse
|
17
|
Bothe I, Tenin G, Oseni A, Dietrich S. Dynamic control of head mesoderm patterning. Development 2011; 138:2807-21. [DOI: 10.1242/dev.062737] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The embryonic head mesoderm gives rise to cranial muscle and contributes to the skull and heart. Prior to differentiation, the tissue is regionalised by the means of molecular markers. We show that this pattern is established in three discrete phases, all depending on extrinsic cues. Assaying for direct and first-wave indirect responses, we found that the process is controlled by dynamic combinatorial as well as antagonistic action of retinoic acid (RA), Bmp and Fgf signalling. In phase 1, the initial anteroposterior (a-p) subdivision of the head mesoderm is laid down in response to falling RA levels and activation of Fgf signalling. In phase 2, Bmp and Fgf signalling reinforce the a-p boundary and refine anterior marker gene expression. In phase 3, spreading Fgf signalling drives the a-p expansion of MyoR and Tbx1 expression along the pharynx, with RA limiting the expansion of MyoR. This establishes the mature head mesoderm pattern with markers distinguishing between the prospective extra-ocular and jaw skeletal muscles, the branchiomeric muscles and the cells for the outflow tract of the heart.
Collapse
Affiliation(s)
- Ingo Bothe
- School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Gennadiy Tenin
- School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK
| | - Adelola Oseni
- School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK
| | - Susanne Dietrich
- School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| |
Collapse
|
18
|
McDonald-McGinn DM, Sullivan KE. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine (Baltimore) 2011; 90:1-18. [PMID: 21200182 DOI: 10.1097/md.0b013e3182060469] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chromosome 22q11.2 deletion syndrome is a common syndrome also known as DiGeorge syndrome and velocardiofacial syndrome. It occurs in approximately 1:4000 births, and the incidence is increasing due to affected parents bearing their own affected children. The manifestations of this syndrome cross all medical specialties, and care of the children and adults can be complex. Many patients have a mild to moderate immune deficiency, and the majority of patients have a cardiac anomaly. Additional features include renal anomalies, eye anomalies, hypoparathyroidism, skeletal defects, and developmental delay. Each child's needs must be tailored to his or her specific medical problems, and as the child transitions to adulthood, additional issues will arise. A holistic approach, addressing medical and behavioral needs, can be very helpful.
Collapse
|
19
|
Freyer L, Morrow BE. Canonical Wnt signaling modulates Tbx1, Eya1, and Six1 expression, restricting neurogenesis in the otic vesicle. Dev Dyn 2010; 239:1708-22. [PMID: 20503367 DOI: 10.1002/dvdy.22308] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To understand the mechanism by which canonical Wnt signaling sets boundaries for pattern formation in the otic vesicle (OV), we examined Tbx1 and Eya1-Six1 downstream of activated beta-catenin. Tbx1, the gene for velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), is essential for inner ear development where it promotes Bmp4 and Otx1 expression and restricts neurogenesis. Using floxed beta-catenin gain-of-function (GOF) and loss-of-function (LOF) alleles, we found Tbx1 expression was down-regulated and maintained/enhanced in the two mouse mutants, respectively. Bmp4 was ectopically expressed and Otx1 was lost in beta-catenin GOF mutants. Normally, inactivation of Tbx1 causes expanded neurogenesis, but expression of NeuroD was down-regulated in beta-catenin GOF mutants. To explain this paradox, Eya1 and Six1, genes for branchio-oto-renal (BOR) syndrome were down-regulated in the OV of beta-catenin GOF mutants independently of Tbx1. Overall, this work helps explain the mechanism by which Wnt signaling modulates transcription factors required for neurogenesis and patterning of the OV.
Collapse
Affiliation(s)
- Laina Freyer
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
20
|
Imperlini E, Mancini A, Spaziani S, Martone D, Alfieri A, Gemei M, Vecchio LD, Buono P, Orrù S. Androgen receptor signaling induced by supraphysiological doses of dihydrotestosterone in human peripheral blood lymphocytes. Proteomics 2010; 10:3165-75. [DOI: 10.1002/pmic.201000079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Tan TY, Gordon CT, Amor DJ, Farlie PG. Developmental perspectives on copy number abnormalities of the 22q11.2 region. Clin Genet 2010; 78:201-18. [DOI: 10.1111/j.1399-0004.2010.01456.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Scambler PJ. 22q11 deletion syndrome: a role for TBX1 in pharyngeal and cardiovascular development. Pediatr Cardiol 2010; 31:378-90. [PMID: 20054531 DOI: 10.1007/s00246-009-9613-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/07/2009] [Indexed: 12/24/2022]
Abstract
Tbx1 is a member of the Tbox family of binding domain transcription factors. TBX1 maps within the region of 22q11 deleted in humans with DiGeorge or velocardiofacial syndrome. Mice haploinsufficient for Tbx1 have phenotypes that recapitulate major features of the syndrome, notably abnormal growth and remodelling of the pharyngeal arch arteries. The Tbx1 haploinsufficiency phenotype is modified by genetic background and by mutations in putative downstream targets. Homozygous null mutations of Tbx1 have more severe defects including failure of outflow tract septation, and absence of the caudal pharyngeal arches. Tbx1 is a transcriptional activator, and loss of this activity has been linked to alterations in the expression of various genes involved in cardiovascular morphogenesis. In particular, Fgf and retinoic acid signalling are dysregulated in Tbx1 mutants. This article summarises the tissue specific and temporal requirements for Tbx1, and attempts to synthesis what is know about the developmental pathways under its control.
Collapse
Affiliation(s)
- Peter J Scambler
- Molecular Medicine Unit, Institute of Child Health, 30, Guilford St., London WC1N 1EH, UK.
| |
Collapse
|
23
|
Ryckebüsch L, Bertrand N, Mesbah K, Bajolle F, Niederreither K, Kelly RG, Zaffran S. Decreased levels of embryonic retinoic acid synthesis accelerate recovery from arterial growth delay in a mouse model of DiGeorge syndrome. Circ Res 2010; 106:686-94. [PMID: 20110535 DOI: 10.1161/circresaha.109.205732] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Loss of Tbx1 and decrease of retinoic acid (RA) synthesis result in DiGeorge/velocardiofacial syndrome (DGS/VCFS)-like phenotypes in mouse models, including defects in septation of the outflow tract of the heart and anomalies of pharyngeal arch-derived structures including arteries of the head and neck, laryngeal-tracheal cartilage, and thymus/parathyroid. Wild-type levels of T-box transcription factor (Tbx)1 and RA signaling are required for normal pharyngeal arch artery development. Recent studies have shown that reduction of RA or loss of Tbx1 alters the contribution of second heart field (SHF) progenitor cells to the elongating heart tube. OBJECTIVE Here we tested whether Tbx1 and the RA signaling pathway interact during the deployment of the SHF and formation of the mature aortic arch. METHODS AND RESULTS Molecular markers of the SHF, neural crest and smooth muscle cells, were analyzed in Raldh2;Tbx1 compound heterozygous mutants. Our results revealed that the SHF and outflow tract develop normally in Raldh2(+/-);Tbx1(+/-) embryos. However, we found that decreased levels of RA accelerate the recovery from arterial growth delay observed in Tbx1(+/-) mutant embryos. This compensation coincides with the differentiation of smooth muscle cells in the 4th pharyngeal arch arteries, and is associated with severity of neural crest cell migration defects observed in these mutants. CONCLUSIONS Our data suggest that differences in levels of embryonic RA may contribute to the variability in great artery anomalies observed in DGS/VCFS patients.
Collapse
Affiliation(s)
- Lucile Ryckebüsch
- INSERM UMR S910, Université de la Méditerranée, Faculté de Médecine, 27 Bd. Jean Moulin, Marseille, France
| | | | | | | | | | | | | |
Collapse
|