1
|
Lena A, Benassi A, Stasi M, Saint‐Pierre C, Freccero M, Gasparutto D, Bombard S, Doria F, Verga D. Photoactivatable V-Shaped Bifunctional Quinone Methide Precursors as a New Class of Selective G-quadruplex Alkylating Agents. Chemistry 2022; 28:e202200734. [PMID: 35441438 PMCID: PMC9322314 DOI: 10.1002/chem.202200734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Combining the selectivity of G-quadruplex (G4) ligands with the spatial and temporal control of photochemistry is an emerging strategy to elucidate the biological relevance of these structures. In this work, we developed six novel V-shaped G4 ligands that can, upon irradiation, form stable covalent adducts with G4 structures via the reactive intermediate, quinone methide (QM). We thoroughly investigated the photochemical properties of the ligands and their ability to generate QMs. Subsequently, we analyzed their specificity for various topologies of G4 and discovered a preferential binding towards the human telomeric sequence. Finally, we tested the ligand ability to act as photochemical alkylating agents, identifying the covalent adducts with G4 structures. This work introduces a novel molecular tool in the chemical biology toolkit for G4s.
Collapse
Affiliation(s)
- Alberto Lena
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Alessandra Benassi
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Michele Stasi
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
- Present Address: Department of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | | | - Mauro Freccero
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Didier Gasparutto
- University Grenoble AlpesCEACNRSIRIGSyMMES-UMR581938054GrenobleFrance
| | - Sophie Bombard
- CNRS UMR9187INSERM U1196Institut CuriePSL Research University91405OrsayFrance
- CNRS UMR9187INSERM U1196Université Paris-Saclay91405OrsayFrance
| | - Filippo Doria
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Daniela Verga
- CNRS UMR9187INSERM U1196Institut CuriePSL Research University91405OrsayFrance
- CNRS UMR9187INSERM U1196Université Paris-Saclay91405OrsayFrance
| |
Collapse
|
2
|
Ma K, Zhao L, Yue Y, Huo F, Chao J, Yin C. Thiol “Click” Chromene Ring Opening and Subsequent Cascade Nucleophilic Cyclization NIR Fluorescence Imaging Reveal High Levels of Thiol in Drug-Resistant Cells. Anal Chem 2020; 92:15936-15942. [DOI: 10.1021/acs.analchem.0c03362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kaiqing Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Lingling Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Jianbin Chao
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Hutchinson MA, Deeyaa BD, Byrne SR, Williams SJ, Rokita SE. Directing Quinone Methide-Dependent Alkylation and Cross-Linking of Nucleic Acids with Quaternary Amines. Bioconjug Chem 2020; 31:1486-1496. [PMID: 32298588 PMCID: PMC7242154 DOI: 10.1021/acs.bioconjchem.0c00166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyamine and polyammonium ion conjugates are often used to direct reagents to nucleic acids based on their strong electrostatic attraction to the phosphoribose backbone. Such nonspecific interactions do not typically alter the specificity of the attached reagent, but polyammonium ions dramatically redirected the specificity of a series of quinone methide precursors. Replacement of a relatively nonspecific intercalator based on acridine with a series of polyammonium ions resulted in a surprising change of DNA products. Piperidine stable adducts were generated in duplex DNA that lacked the ability to support a dynamic cross-linking observed previously with acridine conjugates. Minor reaction at guanine N7, the site of reversible reaction, was retained by a monofunctional quinone methide-polyammonium ion conjugate, but a bisfunctional analogue designed for tandem quinone methide formation modified guanine N7 in only single-stranded DNA. The resulting intrastrand cross-links were sufficiently dynamic to rearrange to interstrand cross-links. However, no further transfer of adducts was observed in duplex DNA. An alternative design that spatially and temporally decoupled the two quinone methide equivalents neither restored the dynamic reaction nor cross-linked DNA efficiently. While di- and triammonium ion conjugates successfully enhanced the yields of cross-linking by a bisquinone methide relative to a monoammonium equivalent, alternative ligands will be necessary to facilitate the migration of cross-linking and its potential application to disrupt DNA repair.
Collapse
Affiliation(s)
- Mark A. Hutchinson
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Blessing D. Deeyaa
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Shane R. Byrne
- Chemistry-Biology Interface Program, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Sierra J. Williams
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Steven E. Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
- Chemistry-Biology Interface Program, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| |
Collapse
|
4
|
Deeyaa BD, Rokita SE. Migratory ability of quinone methide-generating acridine conjugates in DNA. Org Biomol Chem 2020; 18:1671-1678. [DOI: 10.1039/d0ob00081g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conversion of a bisquinone methide–acridine conjugate to its monofunctional analogue releases the constraints that limit migration of its reversible adducts within DNA.
Collapse
|
5
|
Byrne SR, Yang K, Rokita SE. Effect of Nucleosome Assembly on Alkylation by a Dynamic Electrophile. Chem Res Toxicol 2019; 32:917-925. [PMID: 30882212 DOI: 10.1021/acs.chemrestox.9b00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Quinone methides are reactive electrophiles that are generated during metabolism of various drugs, natural products, and food additives. Their chemical properties and cellular effects have been described previously, and now their response to packaging DNA in a nucleosome core is described. A model bisquinone methide precursor (bisQMP) was selected based on its ability to form reversible adducts with guanine N7 that allow for their redistribution and transfer after quinone methide regeneration. Assembly of Widom's 601 DNA with the histone octamer of H2A, H2B, H3, and H4 from Xenopus laevis significantly suppressed alkylation of the DNA. This result is a function of DNA packaging since addition of the octamer without nucleosome reconstitution only mildly protected DNA from alkylation. The lack of competition between nucleophiles of DNA and the histones was consistent with the limited number of adducts formed by the histones as detected by tryptic digestion and ultraperformance liquid chromatography-mass spectrometry. Only three peptide adducts were observed after reaction with a monofunctional analogue of bisQMP, and only two peptide adducts were observed after reaction with bisQMP. Histone reaction was also suppressed when reconstituted into the nucleosome core particle. However, bisQMP was capable of cross-linking the DNA and histones in moderate yields (∼20%) that exceeded expectations derived from reaction of cisplatin, nitrogen mustards, and diepoxybutane. The core histones also demonstrated a protective function against dynamic alkylation by trapping the reactive quinone methide after its spontaneous regeneration from DNA adducts.
Collapse
Affiliation(s)
- Shane R Byrne
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Kun Yang
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Steven E Rokita
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
6
|
Degner A, Carlsson H, Karlsson I, Eriksson J, Pujari SS, Tretyakova NY, Törnqvist M. Discovery of Novel N-(4-Hydroxybenzyl)valine Hemoglobin Adducts in Human Blood. Chem Res Toxicol 2018; 31:1305-1314. [PMID: 30375232 DOI: 10.1021/acs.chemrestox.8b00173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Humans are exposed to a wide range of electrophilic compounds present in our diet and environment or formed endogenously as part of normal physiological processes. These electrophiles can modify nucleophilic sites of proteins and DNA to form covalent adducts. Recently, powerful untargeted adductomic approaches have been developed for systematic screening of these adducts in human blood. Our earlier untargeted adductomics study detected 19 unknown adducts to N-terminal valine in hemoglobin (Hb) in human blood. We now describe a full characterization of one of these adducts, which corresponds to the addition of a 4-hydroxybenzyl (4-OHBn) group to N-terminal valine in Hb to form N(4-hydroxybenzyl)valine (4-OHBn-Val). The adduct structure was determined by comparison of its accurate mass, HPLC retention time, and MS/MS fragmentation to that of authentic standards prepared by chemical synthesis. Average 4-OHBn-Val adduct concentrations in 12 human blood samples were estimated to 380 ± 160 pmol/g Hb. Two possible routes of 4-OHBnVal adduct formation are proposed using two different precursor electrophiles: 4-quinone methide (4-QM) and 4-hydroxybenzaldehyde (4-OHBA). We found that 4-QM reacts rapidly with valine to form the 4-OHBn-Val adduct; however, the quinone methide is unstable under physiological conditions due to hydrolysis. It was shown that 4-OHBA forms reversible Schiff base adducts with valine, which can be stabilized via reduction in blood generating the 4-OHBn-Val adduct. In addition, trace amounts of isomeric 2-hydroxybenzyl-valine (2-OHBn-Val) adducts were detected in 12 human blood samples (estimated mean adduct level, 5.0 ± 1.4 pmol/g Hb). Further studies are needed to quantify the contributions from identified possible precursor electrophiles to the observed hydroxybenzyl adducts in humans.
Collapse
Affiliation(s)
- Amanda Degner
- Department of Medicinal Chemistry and the Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Henrik Carlsson
- Department of Environmental Science and Analytical Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Isabella Karlsson
- Department of Environmental Science and Analytical Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Johan Eriksson
- Department of Environmental Science and Analytical Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Suresh S Pujari
- Department of Medicinal Chemistry and the Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Margareta Törnqvist
- Department of Environmental Science and Analytical Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| |
Collapse
|
7
|
Fan H, Sun H, Peng X. Substituents Have a Large Effect on Photochemical Generation of Benzyl Cations and DNA Cross-Linking. Chemistry 2018; 24:7671-7682. [DOI: 10.1002/chem.201705929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Heli Fan
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
| | - Huabing Sun
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
- Milwaukee Institute for Drug Discovery; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
| |
Collapse
|
8
|
Sato N, Tsuji G, Sasaki Y, Usami A, Moki T, Onizuka K, Yamada K, Nagatsugi F. A new strategy for site-specific alkylation of DNA using oligonucleotides containing an abasic site and alkylating probes. Chem Commun (Camb) 2016; 51:14885-8. [PMID: 26304997 DOI: 10.1039/c5cc03915k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Selective chemical reactions with DNA, such as its labelling, are very useful in many applications. In this paper, we discuss a new strategy for the selective alkylation of DNA using an oligonucleotide containing an abasic site and alkylating probes. We designed three probes consisting of 2-AVP as a reactive moiety and three kinds of binding moiety with high affinity to duplex DNA. Among these probes, Hoechst-AVP probe exhibited high selectivity and efficient reactivity to thymine bases at the site opposite an abasic site in DNA. Our method is potentially useful for inducing site-directed reactions aimed at inhibiting polymerase reactions.
Collapse
Affiliation(s)
- Norihiro Sato
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, 980-8577, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Doria F, Lena A, Bargiggia R, Freccero M. Conjugation, Substituent, and Solvent Effects on the Photogeneration of Quinone Methides. J Org Chem 2016; 81:3665-73. [DOI: 10.1021/acs.joc.6b00331] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Filippo Doria
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli
10, 27100 Pavia, Italy
| | - Alberto Lena
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli
10, 27100 Pavia, Italy
| | - Riccardo Bargiggia
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli
10, 27100 Pavia, Italy
| | - Mauro Freccero
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli
10, 27100 Pavia, Italy
| |
Collapse
|
10
|
Huang C, Rokita SE. DNA alkylation promoted by an electron-rich quinone methide intermediate. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1541-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Novel delivery approaches for cancer therapeutics. J Control Release 2015; 219:248-268. [PMID: 26456750 DOI: 10.1016/j.jconrel.2015.09.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
Currently, a majority of cancer treatment strategies are based on the removal of tumor mass mainly by surgery. Chemical and physical treatments such as chemo- and radiotherapies have also made a major contribution in inhibiting rapid growth of malignant cells. Furthermore, these approaches are often combined to enhance therapeutic indices. It is widely known that surgery, chemo- and radiotherapy also inhibit normal cells growth. In addition, these treatment modalities are associated with severe side effects and high toxicity which in turn lead to low quality of life. This review encompasses novel strategies for more effective chemotherapeutic delivery aiming to generate better prognosis. Currently, cancer treatment is a highly dynamic field and significant advances are being made in the development of novel cancer treatment strategies. In contrast to conventional cancer therapeutics, novel approaches such as ligand or receptor based targeting, triggered release, intracellular drug targeting, gene delivery, cancer stem cell therapy, magnetic drug targeting and ultrasound-mediated drug delivery, have added new modalities for cancer treatment. These approaches have led to selective detection of malignant cells leading to their eradication with minimal side effects. Lowering multi-drug resistance and involving influx transportation in targeted drug delivery to cancer cells can also contribute significantly in the therapeutic interventions in cancer.
Collapse
|
12
|
Lönnberg T, Hutchinson M, Rokita S. Selective Alkylation of C-Rich Bulge Motifs in Nucleic Acids by Quinone Methide Derivatives. Chemistry 2015. [PMID: 26220692 DOI: 10.1002/chem.201502014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A quinone methide precursor featuring a bis-cyclen anchoring moiety has been synthesized and its capacity to alkylate oligonucleotide targets quantified in the presence and absence of divalent metal ions (Zn(2+) , Ni(2+) and Cd(2+) ). The oligonucleotides were designed for testing the sequence and secondary structure specificity of the reaction. Gel electrophoretic analysis revealed predominant alkylation of C-rich bulges, regardless of the presence of divalent metal ions or even the bis-cyclen anchor. This C-selectivity appears to be an intrinsic property of the quinone methide electrophile as reflected by its reaction with an equimolar mixture of the 2'-deoxynucleosides. Only dA-N1 and dC-N3 alkylation products were detected initially and only the dC adduct persisted for detection under conditions of the gel electrophoretic analysis.
Collapse
Affiliation(s)
- Tuomas Lönnberg
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (USA). .,Department of Chemistry, University of Turku, 20014 Turku (Finland).
| | - Mark Hutchinson
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (USA)
| | - Steven Rokita
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (USA)
| |
Collapse
|
13
|
Han Y, Chen W, Kuang Y, Sun H, Wang Z, Peng X. UV-Induced DNA Interstrand Cross-Linking and Direct Strand Breaks from a New Type of Binitroimidazole Analogue. Chem Res Toxicol 2015; 28:919-26. [PMID: 25844639 DOI: 10.1021/tx500522r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Four novel photoactivated binitroimidazole prodrugs were synthesized. These agents produced DNA interstrand cross-links (ICLs) and direct strand breaks (DSB) upon UV irradiation, whereas no or very few DNA ICLs and DSBs were observed without UV treatment. Although these four molecules (1-4) contain the same binitroimidazole moiety, they bear four different leaving groups, which resulted in their producing different yields of DNA damage. Compound 4, with nitrogen mustard as a leaving group, showed the highest ICL yield. Surprisingly, compounds 1-3, without any alkylating functional group, also induced DNA ICL formation, although they did so with lower yields, which suggested that the binitroimidazole moiety released from UV irradiation of 1-3 is capable of cross-linking DNA. The DNA cross-linked products induced by these compounds were completely destroyed upon 1.0 M piperidine treatment at 90 °C (leading to cleavage at dG sites), which revealed that DNA cross-linking mainly occurred via alkylation of dGs. We proposed a possible mechanism by which alkylating agents were released from these compounds. HRMS and NMR analysis confirmed that free nitrogen mustards were generated by UV irradiation of 4. Suppression of DNA ICL and DSB formation by a radical trap, TEMPO, indicated the involvement of free radicals in the photo reactions of 3 and 4 with DNA. On the basis of these data, we propose that UV irradiation of compounds 1-4 generated a binitroimidazole intermediate that cross-links DNA. The higher ICL yield observed with 4 resulted from the amine effector nitrogen mustard released from UV irradiation.
Collapse
Affiliation(s)
- Yanyan Han
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Wenbing Chen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Yunyan Kuang
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Huabing Sun
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Zhiqiang Wang
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
14
|
Fakhari F, Rokita SE. A walk along DNA using bipedal migration of a dynamic and covalent crosslinker. Nat Commun 2014; 5:5591. [DOI: 10.1038/ncomms6591] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 10/17/2014] [Indexed: 01/09/2023] Open
|