1
|
Menke AF, Heitplatz B, Van Marck V, Pavenstädt H, Jehn U. Hydroxychloroquine-Induced Renal Phospholipidosis: Case Report and Review of Differential Diagnoses. Case Rep Nephrol Dial 2024; 14:20-29. [PMID: 38370571 PMCID: PMC10871737 DOI: 10.1159/000536448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/20/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Renal phospholipidosis describes the accumulation of phospholipids in the lysosomes of kidney cells, in particular podocytes. Originally, this was described primarily in the context of the lysosomal storage disorder Fabry disease. It is now known that a variety of drugs can lead to the accumulation of lysosomal phospholipids. Case Presentation We present the case of a 69-year-old female patient suffering chronic kidney disease and systemic lupus erythematosus who underwent a kidney biopsy because of a further increase in serum creatinine levels. There was no evidence of lupus nephritis, but electron microscopy showed zebra bodies as a morphological sign of phospholipidosis. This was most likely drug-induced after 25 years of continuous medication with hydroxychloroquine. A renal biopsy 2 years and 6 months earlier, when the renal function of the patient was distinctively better, showed no signs of renal phospholipidosis. Afterward, medication with hydroxychloroquine was discontinued, and renal function parameters remained stable in the 1-year course. Conclusion This case raises the question of how severely impaired renal function affects the risk of hydroxychloroquine-induced renal phospholipidosis and underlines that hydroxychloroquine should be administered with caution in patients with kidney insufficiency. Moreover, we provide a review of the causes of renal phospholipidosis, which have been described in the literature and give an overview of possible differential diagnoses in cases with histologically proven phospholipidosis in renal biopsies.
Collapse
Affiliation(s)
- Amélie Friederike Menke
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Barbara Heitplatz
- Gerhard-Domagk-Institut of Pathology, University Hospital of Münster, Münster, Germany
| | - Veerle Van Marck
- Gerhard-Domagk-Institut of Pathology, University Hospital of Münster, Münster, Germany
| | - Hermann Pavenstädt
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Ulrich Jehn
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| |
Collapse
|
2
|
Ran L, Chen Q, Lu X, Gao Z, Cui F, Liu X, Xue B. Novel treatment and insight for irradiation-induced injuries: Dibucaine ameliorates irradiation-induced testicular injury by inhibiting fatty acid oxidation in primary Leydig cells. Biomed Pharmacother 2023; 164:114903. [PMID: 37224756 DOI: 10.1016/j.biopha.2023.114903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Male infertility is a worldwide problem but few treatments, especially irradiation-induced testicular injury. The aim of this research was to investigate novel drugs for the treatment of irradiation-induced testicular injury. METHODS We administered dibucaine (0.8 mg/kg) intraperitoneally to male mice (6 mice per group) after five consecutive daily 0.5 Gy whole-body irradiation, and evaluated its ameliorating efficacy by testicular HE staining and morphological measurements. Drug affinity responsive target stability assay (Darts) were used to find target protein and pathway; mouse primary Leydig cells were isolated and to explore the mechanism (Flow cytometry, Western blot, and Seahorse palmitate oxidative stress assays); finally rescue experiments were completed by combining dibucaine with fatty acid oxidative pathway inhibitors and activators. RESULTS The testicular HE staining and morphological measurements in dibucaine treatment group was significantly better than that in irradiation group (P < 0.05); sperm motility and mRNA levels of spermatogenic cell markers were also higher than those in the latter (P < 0.05). Darts and Western blot results showed that dibucaine targets CPT1A and downregulate fatty acid oxidation. Flow cytometry, Western blot, and Palmitate oxidative stress assays of primary Leydig cells demonstrated that dibucaine inhibits fatty acid oxidation in Leydig cells. Dibucaine combined with etomoxir/baicalin confirmed that its inhibition of fatty acid oxidation was beneficial in ameliorating irradiation-induced testicular injury. CONCLUSIONS In conclusion, our data suggest that dibucaine ameliorates irradiation-induced testicular injury in mice by inhibiting fatty acid oxidation in Leydig cells. This will provide novel ideas for the treatment of irradiation-induced testicular injury.
Collapse
Affiliation(s)
- Lingxiang Ran
- Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Qiu Chen
- School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xingyu Lu
- School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhixiang Gao
- Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Fengmei Cui
- School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Xiaolong Liu
- Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China.
| | - Boxin Xue
- Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
3
|
Peropadre A, Hazen MJ, Pérez Martín JM, Fernández Freire P. An acute exposure to perfluorooctanoic acid causes non-reversible plasma membrane injury in HeLa cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114008. [PMID: 31995777 DOI: 10.1016/j.envpol.2020.114008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Health and environmental risks regarding perfluorooctanoic acid, a well-known perfluorinated compound, are still a subject of great concern. Ubiquitous exposure and disparity of results make it difficult to determine the underlying mechanism of action, especially at the cellular level. This study proposes an experimental design to assess the reversibility of adverse effects after a one-time exposure to the compound, in comparison with other more conventional timings. Complementary endpoints including total protein content, neutral red uptake and MTT reduction tests along with division rates and microscopic observations were evaluated in HeLa cells. In addition, PFOA quantification inside the cells was performed. The cellular effects exerted after 24 h exposure to perfluorooctanoic acid are non-reversible after a 48 h recovery period. In addition, we describe for the first time the induction of plasma membrane blebbing and the activation of membrane repair mechanisms after recovery from non-cytotoxic treatments with the compound. This experimental design has provided relevant information regarding the toxicity of this perfluorinated compound, relating all the adverse effects detected to its interaction with the plasma membrane.
Collapse
Affiliation(s)
- Ana Peropadre
- Department of Biology (Lab A-110), Faculty of Sciences, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain
| | - Maria José Hazen
- Department of Biology (Lab A-110), Faculty of Sciences, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain
| | - José Manuel Pérez Martín
- Department of Biology (Lab A-110), Faculty of Sciences, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain
| | - Paloma Fernández Freire
- Department of Biology (Lab A-110), Faculty of Sciences, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain.
| |
Collapse
|
4
|
Tancini B, Buratta S, Sagini K, Costanzi E, Delo F, Urbanelli L, Emiliani C. Insight into the Role of Extracellular Vesicles in Lysosomal Storage Disorders. Genes (Basel) 2019; 10:genes10070510. [PMID: 31284546 PMCID: PMC6679199 DOI: 10.3390/genes10070510] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) have received increasing attention over the last two decades. Initially, they were considered as just a garbage disposal tool; however, it has progressively become clear that their protein, nucleic acid (namely miRNA and mRNA), and lipid contents have signaling functions. Besides, it has been established that cells release different types of vesicular structures for which characterization is still in its infancy. Many stress conditions, such as hypoxia, senescence, and oncogene activation have been associated with the release of higher levels of EVs. Further, evidence has shown that autophagic–lysosomal pathway abnormalities also affect EV release. In fact, in neurodegenerative diseases characterized by the accumulation of toxic proteins, although it has not become clear to what extent the intracellular storage of undigested materials itself has beneficial/adverse effects, these proteins have also been shown to be released extracellularly via EVs. Lysosomal storage disorders (LSDs) are characterized by accumulation of undigested substrates within the endosomal–lysosomal system, due either to genetic mutations in lysosomal proteins or to treatment with pharmacological agents. Here, we review studies investigating the role of lysosomal and autophagic dysfunction on the release of EVs, with a focus on studies exploring the release of EVs in LSD models of both genetic and pharmacological origin. A better knowledge of EV-releasing pathways activated in lysosomal stress conditions will provide information on the role of EVs in both alleviating intracellular storage of undigested materials and spreading the pathology to the neighboring tissue.
Collapse
Affiliation(s)
- Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| |
Collapse
|
5
|
Peropadre A, Fernández Freire P, Hazen MJ. A moderate exposure to perfluorooctanoic acid causes persistent DNA damage and senescence in human epidermal HaCaT keratinocytes. Food Chem Toxicol 2018; 121:351-359. [DOI: 10.1016/j.fct.2018.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 01/15/2023]
|
6
|
Chen X, Li LY, Jiang JL, Li K, Su ZB, Zhang FQ, Zhang WJ, Zhao GQ. Propofol elicits autophagy via endoplasmic reticulum stress and calcium exchange in C2C12 myoblast cell line. PLoS One 2018; 13:e0197934. [PMID: 29795639 PMCID: PMC5967754 DOI: 10.1371/journal.pone.0197934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
In this study, we investigated the relationship between propofol and autophagy and examined whether this relationship depends on ER stress, production of ROS (reactive oxygen species), and disruption of calcium (Ca2+) homeostasis. To this end, we measured C2C12 cell apoptosis in vitro, along with Ca2+ levels; ROS production; and expression of proteins and genes associated with autophagy, Ca2+ homeostasis, and ER stress, including LC3 (microtubule-associate protein 1 light chain 3), p62, AMPK (adenosine 5'-monophosphate (AMP)-activated protein kinase), phosphorylated AMPK, mTOR (the mammalian target of rapamycin), phosphorylated mTOR, CHOP (C/BEP homologous protein), and Grp78/Bip (78 kDa glucose-regulated protein). We found that propofol treatment induced autophagy, ER stress, and Ca2+ release. The ratio of phosphorylated AMPK to AMPK increased, whereas the ratio of phosphorylated mTOR to mTOR decreased. Collectively, the data suggested that propofol induced autophagy in vitro through ER stress, resulting in elevated ROS and Ca2+. Additionally, co-administration of an ER stress inhibitor blunted the effect of propofol.
Collapse
Affiliation(s)
- Xi Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Long-Yun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jin-Lan Jiang
- Department of Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kai Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhen-Bo Su
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fu-Qiang Zhang
- Department of Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wen-Jing Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guo-Qing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
7
|
Impaired Autophagosome Clearance Contributes to Local Anesthetic Bupivacaine-induced Myotoxicity in Mouse Myoblasts. Anesthesiology 2015; 122:595-605. [DOI: 10.1097/aln.0000000000000568] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Background:
The current study examined the role(s) of autophagy in myotoxicity induced by bupivacaine in mouse myoblast C2c12 cells.
Methods:
C2c12 cells were treated with bupivacaine. Myotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (n = 3 to 30), live/dead assay (n = 3 to 4), and morphological alterations (n = 3). Autophagosome formation was reflected by microtubule-associated protein light chain 3 conversion (n = 4 to 12) and light chain 3 punctation (n = 4 to 5). Autophagosome clearance was evaluated by p62 protein level (n = 4) and autolysosomes generation (n = 3).
Results:
Bupivacaine induced significant cell damage. Notably, there was a significant increase in autophagosome generation as evidenced by light chain 3 puncta formation (72.7 ± 6.9 vs. 2.1 ± 1.2) and light chain 3 conversion (2.16 ± 0.15 vs. 0.33 ± 0.04) in bupivacaine-treated cells. Bupivacaine inactivated the protein kinase B/mammalian target of rapamycin/p70 ribosomal protein S6 kinase signaling. However, cellular levels of p62 protein were significantly increased upon bupivacaine treatment (1.29 ± 0.15 vs. 1.00 ± 0.15), suggesting that the drug impaired autophagosome clearance. Further examination revealed that bupivacaine interrupted autophagosome–lysosome fusion (10.87% ± 1.48% vs. 32.94% ± 4.22%). Administration of rapamycin increased autophagosome clearance and, most importantly, improved the survival in bupivacaine-treated cells. However, knockdown of autophagy-related protein 5 (atg5) exacerbated bupivacaine-induced impairment of autophagosome clearance and myotoxicity.
Conclusions:
The data suggest that autophagosome formation was induced as a stress response mechanism after bupivacaine challenge; however, autophagosome clearance was impaired due to inadequate autophagosome–lysosome fusion. Therefore, impairment of autophagosome clearance appears to be a novel mechanism underlying bupivacaine-induced myotoxicity.
Collapse
|
8
|
Autophagy and senescence, stress responses induced by the DNA-damaging mycotoxin alternariol. Toxicology 2014; 326:119-29. [PMID: 25456271 DOI: 10.1016/j.tox.2014.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 12/16/2022]
Abstract
The mycotoxin alternariol (AOH), a frequent contaminant in fruit and grain, is known to induce cellular stress responses such as reactive oxygen production, DNA damage and cell cycle arrest. Cellular stress is often connected to autophagy, and we employed the RAW264.7 macrophage model to test the hypothesis that AOH induces autophagy. Indeed, AOH treatment led to a massive increase in acidic vacuoles often observed upon autophagy induction. Moreover, expression of the autophagy marker LC3 was markedly increased and there was a strong accumulation of LC3-positive puncta. Increased autophagic activity was verified biochemically by measuring the degradation rate of long-lived proteins. Furthermore, AOH induced expression of Sestrin2 and phosphorylation of AMPK as well as reduced phosphorylation of mTOR and S6 kinase, common mediators of signaling pathways involved in autophagy. Transmission electron microscopy analyzes of AOH treated cells not only clearly displayed structures associated with autophagy such as autophagosomes and autolysosomes, but also the appearance of lamellar bodies. Prolonged AOH treatment resulted in changed cell morphology from round into more star-shaped as well as increased β-galactosidase activity. This suggests that the cells eventually entered senescence. In conclusion, our data identify here AOH as an inducer of both autophagy and senescence. These effects are suggested to be to be linked to AOH-induced DSB (via a reported effect on topoisomerase activity), resulting in an activation of p53 and the Sestrin2-AMPK-mTOR-S6K signaling pathway.
Collapse
|
9
|
Balogh GT, Müller J, Könczöl A. pH-gradient PAMPA-based in vitro model assay for drug-induced phospholipidosis in early stage of drug discovery. Eur J Pharm Sci 2013; 49:81-9. [PMID: 23439241 DOI: 10.1016/j.ejps.2013.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
Abstract
In the present study we validated a widely used, high-throughput in vitro permeability model (PAMPA) to be used at the early stage of drug discovery for the phospholipidosis (PLD) prediction of drug-like compounds. Regarding the mechanism of action of PLD, our pH-gradient PAMPA system is the first noncell based model to mimic one-way transport of cationic amphiphilic drugs (CADs) from cytosol to the lysosome. Moreover, due to the fact that PLD can mainly occur in lung, liver, brain, kidney and heart, we have used similar commercially available original tissue-derived lipid fractions (heart, liver, brain), and in the case mimicking membrane of kidney and lung tissue we prepared tissue-mimetic artificial lipid mixtures in house. Metabolism of a drug can change the degree of PLD depending on the physicochemical properties of metabolites and the rate of metabolism. Our data from 57 drugs and 4 metabolites of earlier and 2 metabolites of newly recognized outliers (phenacetin and bupropion) using our pH-gradient PAMPA system show a good correlation with in vivo PLD data. Moreover, predictive ability of our best system, the lung specific pH-gradient PAMPA model was significantly better than widely used in silico models and it was also slightly better than that of the known noncell based models on our selection of compounds. Our pH-gradient PAMPA systems therefore offer mechanistically alternative, accurate and cost-effective screening tools for the early prediction of PLD potential of drug-like compounds.
Collapse
Affiliation(s)
- György T Balogh
- Compound Profiling Laboratory, Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary.
| | - Judit Müller
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budafoki út 9-11, Budapest H-1111, Hungary
| | - Arpád Könczöl
- Compound Profiling Laboratory, Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| |
Collapse
|
10
|
Muehlbacher M, Tripal P, Roas F, Kornhuber J. Identification of drugs inducing phospholipidosis by novel in vitro data. ChemMedChem 2012; 7:1925-34. [PMID: 22945602 PMCID: PMC3533795 DOI: 10.1002/cmdc.201200306] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Indexed: 11/15/2022]
Abstract
Drug-induced phospholipidosis (PLD) is a lysosomal storage disorder characterized by the accumulation of phospholipids within the lysosome. This adverse drug effect can occur in various tissues and is suspected to impact cellular viability. Therefore, it is important to test chemical compounds for their potential to induce PLD during the drug design process. PLD has been reported to be a side effect of many commonly used drugs, especially those with cationic amphiphilic properties. To predict drug-induced PLD in silico, we established a high-throughput cell-culture-based method to quantitatively determine the induction of PLD by chemical compounds. Using this assay, we tested 297 drug-like compounds at two different concentrations (2.5 μM and 5.0 μM). We were able to identify 28 previously unknown PLD-inducing agents. Furthermore, our experimental results enabled the development of a binary classification model to predict PLD-inducing agents based on their molecular properties. This random forest prediction system yields a bootstrapped validated accuracy of 86 %. PLD-inducing agents overlap with those that target similar biological processes; a high degree of concordance with PLD-inducing agents was identified for cationic amphiphilic compounds, small molecules that inhibit acid sphingomyelinase, compounds that cross the blood-brain barrier, and compounds that violate Lipinski's rule of five. Furthermore, we were able to show that PLD-inducing compounds applied in combination additively induce PLD.
Collapse
Affiliation(s)
- Markus Muehlbacher
- Department for Psychiatry and Psychotherapy, University Hospital, Friedrich Alexander University Erlangen Nuremberg, Schwabachanlage 6, 91054 Erlangen (Germany); Computer Chemistry Center, Friedrich Alexander University Erlangen Nuremberg, Nägelsbachstr. 25, 91052 Erlangen (Germany)
| | | | | | | |
Collapse
|
11
|
Chen J, Korostyshevsky D, Lee S, Perlstein EO. Accumulation of an antidepressant in vesiculogenic membranes of yeast cells triggers autophagy. PLoS One 2012; 7:e34024. [PMID: 22529904 PMCID: PMC3329523 DOI: 10.1371/journal.pone.0034024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/20/2012] [Indexed: 11/29/2022] Open
Abstract
Many antidepressants are cationic amphipaths, which spontaneously accumulate in natural or reconstituted membranes in the absence of their specific protein targets. However, the clinical relevance of cellular membrane accumulation by antidepressants in the human brain is unknown and hotly debated. Here we take a novel, evolutionarily informed approach to studying the effects of the selective-serotonin reuptake inhibitor sertraline/Zoloft® on cell physiology in the model eukaryote Saccharomyces cerevisiae (budding yeast), which lacks a serotonin transporter entirely. We biochemically and pharmacologically characterized cellular uptake and subcellular distribution of radiolabeled sertraline, and in parallel performed a quantitative ultrastructural analysis of organellar membrane homeostasis in untreated vs. sertraline-treated cells. These experiments have revealed that sertraline enters yeast cells and then reshapes vesiculogenic membranes by a complex process. Internalization of the neutral species proceeds by simple diffusion, is accelerated by proton motive forces generated by the vacuolar H+-ATPase, but is counteracted by energy-dependent xenobiotic efflux pumps. At equilibrium, a small fraction (10–15%) of reprotonated sertraline is soluble while the bulk (90–85%) partitions into organellar membranes by adsorption to interfacial anionic sites or by intercalation into the hydrophobic phase of the bilayer. Asymmetric accumulation of sertraline in vesiculogenic membranes leads to local membrane curvature stresses that trigger an adaptive autophagic response. In mutants with altered clathrin function, this adaptive response is associated with increased lipid droplet formation. Our data not only support the notion of a serotonin transporter-independent component of antidepressant function, but also enable a conceptual framework for characterizing the physiological states associated with chronic but not acute antidepressant administration in a model eukaryote.
Collapse
Affiliation(s)
- Jingqiu Chen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Daniel Korostyshevsky
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Sean Lee
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Ethan O. Perlstein
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
12
|
Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages. Toxicol Appl Pharmacol 2012; 261:74-87. [PMID: 22483798 DOI: 10.1016/j.taap.2012.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/12/2012] [Accepted: 03/19/2012] [Indexed: 12/11/2022]
Abstract
The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, and often found in grain. The cytotoxic effect of EnnB has been suggested to be related to its ability to form ionophores in cell membranes. The present study examines the effects of EnnB on cell death, differentiation, proliferation and pro-inflammatory responses in the murine monocyte-macrophage cell line RAW 264.7. Exposure to EnnB for 24 h caused an accumulation of cells in the G0/G1-phase with a corresponding decrease in cyclin D1. This cell cycle-arrest was possibly also linked to the reduced cellular ability to capture and internalize receptors as illustrated by the lipid marker ganglioside GM1. EnnB also increased the number of apoptotic, early apoptotic and necrotic cells, as well as cells with elongated spindle-like morphology. The Neutral Red assay indicated that EnnB induced lysosomal damage; supported by transmission electron microscopy (TEM) showing accumulation of lipids inside the lysosomes forming lamellar structures/myelin bodies. Enhanced levels of activated caspase-1 were observed after EnnB exposure and the caspase-1 specific inhibitor ZYVAD-FMK reduced EnnB-induced apoptosis. Moreover, EnnB increased the release of interleukin-1 beta (IL-1β) in cells primed with lipopolysaccharide (LPS), and this response was reduced by both ZYVAD-FMK and the cathepsin B inhibitor CA-074Me. In conclusion, EnnB was found to induce cell cycle arrest, cell death and inflammation. Caspase-1 appeared to be involved in the apoptosis and release of IL-1β and possibly activation of the inflammasome through lysosomal damage and leakage of cathepsin B.
Collapse
|