1
|
Amikura K, Hibi K, Shimizu Y. Efficient and Precise Protein Synthesis in a Cell-Free System Using a Set of In Vitro Transcribed tRNAs with Nucleotide Modifications. Methods Mol Biol 2022; 2433:151-168. [PMID: 34985743 DOI: 10.1007/978-1-0716-1998-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reconstitution of a complicated system with a minimal set of components is essential for understanding the mechanisms of how the input is reflected in the output, which is fundamental for further engineering of the corresponding system. We have recently developed a reconstituted cell-free protein synthesis system equipped only with 21 in vitro transcribed tRNAs, one of the minimal systems for understanding the genetic code decoding mechanisms. Introduction of several nucleotide modifications to the transcribed tRNAs showed improvement of both protein synthesis efficiency and its fidelity, suggesting various combinations of tRNAs and their modifications can be evaluated in the developed system. In this chapter, we describe how to prepare this minimal system. Methods for preparing the transcribed tRNAs, their modifications, and the protein production using the set of prepared tRNAs are shown.
Collapse
Affiliation(s)
- Kazuaki Amikura
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Keita Hibi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics research (BDR), Osaka, Japan.
| |
Collapse
|
2
|
Newton MS, Morrone DJ, Lee KH, Seelig B. Genetic Code Evolution Investigated through the Synthesis and Characterisation of Proteins from Reduced-Alphabet Libraries. Chembiochem 2019; 20:846-856. [PMID: 30511381 DOI: 10.1002/cbic.201800668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 11/08/2022]
Abstract
The universal genetic code of 20 amino acids is the product of evolution. It is believed that earlier versions of the code had fewer residues. Many theories for the order in which amino acids were integrated into the code have been proposed, considering factors ranging from prebiotic chemistry to codon capture. Several meta-analyses combined these theories to yield a feasible consensus chronology of the genetic code's evolution, but there is a dearth of experimental data to test the hypothesised order. We used combinatorial chemistry to synthesise libraries of random polypeptides that were based on different subsets of the 20 standard amino acids, thus representing different stages of a plausible history of the alphabet. Four libraries were comprised of the five, nine, and 16 most ancient amino acids, and all 20 extant residues for a direct side-by-side comparison. We characterised numerous variants from each library for their solubility and propensity to form secondary, tertiary or quaternary structures. Proteins from the two most ancient libraries were more likely to be soluble than those from the extant library. Several individual protein variants exhibited inducible protein folding and other traits typical of intrinsically disordered proteins. From these libraries, we can infer how primordial protein structure and function might have evolved with the genetic code.
Collapse
Affiliation(s)
- Matilda S Newton
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.,BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, 140 Gortner Laboratory, St. Paul, MN, 55108-6106, USA
| | - Dana J Morrone
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.,BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, 140 Gortner Laboratory, St. Paul, MN, 55108-6106, USA
| | - Kun-Hwa Lee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.,BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, 140 Gortner Laboratory, St. Paul, MN, 55108-6106, USA
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.,BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, 140 Gortner Laboratory, St. Paul, MN, 55108-6106, USA
| |
Collapse
|
3
|
Froese T, Campos JI, Fujishima K, Kiga D, Virgo N. Horizontal transfer of code fragments between protocells can explain the origins of the genetic code without vertical descent. Sci Rep 2018; 8:3532. [PMID: 29476089 PMCID: PMC5824800 DOI: 10.1038/s41598-018-21973-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/14/2018] [Indexed: 11/09/2022] Open
Abstract
Theories of the origin of the genetic code typically appeal to natural selection and/or mutation of hereditable traits to explain its regularities and error robustness, yet the present translation system presupposes high-fidelity replication. Woese's solution to this bootstrapping problem was to assume that code optimization had played a key role in reducing the effect of errors caused by the early translation system. He further conjectured that initially evolution was dominated by horizontal exchange of cellular components among loosely organized protocells ("progenotes"), rather than by vertical transmission of genes. Here we simulated such communal evolution based on horizontal transfer of code fragments, possibly involving pairs of tRNAs and their cognate aminoacyl tRNA synthetases or a precursor tRNA ribozyme capable of catalysing its own aminoacylation, by using an iterated learning model. This is the first model to confirm Woese's conjecture that regularity, optimality, and (near) universality could have emerged via horizontal interactions alone.
Collapse
Affiliation(s)
- Tom Froese
- Institute for Applied Mathematics and Systems Research (IIMAS), National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico. .,Center for the Sciences of Complexity (C3), National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico.
| | - Jorge I Campos
- Center for the Sciences of Complexity (C3), National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico.,Faculty of Higher Education Aragon, National Autonomous University of Mexico (UNAM), Nezahualcoyotl City, State of Mexico, 57130, Mexico
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, 9970035, Japan
| | - Daisuke Kiga
- Faculty of Science and Engineering, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, 169-8555, Japan
| | - Nathaniel Virgo
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
4
|
Fujishima K, Wang KM, Palmer JA, Abe N, Nakahigashi K, Endy D, Rothschild LJ. Reconstruction of cysteine biosynthesis using engineered cysteine-free enzymes. Sci Rep 2018; 8:1776. [PMID: 29379050 PMCID: PMC5788988 DOI: 10.1038/s41598-018-19920-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/03/2018] [Indexed: 12/28/2022] Open
Abstract
Amino acid biosynthesis pathways observed in nature typically require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine: serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase (CysK/CysM). To solve this chicken-and-egg problem, we substituted alternate amino acids in CysE, CysK and CysM for cysteine and methionine, which are the only two sulfur-containing proteinogenic amino acids. Using a cysteine-dependent auxotrophic E. coli strain, CysE function was rescued by cysteine-free and methionine-deficient enzymes, and CysM function was rescued by cysteine-free enzymes. CysK function, however, was not rescued in either case. Enzymatic assays showed that the enzymes responsible for rescuing the function in CysE and CysM also retained their activities in vitro. Additionally, substitution of the two highly conserved methionines in CysM decreased but did not eliminate overall activity. Engineering amino acid biosynthetic enzymes to lack the so-produced amino acids can provide insights into, and perhaps eventually fully recapitulate via a synthetic approach, the biogenesis of biotic amino acids.
Collapse
Affiliation(s)
- Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 1528550, Japan.,Universities Space Research Association, NASA Ames Research Center, Moffett Field, California, 94035, USA.,Institute for Advanced Biosciences, Keio University, Tsuruoka, 9970035, Japan
| | - Kendrick M Wang
- Stanford University Department of Bioengineering, Stanford, California, 94305, USA
| | - Jesse A Palmer
- Universities Space Research Association, NASA Ames Research Center, Moffett Field, California, 94035, USA
| | - Nozomi Abe
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 9970035, Japan
| | - Kenji Nakahigashi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 9970035, Japan.,Spiber Inc. 234-1 Mizukami, Kakuganji, Tsuruoka, 9970052, Japan
| | - Drew Endy
- Stanford University Department of Bioengineering, Stanford, California, 94305, USA
| | | |
Collapse
|
5
|
Cui Z, Stein V, Tnimov Z, Mureev S, Alexandrov K. Semisynthetic tRNA complement mediates in vitro protein synthesis. J Am Chem Soc 2015; 137:4404-13. [PMID: 25822136 DOI: 10.1021/ja5131963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Genetic code expansion is a key objective of synthetic biology and protein engineering. Most efforts in this direction are focused on reassigning termination or decoding quadruplet codons. While the redundancy of genetic code provides a large number of potentially reassignable codons, their utility is diminished by the inevitable interaction with cognate aminoacyl-tRNAs. To address this problem, we sought to establish an in vitro protein synthesis system with a simplified synthetic tRNA complement, thereby orthogonalizing some of the sense codons. This quantitative in vitro peptide synthesis assay allowed us to analyze the ability of synthetic tRNAs to decode all of 61 sense codons. We observed that, with the exception of isoacceptors for Asn, Glu, and Ile, the majority of 48 synthetic Escherichia coli tRNAs could support protein translation in the cell-free system. We purified to homogeneity functional Asn, Glu, and Ile tRNAs from the native E. coli tRNA mixture, and by combining them with synthetic tRNAs, we formulated a semisynthetic tRNA complement for all 20 amino acids. We further demonstrated that this tRNA complement could restore the protein translation activity of tRNA-depleted E. coli lysate to a level comparable to that of total native tRNA. To confirm that the developed system could efficiently synthesize long polypeptides, we expressed three different sequences coding for superfolder GFP. This novel semisynthetic translation system is a powerful tool for tRNA engineering and potentially enables the reassignment of at least 9 sense codons coding for Ser, Arg, Leu, Pro, Thr, and Gly.
Collapse
Affiliation(s)
- Zhenling Cui
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Viktor Stein
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zakir Tnimov
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sergey Mureev
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience and the Australian Institute for Bioengeneering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|