1
|
Nakashima S, Fukami T, Kudo T, Nakano M, Matsui A, Ishiguro N, Nakajima M. Iminium ion metabolites are formed from nintedanib by human CYP3A4. Drug Metab Pharmacokinet 2024; 57:101025. [PMID: 39068856 DOI: 10.1016/j.dmpk.2024.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024]
Abstract
Nintedanib is used to treat idiopathic pulmonary fibrosis, systemic sclerosis, interstitial lung disease, and progressive fibrotic interstitial lung disease. It is primarily cleared via hepatic metabolism, hydrolysis, and glucuronidation. In addition, formation of the iminium ion, a possible reactive metabolite, was predicted based on the chemical structure of nintedanib. To obtain a hint which may help to clarify the cause of nintedanib-induced liver injury, we investigated whether iminium ions were formed in the human liver. To detect unstable iminium ions using liquid chromatography-tandem mass spectrometry (LC-MS/MS), potassium cyanide was added to the reaction mixture as a trapping agent. Human liver and intestinal microsomes were incubated with nintedanib in the presence of NADPH to form two iminium ion metabolites on the piperazine ring. Their formation is strongly inhibited by ketoconazole, a potent cytochrome P450 (CYP) 3A4 inhibitor. Among the recombinant P450s, only CYP3A4 formed cyanide adducts. The role of CYP3A4 was supported by the positive correlation between CYP3A4 protein abundance, as determined by LC-MS-based proteomics, and the formation of cyanide adducts in 25 individual human liver microsomes. In conclusion, we have demonstrated that iminium ion metabolites are formed from nintedanib by CYP3A4 as potential reactive metabolites.
Collapse
Affiliation(s)
- Shimon Nakashima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Takashi Kudo
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Akiko Matsui
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Naoki Ishiguro
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
2
|
Miao X, Dear GJ, Beaumont C, Vitulli G, Collins G, Gorycki PD, Harrell AW, Sakatis MZ. Cyanide Trapping of Iminium Ion Reactive Metabolites: Implications for Clinical Hepatotoxicity. Chem Res Toxicol 2024; 37:698-710. [PMID: 38619497 DOI: 10.1021/acs.chemrestox.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Reactive metabolite formation is a major mechanism of hepatotoxicity. Although reactive electrophiles can be soft or hard in nature, screening strategies have generally focused on the use of glutathione trapping assays to screen for soft electrophiles, with many data sets available to support their use. The use of a similar assay for hard electrophiles using cyanide as the trapping agent is far less common, and there is a lack of studies with sufficient supporting data. Using a set of 260 compounds with a defined hepatotoxicity status by the FDA, a comprehensive literature search yielded cyanide trapping data on an unbalanced set of 20 compounds that were all clinically hepatotoxic. Thus, a further set of 19 compounds was selected to generate cyanide trapping data, resulting in a more balanced data set of 39 compounds. Analysis of the data demonstrated that the cyanide trapping assay had high specificity (92%) and a positive predictive value (83%) such that hepatotoxic compounds would be confidently flagged. Structural analysis of the adducts formed revealed artifactual methylated cyanide adducts to also occur, highlighting the importance of full structural identification to confirm the nature of the adduct formed. The assay was demonstrated to add the most value for compounds containing typical structural alerts for hard electrophile formation: half of the severe hepatotoxins with these structural alerts formed cyanide adducts, while none of the severe hepatotoxins with no relevant structural alerts formed adducts. The assay conditions used included cytosolic enzymes (e.g., aldehyde oxidase) and an optimized cyanide concentration to minimize the inhibition of cytochrome P450 enzymes by cyanide. Based on the demonstrated added value of this assay, it is to be initiated for use at GSK as part of the integrated hepatotoxicity strategy, with its performance being reviewed periodically as more data is generated.
Collapse
Affiliation(s)
- Xiusheng Miao
- Drug Metabolism and Pharmacokinetics, GSK, Collegeville, Pennsylvania 19426, United States
| | - Gordon J Dear
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Claire Beaumont
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Giovanni Vitulli
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Gary Collins
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Peter D Gorycki
- Drug Metabolism and Pharmacokinetics, GSK, Collegeville, Pennsylvania 19426, United States
| | - Andrew W Harrell
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | | |
Collapse
|
3
|
Chen YC, Zeng WZ, Li SM, Chou JY, Tsai SE, Fuh Wong F. One-Pot Double Oxidation Synthesis of N-1-Piperidonyl Amides From N-1-Piperidinyl Amides with meta-Chloroperbenzoic Acid: Rimonabant Analogue as Model Study. Chemistry 2023; 29:e202300702. [PMID: 37272609 DOI: 10.1002/chem.202300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
A simple and efficient one-pot oxidation synthesis of N-1-piperidonyl amides was successfully developed through the double oxidation of hydrazides (involving hydrazonium formation, azodioxy-carbonyl compounds generation, and α-carbon oxidation) by using meta-chloroperbenzoic acid (mCPBA). The convenient oxidation method was also extended to Rimonabant analogue. The lactam oxidized Rimonabant analogue was first successfully synthesized for demonstrating the construction and characterized by NMR spectroscopic methods and the single-crystal X-ray diffraction study (ORTEP).
Collapse
Affiliation(s)
- Yu-Chieh Chen
- School of Pharmacy, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City, 406040, Taiwan
| | - Wei-Zheng Zeng
- Department of Nutrition, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City, 406040, Taiwan
| | - Sin-Min Li
- Institute of Translation Medicine and New Drug Development, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| | - Jia-Yu Chou
- Master Program for Pharmaceutical Manufacture, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City, 406040, Taiwan
| | - Shuo-En Tsai
- School of Pharmacy, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City, 406040, Taiwan
| | - Fung Fuh Wong
- School of Pharmacy, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City, 406040, Taiwan
| |
Collapse
|
4
|
Sharma R, Dowling MS, Futatsugi K, Kalgutkar AS. Mitigating a Bioactivation Liability with an Azetidine-Based Inhibitor of Diacylglycerol Acyltransferase 2 (DGAT2) En Route to the Discovery of the Clinical Candidate Ervogastat. Chem Res Toxicol 2023. [PMID: 37148271 DOI: 10.1021/acs.chemrestox.3c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We recently disclosed SAR studies on systemically acting, amide-based inhibitors of diacylglycerol acyltransferase 2 (DGAT2) that addressed metabolic liabilities with the liver-targeted DGAT2 inhibitor PF-06427878. Despite strategic placement of a nitrogen atom in the dialkoxyaromatic ring in PF-06427878 to evade oxidative O-dearylation, metabolic intrinsic clearance remained high due to extensive piperidine ring oxidation as exemplified with compound 1. Piperidine ring modifications through alternate N-linked heterocyclic ring/spacer combination led to azetidine 2 that demonstrated lower intrinsic clearance. However, 2 underwent a facile cytochrome P450 (CYP)-mediated α-carbon oxidation followed by azetidine ring scission, resulting in the formation of ketone (M2) and aldehyde (M6) as stable metabolites in NADPH-supplemented human liver microsomes. Inclusion of GSH or semicarbazide in microsomal incubations led to the formation of Cys-Gly-thiazolidine (M3), Cys-thiazolidine (M5), and semicarbazone (M7) conjugates, which were derived from reaction of the nucleophilic trapping agents with aldehyde M6. Metabolites M2 and M5 were biosynthesized from NADPH- and l-cysteine-fortified human liver microsomal incubations with 2, and proposed metabolite structures were verified using one- and two-dimensional NMR spectroscopy. Replacement of the azetidine substituent with a pyridine ring furnished 8, which mitigated the formation of the electrophilic aldehyde metabolite, and was a more potent DGAT2 inhibitor than 2. Further structural refinements in 8, specifically introducing amide bond substituents with greater metabolic stability, led to the discovery of PF-06865571 (ervogastat) that is currently in phase 2 clinical trials for the treatment of nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Raman Sharma
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew S Dowling
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kentaro Futatsugi
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, 1 Portland St, Cambridge, Massachusetts 02139, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, 1 Portland St, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Ji C. Molecular Factors and Pathways of Hepatotoxicity Associated with HIV/SARS-CoV-2 Protease Inhibitors. Int J Mol Sci 2023; 24:ijms24097938. [PMID: 37175645 PMCID: PMC10178330 DOI: 10.3390/ijms24097938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Antiviral protease inhibitors are peptidomimetic molecules that block the active catalytic center of viral proteases and, thereby, prevent the cleavage of viral polyprotein precursors into maturation. They continue to be a key class of antiviral drugs that can be used either as boosters for other classes of antivirals or as major components of current regimens in therapies for the treatment of infections with human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, sustained/lifelong treatment with the drugs or drugs combined with other substance(s) often leads to severe hepatic side effects such as lipid abnormalities, insulin resistance, and hepatotoxicity. The underlying pathogenic mechanisms are not fully known and are under continuous investigation. This review focuses on the general as well as specific molecular mechanisms of the protease inhibitor-induced hepatotoxicity involving transporter proteins, apolipoprotein B, cytochrome P450 isozymes, insulin-receptor substrate 1, Akt/PKB signaling, lipogenic factors, UDP-glucuronosyltransferase, pregnane X receptor, hepatocyte nuclear factor 4α, reactive oxygen species, inflammatory cytokines, off-target proteases, and small GTPase Rab proteins related to ER-Golgi trafficking, organelle stress, and liver injury. Potential pharmaceutical/therapeutic solutions to antiviral drug-induced hepatic side effects are also discussed.
Collapse
Affiliation(s)
- Cheng Ji
- Research Center for Liver Disease, GI/Liver Division, Department of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Tang LWT, Wei W, Verma RK, Koh SK, Zhou L, Fan H, Chan ECY. Direct and Sequential Bioactivation of Pemigatinib to Reactive Iminium Ion Intermediates Culminate in Mechanism-Based Inactivation of Cytochrome P450 3A. Drug Metab Dispos 2022; 50:529-540. [DOI: 10.1124/dmd.121.000804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022] Open
|
7
|
Is there enough evidence to classify cycloalkyl amine substituents as structural alerts? Biochem Pharmacol 2020; 174:113796. [PMID: 31926938 DOI: 10.1016/j.bcp.2020.113796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
Basic amine substituents provide several pharmacokinetic benefits relative to acidic and neutral functional groups, and have been extensively utilized as substituents of choice in drug design. On occasions, basic amines have been associated with off-target pharmacology via interactions with aminergic G-protein coupled receptors, ion-channels, kinases, etc. Structural features associated with the promiscuous nature of basic amines have been well-studied, and can be mitigated in a preclinical drug discovery environment. In addition to the undesirable secondary pharmacology, α-carbon oxidation of certain secondary or tertiary cycloalkyl amines can generate electrophilic iminium and aldehyde metabolites, potentially capable of covalent adduction to proteins or DNA. Consequently, cycloalkyl amines have been viewed as structural alerts (SAs), analogous to functional groups such as anilines, furans, thiophenes, etc., which are oxidized to reactive metabolites that generate immunogenic haptens by covalently binding to host proteins. Detailed survey of the literature, however, suggests that cases where preclinical or clinical toxicity has been explicitly linked to the metabolic activation of a cycloalkyl amine group are extremely rare. Moreover, there is a distinct possibility for the formation of electrophilic iminium/amino-aldehyde metabolites with numerous cycloalkyl amine-containing marketed drugs, since stable ring cleavage products have been characterized as metabolites in human mass balance studies. In the present work, a critical analysis of the evidence for and against the role of iminium ions/aldehydes as mediators of toxicity is discussed with a special emphasis on often time overlooked detoxication pathways of these reactive species to innocuous metabolites.
Collapse
|
8
|
He C, Wan H. Drug metabolism and metabolite safety assessment in drug discovery and development. Expert Opin Drug Metab Toxicol 2018; 14:1071-1085. [DOI: 10.1080/17425255.2018.1519546] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chunyong He
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, P. R. China
| | - Hong Wan
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai, P. R. China
| |
Collapse
|
9
|
Kalgutkar AS. Liabilities Associated with the Formation of “Hard” Electrophiles in Reactive Metabolite Trapping Screens. Chem Res Toxicol 2016; 30:220-238. [DOI: 10.1021/acs.chemrestox.6b00332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amit S. Kalgutkar
- Pharmacokinetics, Dynamics, and Metabolism − New Chemical
Entities, Pfizer Worldwide Research and Development, 610 Main
Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Akingbasote JA, Foster AJ, Jones HB, David R, Gooderham NJ, Wilson ID, Kenna JG. Improved hepatic physiology in hepatic cytochrome P450 reductase null (HRN™) mice dosed orally with fenclozic acid. Toxicol Res (Camb) 2016; 6:81-88. [PMID: 30090479 DOI: 10.1039/c6tx00376a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022] Open
Abstract
Hepatic NADPH-cytochrome P450 oxidoreductase null (HRN™) mice exhibit no functional expression of hepatic cytochrome P450 (P450) when compared to wild type (WT) mice, but have normal hepatic and extrahepatic expression of other biotransformation enzymes. We have assessed the utility of HRN™ mice for investigation of the role of metabolic bioactivation in liver toxicity caused by the nonsteroidal anti-inflammatory drug (NSAID) fenclozic acid. In vitro studies revealed significant NADPH-dependent (i.e. P450-mediated) covalent binding of [14C]-fenclozic acid to liver microsomes from WT mice and HRN™ mice, whereas no in vitro covalent binding was observed in the presence of the UDP-glucuronyltransferase cofactor UDPGA. Oral fenclozic acid administration did not alter the liver histopathology or elevate the plasma liver enzyme activities of WT mice, or affect their hepatic miRNA contents. Livers from HRN™ mice exhibited abnormal liver histopathology (enhanced lipid accumulation, bile duct proliferation, hepatocellular degeneration, necrosis, inflammatory cell infiltration) and plasma clinical chemistry (elevated alanine aminotransferase, glutamate dehydrogenase and alkaline phosphatase activities). Modest apparent improvements in these abnormalities were observed when HRN™ mice were dosed orally with fenclozic acid for 7 days at 100 mg kg-1 day-1. Previously we observed more marked effects on liver histopathology and integrity in HRN™ mice dosed orally with the NSAID diclofenac for 7 days at 30 mg kg-1 day-1. We conclude that HRN™ mice are valuable for assessing P450-related hepatic drug biotransformation, but not for drug toxicity studies due to underlying liver dysfunction. Nonetheless, HRN™ mice may provide novel insights into the role of inflammation in liver injury, thereby aiding its treatment.
Collapse
Affiliation(s)
- James A Akingbasote
- MRC Centre for Drug Safety Science , University of Liverpool , Liverpool , L69 3GE , UK .
| | - Alison J Foster
- Drug Safety and Metabolism , Unit 310 - Darwin Building , Cambridge Science Park , Milton Road , Cambridge , CB4 0WG , UK . ; ;
| | - Huw B Jones
- Drug Safety and Metabolism , Unit 310 - Darwin Building , Cambridge Science Park , Milton Road , Cambridge , CB4 0WG , UK . ; ;
| | - Rhiannon David
- Drug Safety and Metabolism , Unit 310 - Darwin Building , Cambridge Science Park , Milton Road , Cambridge , CB4 0WG , UK . ; ;
| | - Nigel J Gooderham
- Section of Computational and Systems Medicine , Department of Surgery and Cancer Faculty of Medicine , Imperial College London , South Kensington Campus , London , SW7 2AZ UK . ;
| | - Ian D Wilson
- Section of Computational and Systems Medicine , Department of Surgery and Cancer Faculty of Medicine , Imperial College London , South Kensington Campus , London , SW7 2AZ UK . ;
| | - J Gerry Kenna
- Drug Safety Consultant , Macclesfield , UK . ; Tel: +44 (0)1625432113
| |
Collapse
|
11
|
Wang K, Wang H, Peng Y, Zheng J. Identification of Epoxide-Derived Metabolite(s) of Benzbromarone. Drug Metab Dispos 2016; 44:607-15. [DOI: 10.1124/dmd.115.066803] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 01/13/2016] [Indexed: 01/31/2023] Open
|
12
|
Thompson RA, Isin EM, Ogese MO, Mettetal JT, Williams DP. Reactive Metabolites: Current and Emerging Risk and Hazard Assessments. Chem Res Toxicol 2016; 29:505-33. [DOI: 10.1021/acs.chemrestox.5b00410] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Richard A. Thompson
- DMPK, Respiratory, Inflammation & Autoimmunity iMed, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Emre M. Isin
- DMPK, Cardiovascular & Metabolic Diseases iMed, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Monday O. Ogese
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0FZ, United Kingdom
| | - Jerome T. Mettetal
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, 35 Gatehouse Dr, Waltham, Massachusetts 02451, United States
| | - Dominic P. Williams
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0FZ, United Kingdom
| |
Collapse
|
13
|
Kenna JG, Stahl SH, Eakins JA, Foster AJ, Andersson LC, Bergare J, Billger M, Elebring M, Elmore CS, Thompson RA. Multiple compound-related adverse properties contribute to liver injury caused by endothelin receptor antagonists. J Pharmacol Exp Ther 2015; 352:281-90. [PMID: 25467130 DOI: 10.1124/jpet.114.220491] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Drug-induced liver injury has been observed in patients treated with the endothelin receptor antagonists sitaxentan and bosentan, but not following treatment with ambrisentan. The aim of our studies was to assess the possible role of multiple contributory mechanisms in this clinically relevant toxicity. Inhibition of the bile salt export pump (BSEP) and multidrug resistance-associated protein 2 was quantified using membrane vesicle assays. Inhibition of mitochondrial respiration in human liver-derived HuH-7 cells was determined using a Seahorse XF(e96) analyzer. Cytochrome P450 (P450)-independent and P450-mediated cell toxicity was assessed using transfected SV40-T-antigen-immortalized human liver epithelial (THLE) cell lines. Exposure-adjusted assay ratios were calculated by dividing the maximum human drug plasma concentrations by the IC50 or EC50 values obtained in vitro. Covalent binding (CVB) of radiolabeled drugs to human hepatocytes was quantified, and CVB body burdens were calculated by adjusting CVB values for fractional drug turnover in vitro and daily therapeutic dose. Sitaxentan exhibited positive exposure-adjusted signals in all five in vitro assays and a high CVB body burden. Bosentan exhibited a positive exposure-adjusted signal in one assay (BSEP inhibition) and a moderate CVB body burden. Ambrisentan exhibited no positive exposure-adjusted assay signals and a low CVB body burden. These data indicate that multiple mechanisms contribute to the rare, but potentially severe liver injury caused by sitaxentan in humans; provide a plausible rationale for the markedly lower propensity of bosentan to cause liver injury; and highlight the relative safety of ambrisentan.
Collapse
Affiliation(s)
- J Gerry Kenna
- Drug Safety Consultant, Macclesfield, Cheshire, United Kingdom (J.G.K.); DMPK (S.H.S.), Discovery Safety (J.A.E.), and Translational Safety (A.J.F.), Drug Safety and Metabolism, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; DMPK (L.C.A., J.B., C.S.E.), Regulatory Safety (M.B.), Drug Safety and Metabolism, AstraZeneca R&D Mölndal, Mölndal, Sweden; and DMPK, Cardiovascular and Metabolic Diseases (M.E.), and Respiratory, Inflammation, and Autoimmunity (R.A.T.), iMED AstraZeneca R&D Mölndal, Mölndal, Sweden
| | - Simone H Stahl
- Drug Safety Consultant, Macclesfield, Cheshire, United Kingdom (J.G.K.); DMPK (S.H.S.), Discovery Safety (J.A.E.), and Translational Safety (A.J.F.), Drug Safety and Metabolism, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; DMPK (L.C.A., J.B., C.S.E.), Regulatory Safety (M.B.), Drug Safety and Metabolism, AstraZeneca R&D Mölndal, Mölndal, Sweden; and DMPK, Cardiovascular and Metabolic Diseases (M.E.), and Respiratory, Inflammation, and Autoimmunity (R.A.T.), iMED AstraZeneca R&D Mölndal, Mölndal, Sweden
| | - Julie A Eakins
- Drug Safety Consultant, Macclesfield, Cheshire, United Kingdom (J.G.K.); DMPK (S.H.S.), Discovery Safety (J.A.E.), and Translational Safety (A.J.F.), Drug Safety and Metabolism, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; DMPK (L.C.A., J.B., C.S.E.), Regulatory Safety (M.B.), Drug Safety and Metabolism, AstraZeneca R&D Mölndal, Mölndal, Sweden; and DMPK, Cardiovascular and Metabolic Diseases (M.E.), and Respiratory, Inflammation, and Autoimmunity (R.A.T.), iMED AstraZeneca R&D Mölndal, Mölndal, Sweden
| | - Alison J Foster
- Drug Safety Consultant, Macclesfield, Cheshire, United Kingdom (J.G.K.); DMPK (S.H.S.), Discovery Safety (J.A.E.), and Translational Safety (A.J.F.), Drug Safety and Metabolism, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; DMPK (L.C.A., J.B., C.S.E.), Regulatory Safety (M.B.), Drug Safety and Metabolism, AstraZeneca R&D Mölndal, Mölndal, Sweden; and DMPK, Cardiovascular and Metabolic Diseases (M.E.), and Respiratory, Inflammation, and Autoimmunity (R.A.T.), iMED AstraZeneca R&D Mölndal, Mölndal, Sweden
| | - Linda C Andersson
- Drug Safety Consultant, Macclesfield, Cheshire, United Kingdom (J.G.K.); DMPK (S.H.S.), Discovery Safety (J.A.E.), and Translational Safety (A.J.F.), Drug Safety and Metabolism, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; DMPK (L.C.A., J.B., C.S.E.), Regulatory Safety (M.B.), Drug Safety and Metabolism, AstraZeneca R&D Mölndal, Mölndal, Sweden; and DMPK, Cardiovascular and Metabolic Diseases (M.E.), and Respiratory, Inflammation, and Autoimmunity (R.A.T.), iMED AstraZeneca R&D Mölndal, Mölndal, Sweden
| | - Jonas Bergare
- Drug Safety Consultant, Macclesfield, Cheshire, United Kingdom (J.G.K.); DMPK (S.H.S.), Discovery Safety (J.A.E.), and Translational Safety (A.J.F.), Drug Safety and Metabolism, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; DMPK (L.C.A., J.B., C.S.E.), Regulatory Safety (M.B.), Drug Safety and Metabolism, AstraZeneca R&D Mölndal, Mölndal, Sweden; and DMPK, Cardiovascular and Metabolic Diseases (M.E.), and Respiratory, Inflammation, and Autoimmunity (R.A.T.), iMED AstraZeneca R&D Mölndal, Mölndal, Sweden
| | - Martin Billger
- Drug Safety Consultant, Macclesfield, Cheshire, United Kingdom (J.G.K.); DMPK (S.H.S.), Discovery Safety (J.A.E.), and Translational Safety (A.J.F.), Drug Safety and Metabolism, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; DMPK (L.C.A., J.B., C.S.E.), Regulatory Safety (M.B.), Drug Safety and Metabolism, AstraZeneca R&D Mölndal, Mölndal, Sweden; and DMPK, Cardiovascular and Metabolic Diseases (M.E.), and Respiratory, Inflammation, and Autoimmunity (R.A.T.), iMED AstraZeneca R&D Mölndal, Mölndal, Sweden
| | - Marie Elebring
- Drug Safety Consultant, Macclesfield, Cheshire, United Kingdom (J.G.K.); DMPK (S.H.S.), Discovery Safety (J.A.E.), and Translational Safety (A.J.F.), Drug Safety and Metabolism, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; DMPK (L.C.A., J.B., C.S.E.), Regulatory Safety (M.B.), Drug Safety and Metabolism, AstraZeneca R&D Mölndal, Mölndal, Sweden; and DMPK, Cardiovascular and Metabolic Diseases (M.E.), and Respiratory, Inflammation, and Autoimmunity (R.A.T.), iMED AstraZeneca R&D Mölndal, Mölndal, Sweden
| | - Charles S Elmore
- Drug Safety Consultant, Macclesfield, Cheshire, United Kingdom (J.G.K.); DMPK (S.H.S.), Discovery Safety (J.A.E.), and Translational Safety (A.J.F.), Drug Safety and Metabolism, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; DMPK (L.C.A., J.B., C.S.E.), Regulatory Safety (M.B.), Drug Safety and Metabolism, AstraZeneca R&D Mölndal, Mölndal, Sweden; and DMPK, Cardiovascular and Metabolic Diseases (M.E.), and Respiratory, Inflammation, and Autoimmunity (R.A.T.), iMED AstraZeneca R&D Mölndal, Mölndal, Sweden
| | - Richard A Thompson
- Drug Safety Consultant, Macclesfield, Cheshire, United Kingdom (J.G.K.); DMPK (S.H.S.), Discovery Safety (J.A.E.), and Translational Safety (A.J.F.), Drug Safety and Metabolism, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; DMPK (L.C.A., J.B., C.S.E.), Regulatory Safety (M.B.), Drug Safety and Metabolism, AstraZeneca R&D Mölndal, Mölndal, Sweden; and DMPK, Cardiovascular and Metabolic Diseases (M.E.), and Respiratory, Inflammation, and Autoimmunity (R.A.T.), iMED AstraZeneca R&D Mölndal, Mölndal, Sweden
| |
Collapse
|
14
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes. Methods Mol Biol 2015; 1250:53-76. [PMID: 26272134 PMCID: PMC4579543 DOI: 10.1007/978-1-4939-2074-7_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium,
| | | | | | | |
Collapse
|
15
|
Gustafsson F, Foster AJ, Sarda S, Bridgland-Taylor MH, Kenna JG. A Correlation Between the In Vitro Drug Toxicity of Drugs to Cell Lines That Express Human P450s and Their Propensity to Cause Liver Injury in Humans. Toxicol Sci 2013; 137:189-211. [DOI: 10.1093/toxsci/kft223] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|