1
|
Son HI, Weiss A, You L. Design patterns for engineering genetic stability. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19. [PMID: 34308010 DOI: 10.1016/j.cobme.2021.100297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The past 20 years have witnessed enormous progress in synthetic biology in the development of engineered cells for diverse applications, including biomanufacturing, materials fabrication, and potential therapeutics and diagnostics. However, it still remains a major challenge to maintain long-term performance of synthetic gene circuits, due to the emergence of mutants that lose circuit function. Here, we highlight major vulnerabilities of synthetic gene circuits resulting in circuit failure and mutant escape. We also discuss engineering strategies to enhance long-term circuit stability and performance. These approaches can be divided into two strategies: the suppression of the emergence of mutants and the suppression of their relative fitness if mutants do emerge. We anticipate that mechanistic understanding of the modes of circuit failure will facilitate future efforts to design evolutionarily robust synthetic biology-inspired applications.
Collapse
Affiliation(s)
- Hye-In Son
- Department of Biomedical Engineering, Duke University
| | - Andrea Weiss
- Department of Biomedical Engineering, Duke University
| | - Lingchong You
- Department of Biomedical Engineering, Duke University.,Center for Genomic and Computational Biology, Duke University.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine
| |
Collapse
|
2
|
Wang Y, Gao X, Liu X, Li Y, Sun M, Yang Y, Liu C, Bai Z. Construction of a 3A system from BioBrick parts for expression of recombinant hirudin variants III in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2020; 104:8257-8266. [PMID: 32840643 DOI: 10.1007/s00253-020-10835-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/22/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Standardized parts can be efficiently assembled into novel biological systems using the three antibiotic (3A) system, ensuring the reusability of components and repeatability of experiments. In this study, we created the 3A expression system for easy construction of gene expression cassettes in Corynebacterium glutamicum (C. glutamicum), which was applied to screen combinations of promoters and signal peptides for improved secreted rhv3 production. We first obtained three strong promoters P2252, Podhi, and PyweA from all of promoters, which drive the highest expression of green fluorescent protein (egfp). The three promoters were then assembled with different signal peptides to generate a series of constructs using the 3A expression system developed in this study, from which the highest activity of rhv3 reached 3187.5 ATU/L of PyweA-CspA-rhv3. Further increased production of rhv3 achieved large-scale fermentation using 5-L jar bioreactor, with the highest rhv3 accumulation 1.21 g/L obtained after 40 h of cultivation, which is higher than 0.95 g/L reported in E. coli. To the best of our knowledge, this is the first report of rhv3 secretory expression in C. glutamicum, which could be applied for the production of other recombinant proteins with significant applications.Key points• We have exploited a 3A system for the genetic manipulation in C. glutamicum.• We constructed element libraries for assembling standard sequence in C. glutamicum.• The secreted expression of rhv3 was realized by 3A system in C. glutamicum.
Collapse
Affiliation(s)
- Yali Wang
- The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiong Gao
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiuxia Liu
- The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, 214122, China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Ye Li
- The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Manman Sun
- The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Chunli Liu
- The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, 214122, China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
HamediRad M, Weisberg S, Chao R, Lian J, Zhao H. Highly Efficient Single-Pot Scarless Golden Gate Assembly. ACS Synth Biol 2019; 8:1047-1054. [PMID: 31013062 DOI: 10.1021/acssynbio.8b00480] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Golden Gate assembly is one of the most widely used DNA assembly methods due to its robustness and modularity. However, despite its popularity, the need for BsaI-free parts, the introduction of scars between junctions, as well as the lack of a comprehensive study on the linkers hinders its more widespread use. Here, we first developed a novel sequencing scheme to test the efficiency and specificity of 96 linkers of 4-bp length and experimentally verified these linkers and their effects on Golden Gate assembly efficiency and specificity. We then used this sequencing data to generate 200 distinct linker sets that can be used by the community to perform efficient Golden Gate assemblies of different sizes and complexity. We also present a single-pot scarless Golden Gate assembly and BsaI removal scheme and its accompanying assembly design software to perform point mutations and Golden Gate assembly. This assembly scheme enables scarless assembly without compromising efficiency by choosing optimized linkers near assembly junctions.
Collapse
Affiliation(s)
| | | | | | | | - Huimin Zhao
- Departments of Chemistry and Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Abstract
Synthetic biology has undergone dramatic advancements for over a decade, during which it has expanded our understanding on the systems of life and opened new avenues for microbial engineering. Many biotechnological and computational methods have been developed for the construction of synthetic systems. Achievements in synthetic biology have been widely adopted in metabolic engineering, a field aimed at engineering micro-organisms to produce substances of interest. However, the engineering of metabolic systems requires dynamic redistribution of cellular resources, the creation of novel metabolic pathways, and optimal regulation of the pathways to achieve higher production titers. Thus, the design principles and tools developed in synthetic biology have been employed to create novel and flexible metabolic pathways and to optimize metabolic fluxes to increase the cells’ capability to act as production factories. In this review, we introduce synthetic biology tools and their applications to microbial cell factory constructions.
Collapse
|
5
|
Okano K, Honda K, Taniguchi H, Kondo A. De novo design of biosynthetic pathways for bacterial production of bulk chemicals and biofuels. FEMS Microbiol Lett 2018; 365:5087733. [DOI: 10.1093/femsle/fny215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kenji Okano
- Synthetic Bioengineering Laboratory, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| | - Kohsuke Honda
- Synthetic Bioengineering Laboratory, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| | - Hironori Taniguchi
- Synthetic Bioengineering Laboratory, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657–8501, Japan
| |
Collapse
|
6
|
Garcia-Ruiz E, HamediRad M, Zhao H. Pathway Design, Engineering, and Optimization. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 162:77-116. [PMID: 27629378 DOI: 10.1007/10_2016_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.
Collapse
Affiliation(s)
- Eva Garcia-Ruiz
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mohammad HamediRad
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Eriksen DT, Chao R, Zhao H. Applying Advanced DNA Assembly Methods to Generate Pathway Libraries. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Dawn T. Eriksen
- University of Illinois at Urbana-Champaign; Department of Chemical and Biomolecular Engineering; 600 South Mathews Avenue, Urbana IL 61801 USA
| | - Ran Chao
- University of Illinois at Urbana-Champaign; Department of Chemical and Biomolecular Engineering; 600 South Mathews Avenue, Urbana IL 61801 USA
| | - Huimin Zhao
- University of Illinois at Urbana-Champaign; Department of Chemical and Biomolecular Engineering; 600 South Mathews Avenue, Urbana IL 61801 USA
- University of Illinois at Urbana-Champaign; Departments of Chemistry, Biochemistry, and Bioengineering, 600 South Mathews Avenue; Urbana IL 61801 USA
| |
Collapse
|
8
|
Woodruff LBA, Gorochowski TE, Roehner N, Mikkelsen TS, Densmore D, Gordon DB, Nicol R, Voigt CA. Registry in a tube: multiplexed pools of retrievable parts for genetic design space exploration. Nucleic Acids Res 2017; 45:1553-1565. [PMID: 28007941 PMCID: PMC5388403 DOI: 10.1093/nar/gkw1226] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/22/2016] [Indexed: 11/14/2022] Open
Abstract
Genetic designs can consist of dozens of genes and hundreds of genetic parts. After evaluating a design, it is desirable to implement changes without the cost and burden of starting the construction process from scratch. Here, we report a two-step process where a large design space is divided into deep pools of composite parts, from which individuals are retrieved and assembled to build a final construct. The pools are built via multiplexed assembly and sequenced using next-generation sequencing. Each pool consists of ∼20 Mb of up to 5000 unique and sequence-verified composite parts that are barcoded for retrieval by PCR. This approach is applied to a 16-gene nitrogen fixation pathway, which is broken into pools containing a total of 55 848 composite parts (71.0 Mb). The pools encompass an enormous design space (1043 possible 23 kb constructs), from which an algorithm-guided 192-member 4.5 Mb library is built. Next, all 1030 possible genetic circuits based on 10 repressors (NOR/NOT gates) are encoded in pools where each repressor is fused to all permutations of input promoters. These demonstrate that multiplexing can be applied to encompass entire design spaces from which individuals can be accessed and evaluated.
Collapse
Affiliation(s)
- Lauren B A Woodruff
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas E Gorochowski
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas Roehner
- Biological Design Center, Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Tarjei S Mikkelsen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Douglas Densmore
- Biological Design Center, Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - D Benjamin Gordon
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Nicol
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Christopher A Voigt
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Perez JG, Stark JC, Jewett MC. Cell-Free Synthetic Biology: Engineering Beyond the Cell. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023853. [PMID: 27742731 DOI: 10.1101/cshperspect.a023853] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches. Next, we review the types of proteins, protein complexes, and protein modifications that have been achieved using CFPS systems. Finally, we introduce recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise to be a powerful tool for synthetic biology as well as a protein production technology in years to come.
Collapse
Affiliation(s)
- Jessica G Perez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611-3068.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611-2875
| |
Collapse
|
10
|
Critical reflections on synthetic gene design for recombinant protein expression. Curr Opin Struct Biol 2016; 38:155-62. [DOI: 10.1016/j.sbi.2016.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 11/17/2022]
|
11
|
Zhang S, Zhao X, Tao Y, Lou C. A novel approach for metabolic pathway optimization: Oligo-linker mediated assembly (OLMA) method. J Biol Eng 2015; 9:23. [PMID: 26702298 PMCID: PMC4688952 DOI: 10.1186/s13036-015-0021-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/24/2015] [Indexed: 01/20/2023] Open
Abstract
Background Imbalances in gene expression of a metabolic pathway can result in less-yield of the desired products. Several targets were intensively investigated to balance the gene expression, such as promoter, ribosome binding site (RBS), the order of genes, as well as the species of the enzymes. However, the capability of simultaneous manipulation of multiple targets still needs to be explored. Results We reported a new DNA assembling method to vary all the above types of regulatory targets simultaneously, named oligo-linker mediated assembly (OLMA) method, which can incorporate up to 8 targets in a single assembly step. Two experimental cases were used to demonstrate the capability of the method: (1) assembly of multiple pieces of lacZ expression cassette; (2) optimization of four enzymes in lycopene biosynthetic pathway. Our results indicated that the OLMA method not only exploited larger combinatorial space, but also reduced the inefficient mutants. Conclusions The unique feature of oligo-linker mediated assembly (OLMA) method is inclusion of a set of chemically synthetic double-stranded DNA oligo library, which can be designed as promoters and RBSs, or designed with different overhang to bridge the genes in different orders. The inclusion of the oligos resulted in a PCR-free and zipcode-free DNA assembly reaction for OLMA. Electronic supplementary material The online version of this article (doi:10.1186/s13036-015-0021-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shasha Zhang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological, and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuejin Zhao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological, and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yong Tao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological, and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Chunbo Lou
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological, and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
12
|
Wang C, Kim JH, Kim SW. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects. Mar Drugs 2014; 12:4810-32. [PMID: 25233369 PMCID: PMC4178492 DOI: 10.3390/md12094810] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022] Open
Abstract
Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.
Collapse
Affiliation(s)
- Chonglong Wang
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea.
| | - Jung-Hun Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea.
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
13
|
Abstract
![]()
Decoders
are combinational circuits that convert information from n inputs to a maximum of 2n outputs.
This operation is of major importance in computing systems yet it
is vastly underexplored in synthetic biology. Here, we present a synthetic
gene network architecture that operates as a biological decoder in
human cells, converting 2 inputs to 4 outputs. As a proof-of-principle,
we use small molecules to emulate the two inputs and fluorescent reporters
as the corresponding four outputs. The experiments are performed using
transient transfections in human kidney embryonic cells and the characterization
by fluorescence microscopy and flow cytometry. We show a clear separation
between the ON and OFF mean fluorescent intensity states. Additionally,
we adopt the integrated mean fluorescence intensity for the characterization
of the circuit and show that this metric is more robust to transfection
conditions when compared to the mean fluorescent intensity. To conclude,
we present the first implementation of a genetic decoder. This combinational
system can be valuable toward engineering higher-order circuits as
well as accommodate a multiplexed interface with endogenous cellular
functions.
Collapse
Affiliation(s)
- Michael Guinn
- Bioengineering
Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Center
for Systems Biology, The University of Texas at Dallas, NSERL 4.708,
800 West Campbell Road, Richardson, Texas 75080, United States
| | - Leonidas Bleris
- Bioengineering
Department, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Electrical
Engineering Department, The University of Texas at Dallas, 800
West Campbell Road, Richardson, Texas 75080, United States
- Center
for Systems Biology, The University of Texas at Dallas, NSERL 4.708,
800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
14
|
Farasat I, Kushwaha M, Collens J, Easterbrook M, Guido M, Salis HM. Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria. Mol Syst Biol 2014; 10:731. [PMID: 24952589 PMCID: PMC4265053 DOI: 10.15252/msb.20134955] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Developing predictive models of multi-protein genetic systems to understand and optimize their behavior remains a combinatorial challenge, particularly when measurement throughput is limited. We developed a computational approach to build predictive models and identify optimal sequences and expression levels, while circumventing combinatorial explosion. Maximally informative genetic system variants were first designed by the RBS Library Calculator, an algorithm to design sequences for efficiently searching a multi-protein expression space across a > 10,000-fold range with tailored search parameters and well-predicted translation rates. We validated the algorithm's predictions by characterizing 646 genetic system variants, encoded in plasmids and genomes, expressed in six gram-positive and gram-negative bacterial hosts. We then combined the search algorithm with system-level kinetic modeling, requiring the construction and characterization of 73 variants to build a sequence-expression-activity map (SEAMAP) for a biosynthesis pathway. Using model predictions, we designed and characterized 47 additional pathway variants to navigate its activity space, find optimal expression regions with desired activity response curves, and relieve rate-limiting steps in metabolism. Creating sequence-expression-activity maps accelerates the optimization of many protein systems and allows previous measurements to quantitatively inform future designs.
Collapse
Affiliation(s)
- Iman Farasat
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Manish Kushwaha
- Department of Biological Engineering, Pennsylvania State University, University Park, PA, USA
| | - Jason Collens
- Department of Biological Engineering, Pennsylvania State University, University Park, PA, USA
| | - Michael Easterbrook
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Matthew Guido
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Howard M Salis
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA Department of Biological Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
15
|
Siegal-Gaskins D, Tuza ZA, Kim J, Noireaux V, Murray RM. Gene circuit performance characterization and resource usage in a cell-free "breadboard". ACS Synth Biol 2014; 3:416-25. [PMID: 24670245 DOI: 10.1021/sb400203p] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The many successes of synthetic biology have come in a manner largely different from those in other engineering disciplines; in particular, without well-characterized and simplified prototyping environments to play a role analogous to wind-tunnels in aerodynamics and breadboards in electrical engineering. However, as the complexity of synthetic circuits increases, the benefits--in cost savings and design cycle time--of a more traditional engineering approach can be significant. We have recently developed an in vitro "breadboard" prototyping platform based on E. coli cell extract that allows biocircuits to operate in an environment considerably simpler than, but functionally similar to, in vivo. The simplicity of this system makes it a promising tool for rapid biocircuit design and testing, as well as for probing fundamental aspects of gene circuit operation normally masked by cellular complexity. In this work, we characterize the cell-free breadboard using real-time and simultaneous measurements of transcriptional and translational activities of a small set of reporter genes and a transcriptional activation cascade. We determine the effects of promoter strength, gene concentration, and nucleoside triphosphate concentration on biocircuit properties, and we isolate the specific contributions of essential biomolecular resources-core RNA polymerase and ribosomes-to overall performance. Importantly, we show how limits on resources, particularly those involved in translation, are manifested as reduced expression in the presence of orthogonal genes that serve as additional loads on the system.
Collapse
Affiliation(s)
- Dan Siegal-Gaskins
- Division
of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zoltan A. Tuza
- Faculty
of Information Technology, Pazmany Peter Catholic University, 1088 Budapest, Hungary
| | - Jongmin Kim
- Division
of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Vincent Noireaux
- School
of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Richard M. Murray
- Division
of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Department
of Control and Dynamical Systems, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
16
|
Brophy JAN, Voigt CA. Principles of genetic circuit design. Nat Methods 2014; 11:508-20. [PMID: 24781324 DOI: 10.1038/nmeth.2926] [Citation(s) in RCA: 587] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/18/2014] [Indexed: 12/17/2022]
Abstract
Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Smith MT, Wilding KM, Hunt JM, Bennett AM, Bundy BC. The emerging age of cell-free synthetic biology. FEBS Lett 2014; 588:2755-61. [PMID: 24931378 DOI: 10.1016/j.febslet.2014.05.062] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 01/16/2023]
Abstract
The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology.
Collapse
Affiliation(s)
- Mark Thomas Smith
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Kristen M Wilding
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Jeremy M Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Anthony M Bennett
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
18
|
Sleight SC, Sauro HM. Visualization of evolutionary stability dynamics and competitive fitness of Escherichia coli engineered with randomized multigene circuits. ACS Synth Biol 2013; 2:519-28. [PMID: 24004180 DOI: 10.1021/sb400055h] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Strain engineering for synthetic biology and metabolic engineering applications often requires the expression of foreign proteins that can reduce cellular fitness. In order to quantify and visualize the evolutionary stability dynamics in engineered populations of Escherichia coli , we constructed randomized CMY (cyan-magenta-yellow) genetic circuits with independently randomized promoters, ribosome binding sites, and transcriptional terminators that express cyan fluorescent protein (CFP), red fluorescent protein (RFP), and yellow fluorescent protein (YFP). Using a CMY color system allows for a spectrum of different colors to be produced under UV light since the relative ratio of fluorescent proteins vary between circuits, and this system can be used for the visualization of evolutionary stability dynamics. Evolutionary stability results from 192 evolved populations (24 CMY circuits with 8 replicates each) indicate that both the number of repeated sequences and overall expression levels contribute to circuit stability. The most evolutionarily robust circuit has no repeated parts, lower expression levels, and is about 3-fold more stable relative to a rationally designed circuit. Visualization results show that evolutionary dynamics are highly stochastic between replicate evolved populations and color changes over evolutionary time are consistent with quantitative data. We also measured the competitive fitness of different mutants in an evolved population and find that fitness is highest in mutants that express a lower number of genes (0 and 1 > 2 > 3). In addition, we find that individual circuits with expression levels below 10% of the maximum have significantly higher evolutionary stability, suggesting there may be a hypothetical "fitness threshold" that can be used for robust circuit design.
Collapse
Affiliation(s)
- Sean C Sleight
- University of Washington , Dept. of Bioengineering, Seattle, Washington 98195, United States
| | | |
Collapse
|