1
|
Use of biomarker data and metabolite relative potencies to support derivation of noncancer reference values based on the reproductive and developmental toxicity effects of 1,3-butadiene. Regul Toxicol Pharmacol 2022; 134:105239. [DOI: 10.1016/j.yrtph.2022.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
2
|
Kirman CR, Hays SM. Use of Biomarker Data and Relative Potencies of Mutagenic Metabolites to Support Derivation of Cancer Unit Risk Values for 1,3-Butadiene from Rodent Tumor Data. TOXICS 2022; 10:394. [PMID: 35878299 PMCID: PMC9316621 DOI: 10.3390/toxics10070394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022]
Abstract
Unit Risk (UR) values were derived for 1,3-butadiene (BD) based upon its ability to cause tumors in laboratory mice and rats. Metabolism has been established as the significant molecular initiating event of BD's carcinogenicity. The large quantitative species differences in the metabolism of BD and potency of critical BD epoxide metabolites must be accounted for when rodent toxicity responses are extrapolated to humans. Previously published methods were extended and applied to cancer risk assessments to account for species differences in metabolism, as well as differences in mutagenic potency of BD metabolites within the context of data-derived adjustment factors (DDEFs). This approach made use of biomarker data (hemoglobin adducts) to quantify species differences in the internal doses of BD metabolites experienced in mice, rats, and humans. Using these methods, the dose-response relationships in mice and rats exhibit improved concordance, and result in upper bound UR values ranging from 2.1 × 10-5 to 1.2 × 10-3 ppm-1 for BD. Confidence in these UR values was considered high based on high confidence in the key studies, medium-to-high confidence in the toxicity database, high confidence in the estimates of internal dose, and high confidence in the dose-response modeling.
Collapse
|
3
|
Chen WQ, Zhang XY. 1,3-Butadiene: a ubiquitous environmental mutagen and its associations with diseases. Genes Environ 2022; 44:3. [PMID: 35012685 PMCID: PMC8744311 DOI: 10.1186/s41021-021-00233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
1,3-Butadiene (BD) is a petrochemical manufactured in high volumes. It is a human carcinogen and can induce lymphohematopoietic cancers, particularly leukemia, in occupationally-exposed workers. BD is an air pollutant with the major environmental sources being automobile exhaust and tobacco smoke. It is one of the major constituents and is considered the most carcinogenic compound in cigarette smoke. The BD concentrations in urban areas usually vary between 0.01 and 3.3 μg/m3 but can be significantly higher in some microenvironments. For BD exposure of the general population, microenvironments, particularly indoor microenvironments, are the primary determinant and environmental tobacco smoke is the main contributor. BD has high cancer risk and has been ranked the second or the third in the environmental pollutants monitored in most urban areas, with the cancer risks exceeding 10-5. Mutagenicity/carcinogenicity of BD is mediated by its genotoxic metabolites but the specific metabolite(s) responsible for the effects in humans have not been determined. BD can be bioactivated to yield three mutagenic epoxide metabolites by cytochrome P450 enzymes, or potentially be biotransformed into a mutagenic chlorohydrin by myeloperoxidase, a peroxidase almost specifically present in neutrophils and monocytes. Several urinary BD biomarkers have been developed, among which N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine is the most sensitive and is suitable for biomonitoring BD exposure in the general population. Exposure to BD has been associated with leukemia, cardiovascular disease, and possibly reproductive effects, and may be associated with several cancers, autism, and asthma in children. Collectively, BD is a ubiquitous pollutant that has been associated with a range of adverse health effects and diseases with children being a subpopulation with potentially greater susceptibility. Its adverse effects on human health may have been underestimated and more studies are needed.
Collapse
Affiliation(s)
- Wan-Qi Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin-Yu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Wu WJ, Tang WF, Xiang MH, Yan J, Cao X, Zhou CH, Chang Y, Xi J, Cao YY, Luan Y, Zhang XY. Isotope dilution LC/ESI --MS-MS quantitation of urinary 1,4-bis(N-acetyl-S-cysteinyl)-2-butanone in mice and rats as the biomarker of 1-chloro-2-hydroxy-3-butene, an in vitro metabolite of 1,3-butadiene. Chem Biol Interact 2019; 311:108760. [PMID: 31348916 DOI: 10.1016/j.cbi.2019.108760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/04/2019] [Accepted: 07/22/2019] [Indexed: 12/31/2022]
Abstract
1-Chloro-2-hydroxy-3-butene (CHB) is a possible metabolite of 1,3-butadiene, a carcinogenic air pollutant. To demonstrate its formation in vivo, it is desirable to develop a practical biomarker and the corresponding analysis method. CHB can undergo alcohol dehydrogenase- and cytochromes P450 enzymes (P450)-mediated oxidation to yield 1-chloro-3-buten-2-one (CBO), which readily forms glutathione conjugates. We hypothesized that CBO-derived mercapturic acids, which are the expected biotransformed products of CBO-glutathione conjugates, could be used as CHB biomarkers. Thus, in the present study, we investigated the in vivo biotransformation of CHB into CBO-derived mercapturic acids. Because the reaction of CBO with N-acetyl-l-cysteine yields two products, 1,4-bis(N-acetyl-S-cysteinyl)-2-butanone (NC1) and 1-chloro-4-(N-acetyl-S-cysteinyl)-2-butanone (NC2), we first developed an isotope dilution LC/ESI--MS-MS method to quantitate urinary NC1 and NC2, and then determined their concentrations in urine of C57BL/6 mice and Sprague-Dawley rats administered CHB. Since no NC2 was detected in samples, the LC/ESI--MS-MS method was optimized specifically for NC1. NC1 was enriched through solid phase extraction with the recovery being 75-82%. The limits of detection and quantitation were 6.8 and 34 fmol/0.1 mL for mouse urine, and 4.5 and 7.1 fmol/0.1 mL for rat urine, respectively. In urine of animals before CHB administration, no NC1 was detected; in mice administered CHB at 10 and 30 mg/kg, and rats at 5 and 15 mg/kg, NC1 was detected and its concentrations in urine from animals given higher doses were 3-6 fold higher than those given lower doses. Moreover, the NC1 concentrations in urine during 0-8 h were 4-6 fold and 10-11 fold higher than those during 8-24 h for mice and rats, respectively. The results demonstrated that CHB could be in vivo biotransformed into NC1, which could be used as a practical CHB biomarker.
Collapse
Affiliation(s)
- Wen-Jing Wu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wei-Feng Tang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ming-Hui Xiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Jianshe Yan
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiumei Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang-Hui Zhou
- Shanghai InnoStar Bio-Tech Co., Ltd, National Shanghai Center for New Drug Safety Evaluation & Research, Shanghai, 201203, China
| | - Yan Chang
- Shanghai InnoStar Bio-Tech Co., Ltd, National Shanghai Center for New Drug Safety Evaluation & Research, Shanghai, 201203, China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yi-Yi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin-Yu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Wang Y, Yu YX, Luan Y, An J, Yin DG, Zhang XY. Bioactivation of 1-chloro-2-hydroxy-3-butene, an in vitro metabolite of 1,3-butadiene, by rat liver microsomes. Chem Biol Interact 2018; 282:36-44. [DOI: 10.1016/j.cbi.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/03/2017] [Accepted: 01/05/2018] [Indexed: 01/15/2023]
|
6
|
Zhang XY, Elfarra AA. Potential roles of myeloperoxidase and hypochlorous acid in metabolism and toxicity of alkene hydrocarbons and drug molecules containing olefinic moieties. Expert Opin Drug Metab Toxicol 2016; 13:513-524. [DOI: 10.1080/17425255.2017.1271413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xin-Yu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Adnan A. Elfarra
- Department of Comparative Biosciences and the Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Liu LY, Zheng J, Kong C, An J, Yu YX, Zhang XY, Elfarra AA. Characterization of the Major Purine and Pyrimidine Adducts Formed after Incubations of 1-Chloro-3-buten-2-one with Single-/Double-Stranded DNA and Human Cells. Chem Res Toxicol 2016; 30:552-563. [PMID: 27977153 DOI: 10.1021/acs.chemrestox.6b00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have previously shown that 1-chloro-3-buten-2-one (CBO), a potential reactive metabolite of 1,3-butadiene (BD), exhibits potent cytotoxicity and genotoxicity that have been attributed in part to its reactivity toward DNA. In an effort to identify the DNA adducts of CBO, we characterized the CBO reactions with 2'-deoxyguanosine (dG), 2'-deoxycytidine (dC), and 2'-deoxyadenosine (dA) under in vitro physiological conditions (pH 7.4, 37 °C). In the present study, we investigated the CBO reaction with 2'-deoxythymidine (dT) and compared the rate constants of the reactions of CBO with dA, dC, dG, and dT at both individual- and mixed-nucleosides levels. We also investigated the reactions of CBO with single- and double-stranded DNA using HPLC with UV detection after adducts were released by either acid or enzymatic hydrolysis of DNA. Consistent with the results from the nucleoside reactions and the rate constant experiments, 1,N6-(1-hydroxy-1-chloromethylpropan-1,3-diyl)adenine (A-2D) was identified as the major DNA adduct detected after acid hydrolysis, followed by N7-(4-chloro-3-oxobutyl)guanine (CG-2H) and a small amount of 1,N6-(1-hydroxy-1-hydroxymethylpropan-1,3-diyl)adenine (A-1D). After enzymatic hydrolysis, 1,N6-(1-hydroxy-1-hydroxymethylpropan-1,3-diyl)-2'-dexoyadenosine (dA-1), 3,N4-(1-hydroxy-1-hydroxymethylpropan-1,3-diyl)-2'-deoxycytidine (dC-1/2), and 1,N2-(3-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2'-dexoyguanosine (CG-1) were detected, with dA-1 being the major product, followed by dC-1/2. When a nontoxic concentration of CBO (1 μM) was incubated with HepG2 cells, no adducts could be detected by LC-MS. However, pretreatment of cells with l-buthionine sulfoximine to deplete GSH levels allowed A-2D to be consistently detected in cellular DNA. These results may contribute to a better understanding of the role of the DNA adducts in CBO genotoxicity and mutagenicity. It also suggests that A-2D could be developed as a biomarker of CBO formation after BD exposure in vivo.
Collapse
Affiliation(s)
- Ling-Yan Liu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Jin Zheng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Cong Kong
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Shanghai 200090, China
| | - Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Ying-Xin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Xin-Yu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Adnan A Elfarra
- Department of Comparative Biosciences and the Molecular and Environmental Toxicology Center, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Zeng FM, Liu LY, Zheng J, Kong C, An J, Yu YX, Zhang XY, Elfarra AA. Identification of a Fused-Ring 2'-Deoxyadenosine Adduct Formed in Human Cells Incubated with 1-Chloro-3-buten-2-one, a Potential Reactive Metabolite of 1,3-Butadiene. Chem Res Toxicol 2016; 29:1041-50. [PMID: 27161607 DOI: 10.1021/acs.chemrestox.6b00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1-Chloro-3-buten-2-one (CBO) is an in vitro metabolite of 1,3-butadiene (BD), a carcinogenic air pollutant. CBO exhibited potent cytotoxicity and genotoxicity that have been attributed in part to its reactivity toward DNA. Previously, we have characterized the CBO adducts with 2'-deoxycytidine and 2'-deoxyguanosine. In the present study, we report on the reaction of CBO with 2'-deoxyadenosine (dA) under in vitro physiological conditions (pH 7.4, 37 °C). We used the synthesized standards and their decomposition and acid-hydrolysis products to characterize the CBO-DNA adducts formed in human cells. The fused-ring dA adducts (dA-1 and dA-2) were readily synthesized and were structurally characterized as 1,N(6)-(1-hydroxy-1-hydroxymethylpropan-1,3-diyl)-2'-deoxyadenosine and 1,N(6)-(1-hydroxy-1-chloromethylpropan-1,3-diyl)-2'-deoxyadenosine, respectively. dA-1 exhibited a half-life of 16.0 ± 0.7 h and decomposed to dA at pH 7.4 and 37 °C. At similar conditions, dA-2 decomposed to dA-1 and dA, and had a half-life of 0.9 ± 0.1 h. These results provide strong evidence for dA-1 being a degradation product of dA-2. dA-1 is formed by replacement of the chlorine atom of dA-2 by a hydroxyl group. The slow decomposition of dA-1 to dA, along with the detection of hydroxymethyl vinyl ketone (HMVK) as another degradation product, suggested equilibrium between dA-1 and a ring-opened carbonyl-containing intermediate that undergoes a retro-Michael reaction to yield dA and HMVK. Acid hydrolysis of dA-1 and dA-2 yielded the corresponding deribosylated products A-1D and A-2D, respectively. In the acid-hydrolyzed reaction mixture of CBO with calf thymus DNA, both A-1D and A-2D could be detected; however, the amount of A-2D was significantly larger than that of A-1D. Interestingly, only A-2D could be detected by LC-MS analysis of acid-hydrolyzed DNA from cells incubated with CBO, suggesting that dA-2 was stable in DNA and thus may play an important role in the genotoxicity and carcinogenicity of BD. In addition, A-2D could be developed as a biomarker of CBO formation in human cells.
Collapse
Affiliation(s)
- Fang-Mao Zeng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Ling-Yan Liu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Jin Zheng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Cong Kong
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Shanghai 200090, China
| | - Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Ying-Xin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Xin-Yu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Adnan A Elfarra
- Department of Comparative Biosciences and the Molecular and Environmental Toxicology Center, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Novel adducts from the reaction of 1-chloro-3-buten-2-one with 2′-deoxyguanosine. Structural characterization and potential as tools to investigate 1,3-butadiene carcinogenicity. Chem Biol Interact 2015; 226:40-8. [DOI: 10.1016/j.cbi.2014.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/30/2014] [Accepted: 12/02/2014] [Indexed: 01/15/2023]
|
10
|
Sun L, Pelah A, Zhang DP, Zhong YF, An J, Yu YX, Zhang XY, Elfarra AA. Formation of fused-ring 2'-deoxycytidine adducts from 1-chloro-3-buten-2-one, an in vitro 1,3-butadiene metabolite, under in vitro physiological conditions. Chem Res Toxicol 2013; 26:1545-53. [PMID: 24020501 PMCID: PMC3863690 DOI: 10.1021/tx4002435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1-Chloro-3-buten-2-one (CBO) is a potential metabolite of 1,3-butadiene (BD), a carcinogenic air pollutant. CBO is a bifunctional alkylating agent that readily reacts with glutathione (GSH) to form mono-GSH and di-GSH adducts. Recently, CBO and its precursor 1-chloro-2-hydroxy-3-butene (CHB) were found to be cytotoxic and genotoxic in human liver cells in culture with CBO being approximately 100-fold more potent than CHB. In the present study, CBO was shown to react readily with 2'-deoxycytidine (dC) under in vitro physiological conditions (pH 7.4, 37 °C) to form four dC adducts with the CBO moieties forming fused rings with the N3 and N(4) atoms of dC. The four products were structurally characterized as 2-hydroxy-2-hydroxymethyl-7-(2-deoxy-β-d-erythro-pentofuranosyl)-1,2,3,4-tetrahydro-6-oxo-6H,7H-pyrimido[1,6-a]pyrimidin-5-ium (dC-1 and dC-2, a pair of diastereomers), 4-chloromethyl-4-hydroxy-7-(2-deoxy-β-d-erythro-pentofuranosyl)-1,2,3,4-tetrahydro-6-oxo-6H,7H-pyrimido[1,6-a]pyrimidin-5-ium (dC-3), and 2-chloromethyl-2-hydroxy-7-(2-deoxy-β-d-erythro-pentofuranosyl)-1,2,3,4-tetrahydro-6-oxo-6H,7H-pyrimido[1,6-a]pyrimidin-5-ium (dC-4). Interestingly, dC-1 and dC-2 were stable under our experimental conditions (pH 7.4, 37 °C, and 6 h) and existed in equilibrium as indicated by HPLC analysis, whereas dC-3 and dC-4 were labile with the half-lives being 3.0 ± 0.36 and 1.7 ± 0.06 h, respectively. Decomposition of dC-4 produced both dC-1 and dC-2, whereas acid hydrolysis of dC-1/dC-2 and dC-4 in 1 M HCl at 100 °C for 30 min yielded the deribosylated adducts dC-1H/dC-2H and dC-4H, respectively. Because fused-ring dC adducts of other chemicals are mutagenic, the characterized CBO-dC adducts could be mutagenic and play a role in the cytotoxicity and genotoxicity of CBO and its precursors, CHB and BD. The CBO-dC adducts may also be used as standards to characterize CBO-DNA adducts and to develop potential biomarkers for CBO formation in vivo.
Collapse
Affiliation(s)
- Liang Sun
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Avishay Pelah
- Department of Plastics Engineering, Shenkar College of Engineering and Design, Ramat Gan 52526, Israel
| | - Dong-Ping Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Yu-Fang Zhong
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Ying-Xin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Xin-Yu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Adnan A. Elfarra
- Department of Comparative Biosciences and the Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Liu XJ, Zeng FM, An J, Yu YX, Zhang XY, Elfarra AA. Cytotoxicity, genotoxicity, and mutagenicity of 1-chloro-2-hydroxy-3-butene and 1-chloro-3-buten-2-one, two alternative metabolites of 1,3-butadiene. Toxicol Appl Pharmacol 2013; 271:13-9. [PMID: 23643860 PMCID: PMC3714330 DOI: 10.1016/j.taap.2013.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/18/2013] [Accepted: 04/24/2013] [Indexed: 11/29/2022]
Abstract
The cytotoxicity, genotoxicity, and mutagenicity of 1-chloro-2-hydroxy-3-butene (CHB), a known in vitro metabolite of the human carcinogen 1,3-butadiene, have not previously been investigated. Because CHB can be bioactivated by alcohol dehydrogenases to yield 1-chloro-3-buten-2-one (CBO), a bifunctional alkylating agent that caused globin-chain cross-links in erythrocytes, in the present study we investigated the cytotoxic and genotoxic potential of CHB and CBO in human normal hepatocyte L02 cells using the MTT assay, the relative cloning efficiency assay and the comet assay. We also investigated the mutagenic potential of these compounds with the Ames test using Salmonella strains TA1535 and TA1537. The results provide clear evidence for CHB and CBO being both cytotoxic and genotoxic with CBO being approximately 100-fold more potent than CHB. Interestingly, CHB generated both single-strand breaks and alkali-labile sites on DNA, whereas CBO produced only alkali-labile sites. CHB did not directly result in DNA breaks, whereas CBO was capable of directly generating breaks on DNA. Interestingly, both compounds did not induce DNA cross-links as examined by the comet assay. The Ames test results showed that CHB induced point mutation but not frameshift mutation, whereas the toxic effects of CBO made it difficult to reliably assess the mutagenic potential of CBO in the two strains. Collectively, the results suggest that CHB and CBO may play a role in the mutagenicity and carcinogenicity of 1,3-butadiene.
Collapse
Key Words
- %Tail DNA
- 1,2,3,4-diepoxybutane
- 1,3-Butadiene
- 1,3-butadiene
- 1-Chloro-2-hydroxy-3-butene
- 1-Chloro-3-buten-2-one
- 1-chloro-2-hydroxy-3-butene
- 1-chloro-3-buten-2-one
- 3,4-epoxy-1,2-butanediol
- 3,4-epoxy-1-butene
- 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
- ALS
- BD
- CBO
- CHB
- Comet assay
- DEB
- EB
- EBD
- FBS
- GSH
- Genotoxicity
- MMS
- MTT
- Mutagenicity
- RCE
- SD
- SSB
- alkali-labile sites
- fetal bovine serum
- glutathione
- methyl methanesulfonate
- percentage of DNA in the tail
- relative cloning efficiency
- single-strand breaks
- standard deviation
Collapse
Affiliation(s)
- Xin-Jie Liu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Fang-Mao Zeng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Ying-Xin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xin-Yu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Adnan A. Elfarra
- Department of Comparative Biosciences and the Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|