1
|
Hara T, Asatsu M, Yamagishi T, Ohata C, Funatsu H, Takahashi Y, Shirai M, Nakata C, Katayama H, Kaji T, Fujie T, Yamamoto C. Cadmium Induces Vascular Endothelial Cell Detachment by Downregulating Claudin-5 and ZO-1 Levels. Int J Mol Sci 2024; 25:11035. [PMID: 39456818 PMCID: PMC11507107 DOI: 10.3390/ijms252011035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Cadmium is a contributing factor to cardiovascular diseases and highly toxic to vascular endothelial cells. It has a distinct mode of injury, causing the de-endothelialization of regions in the monolayer structure of endothelial cells in a concentration-dependent manner. However, the specific molecules involved in the cadmium toxicity of endothelial cells remain unclear. The purpose of this study was to identify the specific molecular mechanisms through which cadmium affects endothelial detachment. Cadmium inhibited the expression of claudin-5 and zonula occludens (ZO)-1, which are components of tight junctions (strongest contributors to intercellular adhesion), in a concentration- and time-dependent manner. Compared to arsenite, zinc, and manganese, only cadmium suppressed the expression of both claudin-5 and ZO-1 molecules. Moreover, the knockdown of claudin-5 and ZO-1 exacerbated cadmium-induced endothelial cell injury and expansion of the detachment area, whereas their overexpression reversed these effects. CRE-binding protein inhibition reduced cadmium toxicity, suggesting that CRE-binding protein activation is involved in the cadmium-induced inhibition of claudin-5 and ZO-1 expression and endothelial detachment. These findings provide new insights into the toxicological mechanisms of cadmium-induced endothelial injury and risk of cardiovascular disease.
Collapse
Affiliation(s)
- Takato Hara
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan (M.S.)
| | - Mayuka Asatsu
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan (M.S.)
| | - Tatsuya Yamagishi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan (M.S.)
| | - Chinami Ohata
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan (M.S.)
| | - Hitomi Funatsu
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan (M.S.)
| | - Yuzuki Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan (M.S.)
| | - Misaki Shirai
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan (M.S.)
| | - Chiaki Nakata
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan (M.S.)
| | - Haruka Katayama
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan (M.S.)
| | - Toshiyuki Kaji
- Faculty of Pharmaceutical Sciences, Tokyo University of Sciences, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.K.); (T.F.)
| | - Tomoya Fujie
- Faculty of Pharmaceutical Sciences, Tokyo University of Sciences, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.K.); (T.F.)
| | - Chika Yamamoto
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan (M.S.)
| |
Collapse
|
2
|
Gan R, Liu H, Wu S, Huang R, Tang Z, Zhang N, Hu L. Curcumin Alleviates Arsenic Trioxide-Induced Inflammation and Pyroptosis via the NF-κB/NLRP3 Signaling Pathway in the Hypothalamus of Ducks. Biol Trace Elem Res 2023; 201:2503-2511. [PMID: 35737258 DOI: 10.1007/s12011-022-03321-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Arsenic (As) as a neurotoxic environmental pollutant has attracted extensive attention. Curcumin (Cur) is a natural antioxidant that shows an excellent protective effect against arsenic trioxide (ATO)-induced toxicity in many animal organs. However, the mechanism of Cur against ATO-induced hypothalamic toxicity in ducks has not yet been fully elucidated. Here, ducks were treated with ATO and/or Cur during 28 days; the results showed that ATO exposure induced growth retardation, messy feathers, and abnormal posture in ducks. Moreover, ATO caused neuron vacuolar degeneration and disintegration in the hypothalamus of ducks. Simultaneously, ATO induced blood-brain barrier damage, downregulated the expression of ZO-1, Occludin, and mediated NF-κB activation, resulting in an increase in inflammatory factors (TLR-4, NF-κB, TNF-α, IL-2, and IL-6). Furthermore, ATO increased the production of pyroptosis-related factors (Caspase-1, IL-18, IL-1), exacerbating the inflammatory damage through NLRP3-mediated inflammasome activation. Cur, on the other hand, exerted excellent inhibitory effects on inflammation and pyroptosis. In summary, our study revealed that ATO triggered inflammation and pyroptosis by modulating NF-κB/NLRP3 signaling pathways in the hypothalamus of ducks, and Cur can alleviate inflammation and pyroptosis caused by ATO. Therefore, as a plant extract, Cur has the potential to prevent and cure ATO-induced hypothalamus toxicity.
Collapse
Affiliation(s)
- Rao Gan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Haiyan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ning Zhang
- Guangxi Nongken Yongxin Animal, Husbandry Group Co., Ltd, Nanning, 530022, Guangxi, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Martínez-Castillo M, García-Montalvo EA, Arellano-Mendoza MG, Sánchez-Peña LDC, Soria Jasso LE, Izquierdo-Vega JA, Valenzuela OL, Hernández-Zavala A. Arsenic exposure and non-carcinogenic health effects. Hum Exp Toxicol 2021; 40:S826-S850. [PMID: 34610256 DOI: 10.1177/09603271211045955] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inorganic arsenic (iAs) exposure is a serious health problem that affects more than 140 million individuals worldwide, mainly, through contaminated drinking water. Acute iAs poisoning produces several symptoms such as nausea, vomiting, abdominal pain, and severe diarrhea, whereas prolonged iAs exposure increased the risk of several malignant disorders such as lung, urinary tract, and skin tumors. Another sensitive endpoint less described of chronic iAs exposure are the non-malignant health effects in hepatic, endocrine, renal, neurological, hematological, immune, and cardiovascular systems. The present review outlines epidemiology evidence and possible molecular mechanisms associated with iAs-toxicity in several non-carcinogenic disorders.
Collapse
Affiliation(s)
- Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Mónica G Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico-Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | - Luz Del C Sánchez-Peña
- Departamento de Toxicología, 540716Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Luis E Soria Jasso
- Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina del Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Jeannett A Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Olga L Valenzuela
- Facultad de Ciencias Químicas, 428055Universidad Veracruzana, Orizaba, México
| | - Araceli Hernández-Zavala
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
4
|
Long YM, Yang XZ, Yang QQ, Clermont AC, Yin YG, Liu GL, Hu LG, Liu Q, Zhou QF, Liu QS, Ma QC, Liu YC, Cai Y. PM 2.5 induces vascular permeability increase through activating MAPK/ERK signaling pathway and ROS generation. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121659. [PMID: 31776080 DOI: 10.1016/j.jhazmat.2019.121659] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/06/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Although in-vivo exposure of PM2.5 has been suggested to initiate a disorder on vascular permeability, the effects and related mechanism has not been well defined. In this work, an obvious increase on vascular permeability has been confirmed in vivo by vein injection of PM2.5 into Balb/c mouse. Human umbilical vein vascular endothelial cells and the consisted ex-vivo vascular endothelium were used as model to investigate the effects of PM2.5 on the vascular permeability and the underlying molecular mechanism. Upon PM2.5 exposure, the vascular endothelial growth factor receptor 2 on cell membrane phosphorylates and activates the downstream mitogen-activated protein kinase (MAPK)/ERK signaling. The adherens junction protein VE-cadherin sheds and the intercellular junction opens, damaging the integrity of vascular endothelium via paracellular pathway. Besides, PM2.5 induces the intracellular reactive oxygen species (ROS) production and triggers the oxidative stress including activity decrease of superoxide dismutase, lactate dehydrogenase release and permeability increase of cell membrane. Taken together, the paracellular and transcellular permeability enhancement jointly contributes to the significant increase of endothelium permeability and thus vascular permeability upon PM2.5 exposure. This work provides an insight into molecular mechanism of PM2.5 associated cardiovascular disease and offered a real-time screening method for the health risk of PM2.5.
Collapse
Affiliation(s)
- Yan-Min Long
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Xue-Zhi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qing-Qing Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Allen C Clermont
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Yong-Guang Yin
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guang-Liang Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; Department of Chemistry and Biochemistry, Southeast Environmental Research Center, Florida International University, University Park, Miami, Florida 33199, USA
| | - Li-Gang Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qun-Fang Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian-Chi Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu-Chen Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Yong Cai
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Southeast Environmental Research Center, Florida International University, University Park, Miami, Florida 33199, USA.
| |
Collapse
|
5
|
Yoshinaga-Sakurai K, Shinde R, Rodriguez M, Rosen BP, El-Hage N. Comparative Cytotoxicity of Inorganic Arsenite and Methylarsenite in Human Brain Cells. ACS Chem Neurosci 2020; 11:743-751. [PMID: 31991084 DOI: 10.1021/acschemneuro.9b00653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The overall goal of this study is to elucidate the potential effect(s) of arsenic on a variety of human brain cells. Arsenic is the most pervasive Group A human environmental carcinogen. Long-term exposure to arsenic is associated with human diseases including cancer, cardiovascular disease, and diabetes. More immediate are the health effects on neurological development and associated disorders in infants and children exposed to arsenic in utero. Arsenic is metabolized in various organs and tissues into more toxic methylated species, including methylarsenite (MAs(III)), so the question arises whether the methylate species are responsible for the neurological effects of arsenic. Arsenic enters the brain through the blood-brain barrier and produces toxicity in the brain microvascular endothelial cells, glia (astrocytes and microglia), and neurons. In this study, we first assessed the toxicity in different types of brain cells exposed to either inorganic trivalent As(III) or MAs(III) using both morphological and cytotoxicity cell-based analysis. Second, we determined the methylation of arsenicals and the expression levels of the methylation enzyme, As(III) S-adenosylmethionine (SAM) methyltransferase (AS3MT), in several types of brain cells. We showed that the toxicity to neurons of MAs(III) was significantly higher than that of As(III). Interestingly, the differences in cytotoxicity between cell types was not due to expression of AS3MT, as this was expressed in neurons and glia but not in endothelial cells. These results support our hypothesis that MAs(III) is the likely physiological neurotoxin rather than inorganic arsenic species.
Collapse
|
6
|
Manthari RK, Tikka C, Ommati MM, Niu R, Sun Z, Wang J, Zhang J, Wang J. Arsenic induces autophagy in developmental mouse cerebral cortex and hippocampus by inhibiting PI3K/Akt/mTOR signaling pathway: involvement of blood-brain barrier's tight junction proteins. Arch Toxicol 2018; 92:3255-3275. [PMID: 30225639 DOI: 10.1007/s00204-018-2304-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
Abstract
For the past decade, there has been an increased concern about the health risks from arsenic (As) exposure, because of its neurotoxic effects on the developing brain. The exact mechanism underlying As-induced neurotoxicity during sensitive periods of brain development remains unclear, especially the role of blood-brain barrier's (BBB) tight junction (TJ) proteins during As-induced neurotoxicity. Here, we highlight the involvement of TJ proteins in As-induced autophagy in cerebral cortex and hippocampus during developmental periods [postnatal day (PND) 21, 28, 35 and 42]. Here, the administration of arsenic trioxide (As2O3) at doses of 0.15 mg or 1.5 mg or 15 mg As2O3/L in drinking water from gestational to lactational and continued to the pups till PND42 resulted in a significant decrease in the mRNA expression levels of TJ proteins (Occludin, Claudin, ZO-1 and ZO-2) and Occludin protein expression level. In addition, As exposure significantly decreased PI3K, Akt, mTOR, and p62 with a concomitant increase in Beclin1, LC3I, LC3II, Atg5 and Atg12. Moreover, As exposure also significantly downregulated the protein expression levels of mTOR with a concomitant upregulation of Beclin 1, LC3 and Atg12 in all the developmental age points. However, no significant alterations were observed in low and medium dose-exposed groups of PND42. Histopathological analysis in As-exposed mice revealed decreased number of pyramidal neurons in hippocampus; and neurons with degenerating axons, shrinkage of cells, remarkable vacuolar degeneration in cytoplasm, karyolysis and pyknosis in cerebral cortex. Ultrastructural analysis by transmission electron microscopy revealed the occurrence of autophagosomes and vacuolated axons in the cerebral cortex and hippocampus of the mice exposed to high dose As at PND21 and 42. The severities of changes were found to more persist in the cerebral cortex than in the hippocampus of As-exposed mice. Finally, we conclude that the leaky BBB in cerebral cortex and hippocampus may facilitate the transfer of As and induces autophagy by inhibiting PI3K/Akt/mTOR signaling pathway in an age-dependent manner, i.e., among the four different developmental age points, PND21 animals were found to be more vulnerable to the As-induced neurotoxicity than the other three age points.
Collapse
Affiliation(s)
- Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Chiranjeevi Tikka
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Mohammad Mehdi Ommati
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.,Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jinming Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
7
|
Manthari RK, Tikka C, Ommati MM, Niu R, Sun Z, Wang J, Zhang J, Wang J. Arsenic-Induced Autophagy in the Developing Mouse Cerebellum: Involvement of the Blood-Brain Barrier's Tight-Junction Proteins and the PI3K-Akt-mTOR Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8602-8614. [PMID: 30032600 DOI: 10.1021/acs.jafc.8b02654] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study was designed to determine whether the tight-junction (TJ) proteins of the blood-brain barrier (BBB) and the PI3K-Akt-mTOR signaling pathway are involved during arsenic (As)-induced autophagy in developing mouse cerebella after exposure to different As concentrations (0, 0.15, 1.5, and 15 mg/L As(III)) during gestational and lactational periods. The dosage was continually given to the pups until postnatal day (PND) 42. Studies conducted at different developmental age points, like PND21, 28, 35, and 42, showed that exposure to As led to a significant decrease in the mRNA-expression levels of TJ proteins (occludin, claudin, ZO-1, and ZO-2), PI3K, Akt, mTOR, and p62, with concomitant increases in Beclin1, LC3I, LC3II, Atg5, and Atg12. Also, As significantly downregulated occludin and mTOR protein-expression levels with concomitant upregulation of Beclin1, LC3, and Atg12 at all the developmental age points. However, no significant alterations were observed in low- and medium-dose-exposed groups at PND42. Histopathological analysis revealed the irregular arrangement of the Purkinje cell layer in the As-exposed mice. Ultrastructural analysis by transmission electron microscopy (TEM) revealed the occurrence of autophagosomes and vacuolated axons in the cerebella of the mice exposed to high doses of As at PND21 and 42, respectively. Finally, we conclude that developmental As exposure significantly alters TJ proteins, resulting an increase in BBB permeability, facilitating the ability of As to cross the BBB and induce autophagy, which might be partly the result of inhibition of the PI3K-Akt-mTOR signaling pathway, in an age-dependent manner (i.e., PND21 mice were found to be more vulnerable to As-induced neurotoxicity), which could be due to the immature BBB allowing As to cross through it. However, the effect was not significant in PND42, which could be due to the developed BBB.
Collapse
Affiliation(s)
- Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Chiranjeevi Tikka
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Mohammad Mehdi Ommati
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
- Department of Animal Science, College of Agriculture , Shiraz University , Shiraz 71441-65186 , Iran
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Jinming Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| |
Collapse
|
8
|
Arsenic downregulates tight junction claudin proteins through p38 and NF-κB in intestinal epithelial cell line, HT-29. Toxicology 2017; 379:31-39. [PMID: 28115242 DOI: 10.1016/j.tox.2017.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 11/24/2022]
Abstract
Arsenic is a naturally occurring metalloid that often is found in foods and drinking water. Human exposure to arsenic is associated with the development of gastrointestinal problems such as fluid loss, diarrhea and gastritis. Arsenic is also known to induce toxic responses including oxidative stress in cells of the gastrointestinal track. Tight junctions (TJs) regulate paracellular permeability and play a barrier role by inhibiting the movement of water, solutes and microorganisms in the paracellular space. Since oxidative stress and TJ damage are known to be associated, we examined whether arsenic produces TJ damage such as downregulation of claudins in the human colorectal cell line, HT-29. To confirm the importance of oxidative stress in arsenic-induced TJ damage, effects of the antioxidant compound (e.g., N-acetylcysteine (NAC)) were also determined in cells. HT-29 cells were treated with arsenic trioxide (40μM, 12h) to observe the modified expression of TJ proteins. Arsenic decreased expression of TJ proteins (i.e., claudin-1 and claudin-5) and transepithelial electrical resistance (TEER) whereas pretreatment of NAC (5-10mM, 1h) attenuated the observed claudins downregulation and TEER. Arsenic treatment produced cellular oxidative stress via superoxide generation and lowering glutathione (GSH) levels, while NAC restored cellular GSH levels and decreased oxidative stress. Arsenic increased phosphorylation of p38 and nuclear translocation of nuclear factor-kappa B (NF-κB) p65, while NAC attenuated these intracellular events. Results demonstrated that arsenic can damage intestinal epithelial cells by proinflammatory process (oxidative stress, p38 and NF-κB) which resulted in the downregulation of claudins and NAC can protect intestinal TJs from arsenic toxicity.
Collapse
|
9
|
Ma Y, Ma Z, Yin S, Yan X, Wang J. Arsenic and fluoride induce apoptosis, inflammation and oxidative stress in cultured human umbilical vein endothelial cells. CHEMOSPHERE 2017; 167:454-461. [PMID: 27750169 DOI: 10.1016/j.chemosphere.2016.10.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Excessive amount of inorganic arsenic (iAs) and fluoride (F) coexist in drinking water in many regions, which is associated with high risk of vascular diseases. However, the underlying mechanisms are not well studied. The present study was to evaluate the effects of iAs and F individual or combined exposure on endothelial activation and apoptosis in vitro. Primary human umbilical vein endothelial cells (HUVECs) were exposed to 5 μM As2O3 and/or 1 mM NaF. Changes in endothelial cell apoptosis, inflammation, oxidative stress and nitric oxide (NO) production were analyzed. The results showed that iAs and/or F induced significant increase in endothelial cell apoptosis and inflammation as indicated by the increase of mRNA and protein expression of vascular cell adhesion molecule-1, intercellular adhesion molecule-1, and pentraxin 3. Furthermore, iAs and/or F exposure induced intracellular reactive oxygen species and malondialdehyde generation. Results showed iAs and/or F exposure increased the activity of NADPH oxidase (NOX) and up-regulated the mRNA expression of NOX subunits p22phox. The results indicated that activation of NOX was related to oxidative stress induced by iAs and/or F. Also, iAs and/or F reduced NO production in HUVECs. The up-regulation of inflammation genes expression and oxidative stress in iAs and F co-exposed ECs were less pronounced as compared to single F-exposed cells, which showed an antagonistic effect between iAs and F. In conclusion, endothelial activation and apoptosis induced by iAs and/or F are potential mechanisms in their vascular toxicity. Oxidative stress and impaired NO production are involved in their pro-inflammatory and pro-apoptotic effects.
Collapse
Affiliation(s)
- Yanqin Ma
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhenhua Ma
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shuqin Yin
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaoyan Yan
- Health Toxicology Department, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jundong Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
10
|
Neoatherosclerosis after Drug-Eluting Stent Implantation: Roles and Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5924234. [PMID: 27446509 PMCID: PMC4944075 DOI: 10.1155/2016/5924234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/17/2023]
Abstract
In-stent neoatherosclerosis (NA), characterized by a relatively thin fibrous cap and large volume of yellow-lipid accumulation after drug-eluting stents (DES) implantation, has attracted much attention owing to its close relationship with late complications, such as revascularization and late stent thrombosis (ST). Accumulating evidence has demonstrated that more than one-third of patients with first-generation DES present with NA. Even in the advent of second-generation DES, NA still occurs. It is indicated that endothelial dysfunction induced by DES plays a critical role in neoatherosclerotic development. Upregulation of reactive oxygen species (ROS) induced by DES implantation significantly affects endothelial cells healing and functioning, therefore rendering NA formation. In light of the role of ROS in suppression of endothelial healing, combining antioxidant therapies with stenting technology may facilitate reestablishing a functioning endothelium to improve clinical outcome for patients with stenting.
Collapse
|
11
|
Yang SM, Huang CY, Shiue HS, Huang SP, Pu YS, Chen WJ, Lin YC, Hsueh YM. Joint Effect of Urinary Total Arsenic Level and VEGF-A Genetic Polymorphisms on the Recurrence of Renal Cell Carcinoma. PLoS One 2015; 10:e0145410. [PMID: 26701102 PMCID: PMC4689502 DOI: 10.1371/journal.pone.0145410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/03/2015] [Indexed: 12/21/2022] Open
Abstract
The results of our previous study suggested that high urinary total arsenic levels were associated with an increased risk of renal cell carcinoma (RCC). Germline genetic polymorphisms might also affect cancer risk and clinical outcomes. Vascular endothelial growth factor (VEGF) plays an important role in vasculogenesis and angiogenesis, but the combined effect of these factors on RCC remains unclear. In this study, we explored the association between the VEGF-A -2578C>A, -1498T>C, -1154G>A, -634G>C, and +936C>T gene polymorphisms and RCC. We also evaluated the combined effects of the VEGF-A haplotypes and urinary total arsenic levels on the prognosis of RCC. This case-control study was conducted with 191 RCC patients who were diagnosed with renal tumors on the basis of image-guided biopsy or surgical resections. An additional 376 age- and gender-matched controls were recruited. Concentrations of urinary arsenic species were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Genotyping was investigated using fluorescent-based TaqMan allelic discrimination. We observed no significant associations between VEGF-A haplotypes and RCC risk. However, the VEGF-A ACGG haplotype from VEGF-A -2578, -1498, -1154, and -634 was significantly associated with an increased recurrence of RCC (OR = 3.34, 95% CI = 1.03–10.91). Urinary total arsenic level was significantly associated with the risk of RCC in a dose-response manner, but it was not related to the recurrence of RCC. The combination of high urinary total arsenic level and VEGF-A risk haplotypes affected the OR of RCC recurrence in a dose-response manner. This is the first study to show that joint effect of high urinary total arsenic and VEGF-A risk haplotypes may influence the risk of RCC recurrence in humans who live in an area without obvious arsenic exposure.
Collapse
Affiliation(s)
- Shu-Mei Yang
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan
| | - Wei-Jen Chen
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shung Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Family Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Mei Hsueh
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (YMH)
| |
Collapse
|
12
|
Zhang J, Koch I, Gibson LA, Loughery JR, Martyniuk CJ, Button M, Caumette G, Reimer KJ, Cullen WR, Langlois VS. Transcriptomic Responses During Early Development Following Arsenic Exposure in Western Clawed Frogs,Silurana tropicalis. Toxicol Sci 2015; 148:603-17. [DOI: 10.1093/toxsci/kfv207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Rahman M, Al Mamun A, Karim MR, Islam K, Al Amin H, Hossain S, Hossain MI, Saud ZA, Noman ASM, Miyataka H, Himeno S, Hossain K. Associations of total arsenic in drinking water, hair and nails with serum vascular endothelial growth factor in arsenic-endemic individuals in Bangladesh. CHEMOSPHERE 2015; 120:336-42. [PMID: 25180936 DOI: 10.1016/j.chemosphere.2014.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 05/21/2023]
Abstract
Arsenic exposure is associated with cancer and vascular diseases. Angiogenesis is an important step for the pathological development of cancer and vascular diseases. Vascular endothelial growth factor (VEGF) is a specific marker for angiogenesis. However, human study showing the association between arsenic exposure and serum VEGF levels has not yet been documented. This study was aimed to investigate the association between arsenic exposure and serum VEGF levels in the arsenic-endemic individuals in Bangladesh. A total of 260 individuals were recruited for this study. Arsenic exposure levels were measured by ICP-MS and VEGF levels were quantified using VEGF immunoassay kit. The study subjects were stratified into tertile (low, medium and high) groups based on the arsenic in water, hair and nails. Serum VEGF levels were correlated with water (rs = 0.363, p < 0.001), hair (rs = 0.205, p < 0.01) and nail (rs = 0.190, p < 0.01) arsenic. Further, VEGF levels showed dose-response relationships with water, hair and nail arsenic. Mean VEGF levels in ⩽ 10 μg L(-1), 10.1-50 μg L(-1) and > 50 μg L(-1) groups were 91.84, 129.54, and 169.86 pg mL(-1), respectively, however, significant (p < 0.01) difference in VEGF levels was only found in > 50 μg L(-1) versus ⩽ 10 μg L(-1) groups. Significant associations of arsenic exposure with VEGF levels were found even after adjusting with relevant covariates. Therefore, these results provide evidence that arsenic exposure has a pro-angiogenic effect on humans, which may be implicated in arsenic-induced tumorigenesis and vascular diseases.
Collapse
Affiliation(s)
- Mashiur Rahman
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205, Bangladesh.
| | - Abdullah Al Mamun
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205, Bangladesh.
| | - Md Rezaul Karim
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | - Khairul Islam
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205, Bangladesh.
| | - Hasan Al Amin
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205, Bangladesh.
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205, Bangladesh.
| | - Md Imam Hossain
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205, Bangladesh.
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205, Bangladesh.
| | - Abu Shadat Mohammod Noman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh.
| | - Hideki Miyataka
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205, Bangladesh.
| |
Collapse
|
14
|
Stea F, Bianchi F, Cori L, Sicari R. Cardiovascular effects of arsenic: clinical and epidemiological findings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:244-51. [PMID: 24019140 DOI: 10.1007/s11356-013-2113-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/29/2013] [Indexed: 05/20/2023]
Abstract
Several population studies relate exposure to high levels of arsenic with an increased incidence of ischemic heart disease and cardiovascular mortality. An association has been shown between exposure to high levels of arsenic and cardiovascular risk factors such as hypertension and diabetes mellitus, and vascular damage such as subclinical carotid atherosclerosis. The mechanisms underlying these phenomena are currently being studied and appear to indicate an alteration of vascular function. However, the effects of low levels of exposure to arsenic and their potential detrimental cardiovascular effect are less explored. The article provides an overview of the pathophysiologic mechanisms linking low-level arsenic exposure to the occurrence of cardiovascular disease and its complications, and some potential preventive strategies to implement.
Collapse
Affiliation(s)
- Francesco Stea
- CNR, Institute of Clinical Physiology, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | | | | | | |
Collapse
|
15
|
Wang YH, Yeh SD, Wu MM, Liu CT, Shen CH, Shen KH, Pu YS, Hsu LI, Chiou HY, Chen CJ. Comparing the joint effect of arsenic exposure, cigarette smoking and risk genotypes of vascular endothelial growth factor on upper urinary tract urothelial carcinoma and bladder cancer. JOURNAL OF HAZARDOUS MATERIALS 2013; 262:1139-1146. [PMID: 23009795 DOI: 10.1016/j.jhazmat.2012.08.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 06/01/2023]
Abstract
Arsenic exposure and cigarette smoking are environmental risk factors for urothelial carcinoma (UC). Vascular endothelial growth factor (VEGF) is the key regulator of angiogenesis in various malignancies. This study investigates the joint effect of arsenic exposure, cigarette smoking, and VEGF polymorphisms on UC risk. This was a hospital-based case-control study consisting of 730 histopathologically confirmed UC cases, including 470 bladder cancers, 260 upper urinary tract UCs (UUTUCs), and 850 age-matched controls, recruited from September 1998 to December 2009. UC risk was estimated by odds ratios and 95% confidence intervals using unconditional logistic regression. Ever smokers with high arsenic exposure had significantly increased risks of 5.7 and 6.4 for bladder cancer and UUTUC, respectively. Moreover, ever smokers with high arsenic exposure carrying 1 or 2 risk genotypes of the VEGF gene had a significantly increased risk of 6.6 for bladder cancer and a strikingly higher risk of 9.9 for UUTUC. Additionally, UUTUC cases with high arsenic exposure carrying 1 or 2 risk genotypes of the VEGF gene had a non-significant increased risk of advanced tumor stage. Our findings suggest that arsenic exposure, cigarette smoking, and risk genotypes of VEGF contribute to a higher risk of UUTUC than of bladder cancer.
Collapse
Affiliation(s)
- Yuan-Hung Wang
- School of Public Health, Taipei Medical University, Taipei, Taiwan; Division of Urology, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Martín-Pardillos A, Sosa C, Sorribas V. Arsenic Increases Pi-Mediated Vascular Calcification and Induces Premature Senescence in Vascular Smooth Muscle Cells. Toxicol Sci 2012; 131:641-53. [DOI: 10.1093/toxsci/kfs313] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
17
|
Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: roles of ROS, NF-κB, and MAPK pathways. Arch Toxicol 2012; 86:879-96. [DOI: 10.1007/s00204-012-0845-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/14/2012] [Indexed: 12/19/2022]
|