1
|
Jones RD, Qian Y, Ilia K, Wang B, Laub MT, Del Vecchio D, Weiss R. Robust and tunable signal processing in mammalian cells via engineered covalent modification cycles. Nat Commun 2022; 13:1720. [PMID: 35361767 PMCID: PMC8971529 DOI: 10.1038/s41467-022-29338-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Engineered signaling networks can impart cells with new functionalities useful for directing differentiation and actuating cellular therapies. For such applications, the engineered networks must be tunable, precisely regulate target gene expression, and be robust to perturbations within the complex context of mammalian cells. Here, we use bacterial two-component signaling proteins to develop synthetic phosphoregulation devices that exhibit these properties in mammalian cells. First, we engineer a synthetic covalent modification cycle based on kinase and phosphatase proteins derived from the bifunctional histidine kinase EnvZ, enabling analog tuning of gene expression via its response regulator OmpR. By regulating phosphatase expression with endogenous miRNAs, we demonstrate cell-type specific signaling responses and a new strategy for accurate cell type classification. Finally, we implement a tunable negative feedback controller via a small molecule-stabilized phosphatase, reducing output expression variance and mitigating the context-dependent effects of off-target regulation and resource competition. Our work lays the foundation for establishing tunable, precise, and robust control over cell behavior with synthetic signaling networks.
Collapse
Affiliation(s)
- Ross D Jones
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yili Qian
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Katherine Ilia
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Benjamin Wang
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael T Laub
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Domitilla Del Vecchio
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Liu B, Cuba Samaniego C, Bennett M, Chappell J, Franco E. RNA Compensation: A Positive Feedback Insulation Strategy for RNA-Based Transcription Networks. ACS Synth Biol 2022; 11:1240-1250. [PMID: 35244392 DOI: 10.1021/acssynbio.1c00540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lack of signaling modularity of biomolecular systems poses major challenges toward engineering complex networks. Directional signaling between an upstream and a downstream circuit requires the presence of binding events, which result in the consumption of regulatory molecules and can compromise the operation of the upstream circuit. This issue has been previously addressed by introducing insulation strategies that include high-gain negative feedback and activation-deactivation reaction cycles. In this paper, we focus on RNA-based circuits and propose a new positive-feedback strategy to mitigate signal consumption that we propose occurs for each regulatory event due to irreversible binding of the RNA input to the RNA target. To mitigate this, an extra RNA input is added in tandem with transcription output to compensate the RNA consumption, leading to concentration robustness of the input RNA molecule regardless of the amount of downstream modules. We term this strategy RNA compensation, and it can be applied to systems that have a stringent input-output gain, such as Small Transcription Activating RNAs (STARs). Our theoretical analysis shows that RNA compensation not only eliminates the signaling consumption in individual STAR-based regulators, but also improves the composability of STAR cascades and the modularity of RNA bistable systems.
Collapse
Affiliation(s)
- Baiyang Liu
- Graduate Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States
| | - Christian Cuba Samaniego
- Department of Mechanical and Aerospace Engineering, Bioengineering, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Matthew Bennett
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, Bioengineering, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Shakiba N, Jones RD, Weiss R, Del Vecchio D. Context-aware synthetic biology by controller design: Engineering the mammalian cell. Cell Syst 2021; 12:561-592. [PMID: 34139166 PMCID: PMC8261833 DOI: 10.1016/j.cels.2021.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
The rise of systems biology has ushered a new paradigm: the view of the cell as a system that processes environmental inputs to drive phenotypic outputs. Synthetic biology provides a complementary approach, allowing us to program cell behavior through the addition of synthetic genetic devices into the cellular processor. These devices, and the complex genetic circuits they compose, are engineered using a design-prototype-test cycle, allowing for predictable device performance to be achieved in a context-dependent manner. Within mammalian cells, context effects impact device performance at multiple scales, including the genetic, cellular, and extracellular levels. In order for synthetic genetic devices to achieve predictable behaviors, approaches to overcome context dependence are necessary. Here, we describe control systems approaches for achieving context-aware devices that are robust to context effects. We then consider cell fate programing as a case study to explore the potential impact of context-aware devices for regenerative medicine applications.
Collapse
Affiliation(s)
- Nika Shakiba
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ross D Jones
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Domitilla Del Vecchio
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
|
5
|
Grunberg TW, Del Vecchio D. Modular Analysis and Design of Biological Circuits. Curr Opin Biotechnol 2020; 63:41-47. [DOI: 10.1016/j.copbio.2019.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023]
|
6
|
Zheng Y, Meng F, Zhu Z, Wei W, Sun Z, Chen J, Yu B, Lou C, Chen GQ. A tight cold-inducible switch built by coupling thermosensitive transcriptional and proteolytic regulatory parts. Nucleic Acids Res 2020; 47:e137. [PMID: 31750522 PMCID: PMC6868347 DOI: 10.1093/nar/gkz785] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Natural organisms have evolved intricate regulatory mechanisms that sense and respond to fluctuating environmental temperatures in a heat- or cold-inducible fashion. Unlike dominant heat-inducible switches, very few cold-inducible genetic switches are available in either natural or engineered systems. Moreover, the available cold-inducible switches still have many shortcomings, including high leaky gene expression, small dynamic range (<10-fold) or broad transition temperature (>10°C). To address these problems, a high-performance cold-inducible switch that can tightly control target gene expression is highly desired. Here, we introduce a tight and fast cold-inducible switch that couples two evolved thermosensitive variants, TFts and TEVts, as well as an additional Mycoplasma florum Lon protease (mf-Lon) to effectively turn-off target gene expression via transcriptional and proteolytic mechanisms. We validated the function of the switch in different culture media and various Escherichia coli strains and demonstrated its tightness by regulating two morphogenetic bacterial genes and expressing three heat-unstable recombinant proteins, respectively. Moreover, the additional protease module enabled the cold-inducible switch to actively remove the pre-existing proteins in slow-growing cells. This work establishes a high-performance cold-inducible system for tight and fast control of gene expression which has great potential for basic research, as well as industrial and biomedical applications.
Collapse
Affiliation(s)
- Yang Zheng
- MOE Key Lab of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fankang Meng
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Zihui Zhu
- MOE Key Lab of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weijia Wei
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Zhi Sun
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Jinchun Chen
- MOE Key Lab of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunbo Lou
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149, China.,College of Life Science, University of Science and Technology of China, Hefei 230027, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Barger N, Litovco P, Li X, Habib M, Daniel R. Synthetic metabolic computation in a bioluminescence-sensing system. Nucleic Acids Res 2019; 47:10464-10474. [PMID: 31544939 PMCID: PMC6821183 DOI: 10.1093/nar/gkz807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Bioluminescence is visible light produced and emitted by living cells using various biological systems (e.g. luxCDABE cassette). Today, this phenomenon is widely exploited in biological research, biotechnology and medical applications as a quantitative technique for the detection of biological signals. However, this technique has mostly been used to detect a single input only. In this work, we re-engineered the complex genetic structure of luxCDABE cassette to build a biological unit that can detect multi-inputs, process the cellular information and report the computation results. We first split the luxCDABE operon into several parts to create a genetic circuit that can compute a soft minimum in living cells. Then, we used the new design to implement an AND logic function with better performance as compared to AND logic functions based on protein-protein interactions. Furthermore, by controlling the reverse reaction of the luxCDABE cassette independently from the forward reaction, we built a comparator with a programmable detection threshold. Finally, we applied the redesigned cassette to build an incoherent feedforward loop that reduced the unwanted crosstalk between stress-responsive promoters (recA, katG). This work demonstrates the construction of genetic circuits that combine regulations of gene expression with metabolic pathways, for sensing and computing in living cells.
Collapse
Affiliation(s)
- Natalia Barger
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Phyana Litovco
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ximing Li
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Mouna Habib
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ramez Daniel
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
8
|
Hussey BJ, McMillen DR. Programmable T7-based synthetic transcription factors. Nucleic Acids Res 2019; 46:9842-9854. [PMID: 30169636 PMCID: PMC6182181 DOI: 10.1093/nar/gky785] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
Despite recent progress on synthetic transcription factor generation in eukaryotes, there remains a need for high-activity bacterial versions of these systems. In synthetic biology applications, it is useful for transcription factors to have two key features: they should be orthogonal (influencing only their own targets, with minimal off-target effects), and programmable (able to be directed to a wide range of user-specified transcriptional start sites). The RNA polymerase of the bacteriophage T7 has a number of appealing properties for synthetic biological designs: it can produce high transcription rates; it is a compact, single-subunit polymerase that has been functionally expressed in a variety of organisms; and its viral origin reduces the connection between its activity and that of its host's transcriptional machinery. We have created a system where a T7 RNA polymerase is recruited to transcriptional start sites by DNA binding proteins, either directly or bridged through protein–protein interactions, yielding a modular and programmable system for strong transcriptional activation of multiple orthogonal synthetic transcription factor variants in Escherichia coli. To our knowledge this is the first exogenous, programmable activator system in bacteria.
Collapse
Affiliation(s)
- Brendan J Hussey
- Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Cell and Systems Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Impact Centre, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - David R McMillen
- Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Cell and Systems Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Impact Centre, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| |
Collapse
|
9
|
A quasi-integral controller for adaptation of genetic modules to variable ribosome demand. Nat Commun 2018; 9:5415. [PMID: 30575748 PMCID: PMC6303309 DOI: 10.1038/s41467-018-07899-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 12/03/2018] [Indexed: 01/25/2023] Open
Abstract
The behavior of genetic circuits is often poorly predictable. A gene’s expression level is not only determined by the intended regulators, but also affected by changes in ribosome availability imparted by expression of other genes. Here we design a quasi-integral biomolecular feedback controller that enables the expression level of any gene of interest (GOI) to adapt to changes in available ribosomes. The feedback is implemented through a synthetic small RNA (sRNA) that silences the GOI’s mRNA, and uses orthogonal extracytoplasmic function (ECF) sigma factor to sense the GOI’s translation and to actuate sRNA transcription. Without the controller, the expression level of the GOI is reduced by 50% when a resource competitor is activated. With the controller, by contrast, gene expression level is practically unaffected by the competitor. This feedback controller allows adaptation of genetic modules to variable ribosome demand and thus aids modular construction of complicated circuits. Competition for shared cellular resources often renders genetic circuits poorly predictable. Here the authors design a biomolecular quasi-integral controller that allows gene expression to adapt to variable demand in translation resources.
Collapse
|
10
|
Darlington APS, Kim J, Jiménez JI, Bates DG. Engineering Translational Resource Allocation Controllers: Mechanistic Models, Design Guidelines, and Potential Biological Implementations. ACS Synth Biol 2018; 7:2485-2496. [PMID: 30346148 DOI: 10.1021/acssynbio.8b00029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of orthogonal ribosomes in combination with dynamic resource allocation controllers is a promising approach for relieving the negative effects of cellular resource limitations on the modularity of synthetic gene circuits. Here, we develop a detailed mechanistic model of gene expression and resource allocation, which when simplified to a tractable level of complexity, allows the rational design of translational resource allocation controllers. Analysis of this model reveals a fundamental design trade-off: that reducing coupling acts to decrease gene expression. Through a sensitivity analysis of the experimentally tunable controller parameters, we identify how each controller design parameter affects the overall closed-loop behavior of the system, leading to a detailed set of design guidelines for optimally managing this trade-off. On the basis of our designs, we evaluated a number of alternative potential experimental implementations of the proposed system using commonly available biological components. Finally, we show that the controller is capable of dynamically allocating ribosomes as needed to restore modularity in a number of more complex synthetic circuits, such as the repressilator, and activation cascades composed of multiple interacting modules.
Collapse
Affiliation(s)
- Alexander P. S. Darlington
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Juhyun Kim
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, U.K
| | - José I. Jiménez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, U.K
| | - Declan G. Bates
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
11
|
Herath N, Del Vecchio D. Reduced linear noise approximation for biochemical reaction networks with time-scale separation: The stochastic tQSSA+. J Chem Phys 2018. [DOI: 10.1063/1.5012752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Narmada Herath
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
12
|
Annunziata F, Matyjaszkiewicz A, Fiore G, Grierson CS, Marucci L, di Bernardo M, Savery NJ. An Orthogonal Multi-input Integration System to Control Gene Expression in Escherichia coli. ACS Synth Biol 2017; 6:1816-1824. [PMID: 28723080 DOI: 10.1021/acssynbio.7b00109] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In many biotechnological applications, it is useful for gene expression to be regulated by multiple signals, as this allows the programming of complex behavior. Here we implement, in Escherichia coli, a system that compares the concentration of two signal molecules, and tunes GFP expression proportionally to their relative abundance. The computation is performed via molecular titration between an orthogonal σ factor and its cognate anti-σ factor. We use mathematical modeling and experiments to show that the computation system is predictable and able to adapt GFP expression dynamically to a wide range of combinations of the two signals, and our model qualitatively captures most of these behaviors. We also demonstrate in silico the practical applicability of the system as a reference-comparator, which compares an intrinsic signal (reflecting the state of the system) with an extrinsic signal (reflecting the desired reference state) in a multicellular feedback control strategy.
Collapse
Affiliation(s)
- Fabio Annunziata
- School
of Biochemistry, University of Bristol, BS8 1TD, Bristol, U.K
- BrisSynBio, Bristol, BS8 1TQ, U.K
| | - Antoni Matyjaszkiewicz
- Department
of Engineering Mathematics, University of Bristol, BS8 1UB, Bristol, U.K
- BrisSynBio, Bristol, BS8 1TQ, U.K
| | - Gianfranco Fiore
- Department
of Engineering Mathematics, University of Bristol, BS8 1UB, Bristol, U.K
- BrisSynBio, Bristol, BS8 1TQ, U.K
| | - Claire S. Grierson
- School
of Biological Sciences, University of Bristol, BS8 1UH, Bristol, U.K
- BrisSynBio, Bristol, BS8 1TQ, U.K
| | - Lucia Marucci
- Department
of Engineering Mathematics, University of Bristol, BS8 1UB, Bristol, U.K
- BrisSynBio, Bristol, BS8 1TQ, U.K
| | - Mario di Bernardo
- Department
of Engineering Mathematics, University of Bristol, BS8 1UB, Bristol, U.K
- Department
of Electrical Engineering and Information Technology, University of Naples Federico II, 80125, Naples, Italy
- BrisSynBio, Bristol, BS8 1TQ, U.K
| | - Nigel J. Savery
- School
of Biochemistry, University of Bristol, BS8 1TD, Bristol, U.K
- BrisSynBio, Bristol, BS8 1TQ, U.K
| |
Collapse
|
13
|
Awan H, Chou CT. Improving the Capacity of Molecular Communication Using Enzymatic Reaction Cycles. IEEE Trans Nanobioscience 2017; 16:744-754. [PMID: 28922124 DOI: 10.1109/tnb.2017.2753230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper considers the capacity of a diffusion-based molecular communication link assuming the receiver uses chemical reactions. The key contribution is we show that enzymatic reaction cycles, which is a class of chemical reactions commonly found in cells consisting of a forward and a backward enzymatic reaction, can improve the capacity of the communication link. The technical difficulty in analyzing enzymatic reaction cycles is that their reaction rates are nonlinear. We deal with this by assuming that the amount of certain chemicals in the enzymatic reaction cycle is large. In order to simplify the problem further, we use singular perturbation to study a particular operating regime of the enzymatic reaction cycles. This allows us to derive a closed-form expression of the channel gain. This expression suggests that we can improve the channel gain by increasing the total amount of substrate in the enzymatic reaction cycle. By using numerical calculations, we show that the effect of the enzymatic reaction cycle is to increase the channel gain and to reduce the noise, which results in a better signal-to-noise ratio and in turn a higher communication capacity. Furthermore, we show that we can increase the capacity by increasing the total amount of substrate in the enzymatic reaction cycle.
Collapse
|
14
|
Shah R, Del Vecchio D. Signaling Architectures that Transmit Unidirectional Information Despite Retroactivity. Biophys J 2017; 113:728-742. [PMID: 28793226 PMCID: PMC5549655 DOI: 10.1016/j.bpj.2017.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 01/15/2023] Open
Abstract
A signaling pathway transmits information from an upstream system to downstream systems, ideally in a unidirectional fashion. A key obstacle to unidirectional transmission is retroactivity, the additional reaction flux that affects a system once its species interact with those of downstream systems. This raises the fundamental question of whether signaling pathways have developed specialized architectures that overcome retroactivity and transmit unidirectional signals. Here, we propose a general procedure based on mathematical analysis that provides an answer to this question. Using this procedure, we analyze the ability of a variety of signaling architectures to transmit one-way (from upstream to downstream) signals, as key biological parameters are tuned. We find that single stage phosphorylation and phosphotransfer systems that transmit signals from a kinase show a stringent design tradeoff that hampers their ability to overcome retroactivity. Interestingly, cascades of these architectures, which are highly represented in nature, can overcome this tradeoff and thus enable unidirectional transmission. By contrast, phosphotransfer systems, and single and double phosphorylation cycles that transmit signals from a substrate, are unable to mitigate retroactivity effects, even when cascaded, and hence are not well suited for unidirectional information transmission. These results are largely independent of the specific reaction-rate constant values, and depend on the topology of the architectures. Our results therefore identify signaling architectures that, allowing unidirectional transmission of signals, embody modular processes that conserve their input/output behavior across multiple contexts. These findings can be used to decompose natural signal transduction networks into modules, and at the same time, they establish a library of devices that can be used in synthetic biology to facilitate modular circuit design.
Collapse
Affiliation(s)
- Rushina Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
15
|
Qian Y, Huang HH, Jiménez JI, Del Vecchio D. Resource Competition Shapes the Response of Genetic Circuits. ACS Synth Biol 2017; 6:1263-1272. [PMID: 28350160 DOI: 10.1021/acssynbio.6b00361] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A common approach to design genetic circuits is to compose gene expression cassettes together. While appealing, this modular approach is challenged by the fact that expression of each gene depends on the availability of transcriptional/translational resources, which is in turn determined by the presence of other genes in the circuit. This raises the question of how competition for resources by different genes affects a circuit's behavior. Here, we create a library of genetic activation cascades in E. coli bacteria, where we explicitly tune the resource demand by each gene. We develop a general Hill-function-based model that incorporates resource competition effects through resource demand coefficients. These coefficients lead to nonregulatory interactions among genes that reshape the circuit's behavior. For the activation cascade, such interactions result in surprising biphasic or monotonically decreasing responses. Finally, we use resource demand coefficients to guide the choice of ribosome binding site and DNA copy number to restore the cascade's intended monotonically increasing response. Our results demonstrate how unintended circuit's behavior arises from resource competition and provide a model-guided methodology to minimize the resulting effects.
Collapse
Affiliation(s)
- Yili Qian
- Department
of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hsin-Ho Huang
- Department
of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - José I. Jiménez
- Department
of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Faculty
of Health of Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Domitilla Del Vecchio
- Department
of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Synthetic
Biology Center, Massachusetts Institute of Technology, 500 Technology
Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Properties of alternative microbial hosts used in synthetic biology: towards the design of a modular chassis. Essays Biochem 2017; 60:303-313. [PMID: 27903818 PMCID: PMC5264504 DOI: 10.1042/ebc20160015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/24/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022]
Abstract
The chassis is the cellular host used as a recipient of engineered biological systems in synthetic biology. They are required to propagate the genetic information and to express the genes encoded in it. Despite being an essential element for the appropriate function of genetic circuits, the chassis is rarely considered in their design phase. Consequently, the circuits are transferred to model organisms commonly used in the laboratory, such as Escherichia coli, that may be suboptimal for a required function. In this review, we discuss some of the properties desirable in a versatile chassis and summarize some examples of alternative hosts for synthetic biology amenable for engineering. These properties include a suitable life style, a robust cell wall, good knowledge of its regulatory network as well as of the interplay of the host components with the exogenous circuits, and the possibility of developing whole-cell models and tuneable metabolic fluxes that could allow a better distribution of cellular resources (metabolites, ATP, nucleotides, amino acids, transcriptional and translational machinery). We highlight Pseudomonas putida, widely used in many different biotechnological applications as a prominent organism for synthetic biology due to its metabolic diversity, robustness and ease of manipulation.
Collapse
|
17
|
Del Vecchio D, Dy AJ, Qian Y. Control theory meets synthetic biology. J R Soc Interface 2016; 13:rsif.2016.0380. [PMID: 27440256 DOI: 10.1098/rsif.2016.0380] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022] Open
Abstract
The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology.
Collapse
Affiliation(s)
- Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron J Dy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yili Qian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Fernandez-Rodriguez J, Voigt CA. Post-translational control of genetic circuits using Potyvirus proteases. Nucleic Acids Res 2016; 44:6493-502. [PMID: 27298256 PMCID: PMC5291274 DOI: 10.1093/nar/gkw537] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 06/06/2016] [Indexed: 12/25/2022] Open
Abstract
Genetic engineering projects often require control over when a protein is degraded. To this end, we use a fusion between a degron and an inactivating peptide that can be added to the N-terminus of a protein. When the corresponding protease is expressed, it cleaves the peptide and the protein is degraded. Three protease:cleavage site pairs from Potyvirus are shown to be orthogonal and active in exposing degrons, releasing inhibitory domains and cleaving polyproteins. This toolbox is applied to the design of genetic circuits as a means to control regulator activity and degradation. First, we demonstrate that a gate can be constructed by constitutively expressing an inactivated repressor and having an input promoter drive the expression of the protease. It is also shown that the proteolytic release of an inhibitory domain can improve the dynamic range of a transcriptional gate (200-fold repression). Next, we design polyproteins containing multiple repressors and show that their cleavage can be used to control multiple outputs. Finally, we demonstrate that the dynamic range of an output can be improved (8-fold to 190-fold) with the addition of a protease-cleaved degron. Thus, controllable proteolysis offers a powerful tool for modulating and expanding the function of synthetic gene circuits.
Collapse
Affiliation(s)
- Jesus Fernandez-Rodriguez
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Tools and Principles for Microbial Gene Circuit Engineering. J Mol Biol 2016; 428:862-88. [DOI: 10.1016/j.jmb.2015.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022]
|
20
|
Abstract
A new biological device known as a 'load driver' improves the performance of synthetic circuits by insulating genetic parts from each other.
Collapse
|
21
|
Abstract
ABSTRACT
The scientific and technical ambition of contemporary synthetic biology is the engineering of biological objects with a degree of predictability comparable to those made through electric and industrial manufacturing. To this end, biological parts with given specifications are sequence-edited, standardized, and combined into devices, which are assembled into complete systems. This goal, however, faces the customary context dependency of biological ingredients and their amenability to mutation. Biological orthogonality (i.e., the ability to run a function in a fashion minimally influenced by the host) is thus a desirable trait in any deeply engineered construct. Promiscuous conjugative plasmids found in environmental bacteria have evolved precisely to autonomously deploy their encoded activities in a variety of hosts, and thus they become excellent sources of basic building blocks for genetic and metabolic circuits. In this article we review a number of such reusable functions that originated in environmental plasmids and keep their properties and functional parameters in a variety of hosts. The properties encoded in the corresponding sequences include
inter alia
origins of replication, DNA transfer machineries, toxin-antitoxin systems, antibiotic selection markers, site-specific recombinases, effector-dependent transcriptional regulators (with their cognate promoters), and metabolic genes and operons. Several of these sequences have been standardized as BioBricks and/or as components of the SEVA (Standard European Vector Architecture) collection. Such formatting facilitates their physical composability, which is aimed at designing and deploying complex genetic constructs with new-to-nature properties.
Collapse
|
22
|
Del Vecchio D. Modularity, context-dependence, and insulation in engineered biological circuits. Trends Biotechnol 2015; 33:111-9. [DOI: 10.1016/j.tibtech.2014.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/06/2014] [Accepted: 11/19/2014] [Indexed: 01/21/2023]
|
23
|
A load driver device for engineering modularity in biological networks. Nat Biotechnol 2014; 32:1268-75. [PMID: 25419739 PMCID: PMC4262674 DOI: 10.1038/nbt.3044] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/03/2014] [Indexed: 11/21/2022]
Abstract
The behavior of gene modules in complex synthetic circuits is often unpredictable1–4. Upon joining modules to create a circuit, downstream elements (such as binding sites for a regulatory protein) apply a load to upstream modules that can negatively affect circuit function1,5. Here we devise a genetic device named a load driver that mitigates the impact of load on circuit function, and we demonstrate its behavior in Saccharomyces cerevisiae. The load driver implements the design principle of time scale separation: inclusion of the load driver’s fast phosphotransfer processes restores the capability of a slower transcriptional circuit to respond to time-varying input signals even in the presence of substantial load. Without the load driver, we observe circuit behavior that suffers from 76% delay in response time and a 25% decrease in system bandwidth due to load. With the addition of a load driver, circuit performance is almost completely restored. Load drivers will serve as fundamental building blocks in the creation of complex, higher level genetic circuits.
Collapse
|