1
|
Chen HJC. Mass Spectrometry Analysis of DNA and Protein Adducts as Biomarkers in Human Exposure to Cigarette Smoking: Acrolein as an Example. Chem Res Toxicol 2023; 36:132-140. [PMID: 36626705 DOI: 10.1021/acs.chemrestox.2c00354] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acrolein is a major component in cigarette smoke and a product of endogenous lipid peroxidation. It is difficult to distinguish human exposure to acrolein from exogenous sources versus endogenous causes, as components in cigarette smoke can stimulate lipid peroxidation in vivo. Therefore, analysis of acrolein-induced DNA and protein adducts by the highly accurate, sensitive, and specific mass spectrometry-based methods is vital to estimate the degree of damage by this IARC Group 2A carcinogen. This Perspective reviews the analyses of acrolein-induced DNA and protein adducts in humans by mass spectrometry focusing on samples accessible for biomonitoring, including DNA from leukocytes and oral cells and abundant proteins from blood, i.e., hemoglobin and serum albumin.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| |
Collapse
|
2
|
Ou J, Zheng J, Huang J, Ho CT, Ou S. Interaction of Acrylamide, Acrolein, and 5-Hydroxymethylfurfural with Amino Acids and DNA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5039-5048. [PMID: 32275416 DOI: 10.1021/acs.jafc.0c01345] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acrylamide, acrolein, and 5-hydroxymethylfurfural (HMF) are food-borne toxicants produced during the thermal processing of food. The α,β-unsaturated carbonyl group or aldehyde group in their structure can react easily with the amino, imino, and thiol groups in amino acids, proteins, and DNA via Michael addition and nucleophilic reactions in food and in vivo. This work reviews the interaction pathways of three toxins with amino acids and the cytotoxicity and changes after the digestion and absorption of the resulting adducts. Their interaction with DNA is also discussed. Amino acids ubiquitously exist in foods and are added as nutrients or used to control these food-borne toxicants. Hence, the interaction widely occurring in foods would greatly increase the internal exposure of these toxins and their derived compounds after food intake. This review aims to encourage further investigation on toxin-derived compounds, including their types, exposure levels, toxicities, and pharmacokinetics.
Collapse
Affiliation(s)
- Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jie Zheng
- Department of Food and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junqing Huang
- Formula-pattern Research Center, College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Shiyi Ou
- Department of Food and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
3
|
Xiong R, Wu Q, Muskhelishvili L, Davis K, Shemansky JM, Bryant M, Rosenfeldt H, Healy SM, Cao X. Evaluating Mode of Action of Acrolein Toxicity in an In Vitro Human Airway Tissue Model. Toxicol Sci 2018; 166:451-464. [PMID: 30204913 DOI: 10.1093/toxsci/kfy226] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acrolein is a reactive unsaturated aldehyde and is found at high concentrations in both mainstream and side-stream tobacco smoke. Exposure to acrolein via cigarette smoking has been associated with acute lung injury, chronic obstructive pulmonary diseases (COPDs), and asthma. In this study, we developed an in vitro treatment strategy that resembles the inhalation exposure to acrolein experienced by smokers and systematically examined the adverse respiratory effects induced by the noncytotoxic doses of acrolein in a human airway epithelial tissue model. A single 10-min exposure to buffered saline containing acrolein significantly induced oxidative stress and inflammatory responses, with changes in protein oxidation and GSH depletion occurring immediately after the treatment whereas responses in inflammation requiring a manifestation time of at least 24 h. Repeated exposure to acrolein for 10 consecutive days resulted in structural and functional changes that recapitulate the pathological lesions of COPD, including alterations in the beating frequency and structures of ciliated cells, inhibition of mucin expression and secretion apparatus, and development of squamous differentiation. Although some of the early responses caused by acrolein exposure were reversible after a 10-day recovery, perturbations in the functions and structures of the air-liquid-interface (ALI) cultures, such as mucin production, cilia structures, and morphological changes, failed to fully recover over the observation period. Taken together, these findings are consistent with its mode of action that oxidative stress and inflammation have fundamental roles in acrolein-induced tissue remodeling. Furthermore, these data demonstrate the usefulness of analytical methods and testing strategy for recapitulating the key events in acrolein toxicity using an in vitro model.
Collapse
Affiliation(s)
- Rui Xiong
- Division of Genetic and Molecular Toxicology
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079
| | | | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, Arkansas 72079
| | | | - Matthew Bryant
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079
| | - Hans Rosenfeldt
- Division of Nonclinical Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, Maryland 20993
| | - Sheila M Healy
- Division of Nonclinical Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, Maryland 20993
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology
| |
Collapse
|
4
|
Godinho ALA, Martins IL, Nunes J, Charneira C, Grilo J, Silva DM, Pereira SA, Soto K, Oliveira MC, Marques MM, Jacob CC, Antunes AMM. High resolution mass spectrometry-based methodologies for identification of Etravirine bioactivation to reactive metabolites: In vitro and in vivo approaches. Eur J Pharm Sci 2018; 119:70-82. [PMID: 29592839 DOI: 10.1016/j.ejps.2018.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/28/2018] [Accepted: 03/22/2018] [Indexed: 01/16/2023]
Abstract
Drug bioactivation to reactive metabolites capable of covalent adduct formation with bionucleophiles is a major cause of drug-induced adverse reactions. Therefore, elucidation of reactive metabolites is essential to unravel the toxicity mechanisms induced by drugs and thereby identify patient subgroups at higher risk. Etravirine (ETR) was the first second-generation Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) to be approved, as a therapeutic option for HIV-infected patients who developed resistance to the first-generation NNRTIs. Additionally, ETR came into market aiming to overcome some adverse effects associated with the previously used efavirenz (neurotoxicity) and nevirapine (hepatotoxicity) therapies. Nonetheless, post-marketing reports of severe ETR-induced skin rash and hypersensitivity reactions have prompted the U.S. FDA to issue a safety alert on ETR. Taking into consideration that ETR usage may increase in the near future, due to the possible use of the drug for coinfection with malaria and HIV, the development of reliable prognostic tools for early risk/benefit estimations is urgent. In the current study, high resolution mass spectrometry-based methodologies were integrated with MS3 experiments for the identification of reactive ETR metabolites/adducts: 1) in vitro incubation of the drug with human and rat liver S9 fractions in the presence of Phase I and II co-factors, including glutathione, as a trapping bionucleophile; and 2) in vivo, using urine samples from HIV-infected patients on ETR therapy. We obtained evidence for multiple bioactivation pathways leading to the formation of covalent adducts with glutathione and N-acetyl-L-cysteine. These results suggest that similar reactions may occur with cysteine residues of proteins, supporting a role for ETR bioactivation in the onset of the toxic effects elicited by the drug. Additionally, ETR metabolites stemming from amine oxidation, with potential toxicological significance, were identified in vitro and in vivo. Also noteworthy is the fact that new metabolic conjugation pathways of glucuronide metabolites were demonstrated for the first time, raising questions about their potential toxicological implications. In conclusion, these results represent not only a contribution towards the elucidation of new metabolic pathways of drugs in general but also an important step towards the elucidation of potentially toxic ETR pathways, whose understanding may be crucial for reliable risk/benefit estimations of ETR-based regimens.
Collapse
Affiliation(s)
- Ana L A Godinho
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Inês L Martins
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - João Nunes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Catarina Charneira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Jorge Grilo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Diogo M Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-006 Lisboa, Portugal
| | - Karina Soto
- Hospital Prof. Doutor Fernando Fonseca E.P.E., IC 19, 2720-276 Amadora, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - M Matilde Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Cristina C Jacob
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| |
Collapse
|
5
|
Maravic T, Breschi L, Comba A, Cunha SR, Angeloni V, Nucci C, Hebling J, Pashley D, Tay F, Mazzoni A. Experimental use of an acrolein-based primer as collagen cross-linker for dentine bonding. J Dent 2018; 68:85-90. [DOI: 10.1016/j.jdent.2017.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/30/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
|
6
|
Burcham PC. Acrolein and Human Disease: Untangling the Knotty Exposure Scenarios Accompanying Several Diverse Disorders. Chem Res Toxicol 2016; 30:145-161. [DOI: 10.1021/acs.chemrestox.6b00310] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Philip C. Burcham
- Pharmacology, Pharmacy & Anaesthesiology Unit, School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia 6007, Australia
| |
Collapse
|
7
|
Yeager RP, Kushman M, Chemerynski S, Weil R, Fu X, White M, Callahan-Lyon P, Rosenfeldt H. Proposed Mode of Action for Acrolein Respiratory Toxicity Associated with Inhaled Tobacco Smoke. Toxicol Sci 2016; 151:347-64. [DOI: 10.1093/toxsci/kfw051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
8
|
Burcham PC, Raso A, Henry PJ. Airborne acrolein induces keratin-8 (Ser-73) hyperphosphorylation and intermediate filament ubiquitination in bronchiolar lung cell monolayers. Toxicology 2014; 319:44-52. [PMID: 24594012 DOI: 10.1016/j.tox.2014.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/24/2013] [Accepted: 02/13/2014] [Indexed: 01/12/2023]
Abstract
The combustion product acrolein is a key mediator of pulmonary edema in victims of smoke inhalation injury. Since studying acrolein toxicity in conventional in vitro systems is complicated by reactivity with nucleophilic culture media constituents, we explored an exposure system which delivers airborne acrolein directly to lung cell monolayers at the air-liquid interface. Calu-3 lung adenocarcinoma cells were maintained on membrane inserts such that the basal surface was bathed in nucleophile-free media while the upper surface remained in contact with acrolein-containing air. Cells were exposed to airborne acrolein for 30 min before they were allowed to recover in fresh media, with cell sampling at defined time points to allow evaluation of toxicity and protein damage. After prior exposure to acrolein, cell ATP levels remained close to controls for 4h but decreased in an exposure-dependent manner by 24h. A loss of transepithelial electrical resistance and increased permeability to fluorescein isothiocyanate-labeled dextran preceded ATP loss. Use of antibody arrays to monitor protein expression in exposed monolayers identified strong upregulation of phospho-keratin-8 (Ser(73)) as an early consequence of acrolein exposure. These changes were accompanied by chemical damage to keratin-8 and other intermediate filament family members, while acrolein exposure also resulted in controlled ubiquitination of high mass proteins within the intermediate filament extracts. These findings confirm the usefulness of systems allowing delivery of airborne smoke constituents to lung cell monolayers during studies of the molecular basis for acute smoke intoxication injury.
Collapse
Affiliation(s)
- Philip C Burcham
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia.
| | - Albert Raso
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Peter J Henry
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
9
|
Zhu Q, Zhang NQS, Lau CF, Chao J, Sun Z, Chang RCC, Chen F, Wang M. In vitro attenuation of acrolein-induced toxicity by phloretin, a phenolic compound from apple. Food Chem 2012; 135:1762-8. [DOI: 10.1016/j.foodchem.2012.06.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
|
10
|
Bachi A, Dalle-Donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2012. [DOI: 10.1021/cr300073p] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angela Bachi
- Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
11
|
Burcham PC, Raso A, Kaminskas LM. Chaperone heat shock protein 90 mobilization and hydralazine cytoprotection against acrolein-induced carbonyl stress. Mol Pharmacol 2012; 82:876-86. [PMID: 22869587 DOI: 10.1124/mol.112.078956] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Toxic carbonyls such as acrolein participate in many degenerative diseases. Although the nucleophilic vasodilatory drug hydralazine readily traps such species under "test-tube" conditions, whether these reactions adequately explain its efficacy in animal models of carbonyl-mediated disease is uncertain. We have previously shown that hydralazine attacks carbonyl-adducted proteins in an "adduct-trapping" reaction that appears to take precedence over direct "carbonyl-sequestering" reactions, but how this reaction conferred cytoprotection was unclear. This study explored the possibility that by increasing the bulkiness of acrolein-adducted proteins, adduct-trapping might alter the redistribution of chaperones to damaged cytoskeletal proteins that are known targets for acrolein. Using A549 lung adenocarcinoma cells, the levels of chaperones heat shock protein (Hsp) 40, Hsp70, Hsp90, and Hsp110 were measured in intermediate filament extracts prepared after a 3-h exposure to acrolein. Exposure to acrolein alone modestly increased the levels of all four chaperones. Coexposure to hydralazine (10-100 μM) strongly suppressed cell ATP loss while producing strong adduct-trapping in intermediate filaments. Most strikingly, hydralazine selectively boosted the levels of cytoskeletal-associated Hsp90, including a high-mass species that was sensitive to the Hsp90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin. Biochemical fractionation of acrolein- and hydralazine-treated cells revealed that hydralazine likely promoted Hsp90 migration from cytosol into other subcellular compartments. A role for Hsp90 mobilization in cytoprotection was confirmed by the finding that brief heat shock treatment suppressed acute acrolein toxicity in A549 cells. Taken together, these findings suggest that by increasing the steric bulk of carbonyl-adducted proteins, adduct-trapping drugs trigger the intracellular mobilization of the key molecular chaperone Hsp90.
Collapse
Affiliation(s)
- Philip C Burcham
- Pharmacology, Pharmacy and Anaesthesiology Unit, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia.
| | | | | |
Collapse
|
12
|
West JD, Wang Y, Morano KA. Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 2012; 25:2036-53. [PMID: 22799889 DOI: 10.1021/tx300264x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All cells have developed various mechanisms to respond and adapt to a variety of environmental challenges, including stresses that damage cellular proteins. One such response, the heat shock response (HSR), leads to the transcriptional activation of a family of molecular chaperone proteins that promote proper folding or clearance of damaged proteins within the cytosol. In addition to its role in protection against acute insults, the HSR also regulates lifespan and protects against protein misfolding that is associated with degenerative diseases of aging. As a result, identifying pharmacological regulators of the HSR has become an active area of research in recent years. Here, we review progress made in identifying small molecule activators of the HSR, what cellular targets these compounds interact with to drive response activation, and how such molecules may ultimately be employed to delay or reverse protein misfolding events that contribute to a number of diseases.
Collapse
Affiliation(s)
- James D West
- Biochemistry and Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, USA.
| | | | | |
Collapse
|
13
|
Prior exposure to acrolein accelerates pulmonary inflammation in influenza A-infected mice. Toxicol Lett 2012; 212:241-51. [PMID: 22705057 DOI: 10.1016/j.toxlet.2012.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 11/22/2022]
Abstract
The combustion product acrolein contributes to several smoke-related health disorders, but whether this immunomodulatory toxicant alters pulmonary susceptibility to viruses has received little attention. To study the effects of prior acrolein dosing on the severity of influenza A viral infection, male BALB/c mice received acrolein (1mg/kg) or saline (control) via oropharyngeal aspiration either 4- or 7-days prior to intranasal inoculation with either influenza A/PR/8/34 virus or vehicle. At 0, 2, 4 and 7 days post-inoculation, lung samples were assessed for histological changes while pulmonary inflammation was monitored by estimating immune cell numbers and cytokine levels in bronchoalveolar lavage fluid (BALF). After viral challenge, animals that were exposed to acrolein 4 days previously experienced greater weight loss and exhibited an accelerated inflammatory response at 2 days after viral inoculation. Thus compared to saline-pretreated, virus-challenged controls, BALF recovered from these mice contained higher numbers of macrophages and neutrophils in addition to increased levels of several inflammatory cytokines, including IL-1α, IL-1β, IL-6, TNF, IFN-γ, KC, and MCP-1. The acrolein-induced increase in viral susceptibility was suppressed by the carbonyl scavenger bisulphite. These findings suggest acute acrolein intoxication "primes" the lung to mount an accelerated immune response to inhaled viruses.
Collapse
|
14
|
Abstract
Acrolein is a respiratory irritant that can be generated during cooking and is in environmental tobacco smoke. More plentiful in cigarette smoke than polycyclic aromatic hydrocarbons (PAH), acrolein can adduct tumor suppressor p53 (TP53) DNA and may contribute to TP53-mutations in lung cancer. Acrolein is also generated endogenously at sites of injury, and excessive breath levels (sufficient to activate metalloproteinases and increase mucin transcripts) have been detected in asthma and chronic obstructive pulmonary disease (COPD). Because of its reactivity with respiratory-lining fluid or cellular macromolecules, acrolein alters gene regulation, inflammation, mucociliary transport, and alveolar-capillary barrier integrity. In laboratory animals, acute exposures have lead to acute lung injury and pulmonary edema similar to that produced by smoke inhalation whereas lower concentrations have produced bronchial hyperreactivity, excessive mucus production, and alveolar enlargement. Susceptibility to acrolein exposure is associated with differential regulation of cell surface receptor, transcription factor, and ubiquitin-proteasome genes. Consequent to its pathophysiological impact, acrolein contributes to the morbidly and mortality associated with acute lung injury and COPD, and possibly asthma and lung cancer.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA.
| | | |
Collapse
|
15
|
Aldini G, Orioli M, Carini M. Protein modification by acrolein: relevance to pathological conditions and inhibition by aldehyde sequestering agents. Mol Nutr Food Res 2011; 55:1301-19. [PMID: 21805620 DOI: 10.1002/mnfr.201100182] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/12/2011] [Accepted: 06/15/2011] [Indexed: 01/08/2023]
Abstract
Acrolein (ACR) is a toxic and highly reactive α,β-unsaturated aldehyde widely distributed in the environment as a common pollutant and generated endogenously mainly by lipoxidation reactions. Its biological effects are due to its ability to react with the nucleophilic sites of proteins, to form covalently modified biomolecules which are thought to be involved as pathogenic factors in the onset and progression of many pathological conditions such as cardiovascular and neurodegenerative diseases. Functional impairment of structural proteins and enzymes by covalent modification (crosslinking) and triggering of key cell signalling systems are now well-recognized signs of cell and tissue damage induced by reactive carbonyl species (RCS). In this review, we mainly focus on the in vitro and in vivo evidence demonstrating the ability of ACR to covalently modify protein structures, in order to gain a deeper insight into the dysregulation of cellular and metabolic pathways caused by such modifications. In addition, by considering RCS and RCS-modified proteins as drug targets, this survey will provide an overview on the newly developed molecules specifically tested for direct or indirect ACR scavenging, and the more significant studies performed in the last years attesting the efficacy of compounds already recognized as promising aldehyde-sequestering agents.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences Pietro Pratesi, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
16
|
Valliere-Douglass JF, Connell-Crowley L, Jensen R, Schnier PD, Trilisky E, Leith M, Follstad BD, Kerr J, Lewis N, Vunnum S, Treuheit MJ, Balland A, Wallace A. Photochemical degradation of citrate buffers leads to covalent acetonation of recombinant protein therapeutics. Protein Sci 2011; 19:2152-63. [PMID: 20836085 DOI: 10.1002/pro.495] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Novel acetone and aldimine covalent adducts were identified on the N-termini and lysine side chains of recombinant monoclonal antibodies. Photochemical degradation of citrate buffers, in the presence of trace levels of iron, is demonstrated as the source of these modifications. The link between degradation of citrate and the observed protein modifications was conclusively established by tracking the citrate decomposition products and protein adducts resulting from photochemical degradation of isotope labeled (13)C citrate by mass spectrometry. The structure of the acetone modification was determined by nuclear magnetic resonance (NMR) spectroscopy on modified-free glycine and found to correspond to acetone linked to the N-terminus of the amino acid through a methyl carbon. Results from mass spectrometric fragmentation of glycine modified with an acetone adduct derived from (13)C labeled citrate indicated that the three central carbons of citrate are incorporated onto protein amines in the presence of iron and light. While citrate is known to stoichiometrically decompose to acetone and CO(2) through various intermediates in photochemical systems, it has never been shown to be a causative agent in protein carbonylation. Our results point to a previously unknown source for the generation of reactive carbonyl species. This work also highlights the potential deleterious impact of trace metals on recombinant protein therapeutics formulated in citrate buffers.
Collapse
|
17
|
West JD, Stamm CE, Kingsley PJ. Structure−Activity Comparison of the Cytotoxic Properties of Diethyl Maleate and Related Molecules: Identification of Diethyl Acetylenedicarboxylate as a Thiol Cross-Linking Agent. Chem Res Toxicol 2010; 24:81-8. [DOI: 10.1021/tx100292n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- James D. West
- Program in Biochemistry and Molecular Biology, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Chelsea E. Stamm
- Program in Biochemistry and Molecular Biology, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Philip J. Kingsley
- Program in Biochemistry and Molecular Biology, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
18
|
Liu XY, Yang ZH, Pan XJ, Zhu MX, Xie JP. Gene expression profile and cytotoxicity of human bronchial epithelial cells exposed to crotonaldehyde. Toxicol Lett 2010; 197:113-22. [PMID: 20471460 DOI: 10.1016/j.toxlet.2010.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/01/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Crotonaldehyde is an environment pollutant and lipid peroxidation product. Crotonaldehyde produces adverse effects to humans and serves as a risk factor for human pulmonary diseases. Like acrolein and 4-hydroxynonenal, crotonaldehyde seems likely to alter many cell signaling cascades, including inflammatory responses. The purpose of this study was to investigate the genome-wide transcriptional responses of normal human bronchial epithelial cells exposed to crotonaldehyde. Using microarrays technology, the global changes in transcriptional level were analyzed. Prior to RNA extraction, cells were exposed to crotonaldehyde at 40 or 80 microM for 3 or 6h. Real-time quantitative polymerase chain reaction (qPCR) was performed to validate microarray data and cell cycle arrest was determined. The commonly differentially regulated genes in many biological processes were dysregulated including inflammatory responses, exogenous metabolism, cell cycle, heat shock responses, and antioxidant responses. Results in the present study screen out the important roles of HMOX1 in regulating other signaling cascades and ALDH1A3 in detoxifying exogenous toxicants. Collectively, our study demonstrated that crotonaldehyde altered gene expression profile in the genome-wide transcriptional level in normal human bronchial epithelial cells. And many of them represented potential mechanisms of crotonaldehyde causing cytotoxicity and tissue injury in the human lung.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
| | | | | | | | | |
Collapse
|
19
|
Burcham PC, Raso A, Thompson CA. Intermediate filament carbonylation during acute acrolein toxicity in A549 lung cells: functional consequences, chaperone redistribution, and protection by bisulfite. Antioxid Redox Signal 2010; 12:337-47. [PMID: 19686041 DOI: 10.1089/ars.2009.2817] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Extensive protein carbonylation accompanies cellular exposure to acrolein, a ubiquitous smoke constituent implicated in life-threatening pulmonary edema in fire victims, a condition involving rapid erosion of the "watertight" properties of respiratory epithelium. Since the identities of lung epithelial proteins that sustain carbonylation by acrolein are unknown, we sought to identify significant targets in subcellular fractions from A549 cells after 30 min exposure to either subtoxic or acutely toxic acrolein concentrations (60 or 360 fmol acrolein/cell). The lower concentration mainly modified cytosolic proteins while the higher concentration also damaged nuclear, membrane, and cytoskeletal proteins. The multifunctional intermediate filament proteins vimentin, keratin-18, keratin-7 and keratin-8, were conspicuous targets. Consistent with their mechanical functions, a loss of cellular adhesive strength accompanied adduction of the two most abundant intermediate filaments in A549 cells, keratins-8 and -18. Acrolein also elicited redistribution of several chaperones (Hsp40, -70, -90, and -110) to intermediate filament fractions, suggesting chaperone-mediated autophagy contributes to the triage of acrolein-adducted proteins. The carbonyl scavenger bisulfite suppressed acrolein toxicity, intermediate filament adduction, vimentin cross-linking, Hsp90 redistribution, and loss of cellular adhesive strength, while also suppressing vimentin hyperphosphorylation. These novel observations identify intermediate filaments as key targets for the reactive smoke constituent acrolein.
Collapse
Affiliation(s)
- Philip C Burcham
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia .
| | | | | |
Collapse
|
20
|
Burcham PC, Raso A, Thompson CA. Toxicity of smoke extracts towards A549 lung cells: role of acrolein and suppression by carbonyl scavengers. Chem Biol Interact 2010; 183:416-24. [PMID: 20015449 DOI: 10.1016/j.cbi.2009.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 02/06/2023]
Abstract
The noxious 3-carbon electrophile acrolein forms on combustion of diverse organic matter including synthetic polymers such as polyethylene. While known to play a key role in smoke inhalation injury (SII), the molecular basis for the pulmonary toxicity of high dose acrolein-containing smoke is unclear. As a result, drug interventions in SII are poorly directed against pathogenetic smoke toxicants such as acrolein. The first aim of this study was to confirm a role for acrolein in the acute toxicity of smoke extracts towards A549 lung cells by monitoring adduction of known acrolein targets and the expression of acrolein-inducible genes. A second aim was to evaluate carbonyl scavengers for their abilities to protect cell targets and block smoke extract toxicity. Extracts were prepared by bubbling smoke released by smouldering polyethylene through a buffered saline-trap. Acrolein levels in the extracts were estimated via HPLC after derivatisation with 2,4-dinitrophenylhydrazine. Extracts were highly toxic towards A549 cells, eliciting greater ATP depletion than an equivalent concentration of acrolein alone. The toxicity was accompanied by pronounced carbonylation of several cytoskeletal targets, namely vimentin and keratins-7, -8 and -18. Western blotting revealed that polyethylene combustion products also upregulated several acrolein-responsive protein markers, including GADD45beta, NQO1, HMOX, Hsp70, Nur77 and Egr1. Several carbonyl scavengers (bisulfite, d-penicillamine, hydralazine and 1-hydrazinoisoquinoline) strongly attenuated smoke extract toxicity, with bisulfite suppressing both the adduction and cross-linking of intermediate filament targets. Bisulfite also suppressed the cytotoxicity of smoke extracts when detected using real-time monitoring of cellular impedance. These findings confirm a key role for acrolein in smoke cytotoxicity and suggest drugs that block acrolein toxicity deserve further investigation as possible interventions against SII.
Collapse
Affiliation(s)
- Philip C Burcham
- Pharmacology and Anaesthesiology Unit, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia.
| | | | | |
Collapse
|
21
|
Thompson CA, Burcham PC. Genome-Wide Transcriptional Responses to Acrolein. Chem Res Toxicol 2008; 21:2245-56. [DOI: 10.1021/tx8001934] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Colin A. Thompson
- Pharmacology and Anaesthesiology Unit, School of Medicine and Pharmacology, The University of Western Australia, Perth WA 6009, Australia
| | - Philip C. Burcham
- Pharmacology and Anaesthesiology Unit, School of Medicine and Pharmacology, The University of Western Australia, Perth WA 6009, Australia
| |
Collapse
|
22
|
Thompson CA, Burcham PC. Protein alkylation, transcriptional responses and cytochrome c release during acrolein toxicity in A549 cells: Influence of nucleophilic culture media constituents. Toxicol In Vitro 2008; 22:844-53. [DOI: 10.1016/j.tiv.2007.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 12/07/2007] [Accepted: 12/25/2007] [Indexed: 12/20/2022]
|
23
|
Burcham PC. Potentialities and pitfalls accompanying chemico-pharmacological strategies against endogenous electrophiles and carbonyl stress. Chem Res Toxicol 2008; 21:779-86. [PMID: 18275160 DOI: 10.1021/tx700399q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of powerful analytical technologies to detect endogenous carbonyls formed as byproducts of oxidative cell injury has revealed that these species contribute to many human diseases. As electrophiles, they are attacked by reactive centers in cell macromolecules to form adducts, the levels of which serve as useful biomarkers of oxidative cell injury. Because the pathobiological significance of such damage is often unclear, the possibility of using low molecular weight drugs as exploratory sacrificial nucleophiles to intercept reactive carbonyls within cells and tissues is appealing. This perspective highlights the potential benefits of using carbonyl scavengers to evaluate the significance of endogenous carbonyls in particular diseases but also canvasses a number of challenges confronting this therapeutic strategy. Chief among the latter is the task of confirming that carbonyl sequestration underlies any suppression of disease symptoms elicited by these multipotent reagents, an issue needing clarification if these compounds are to command consideration as drug interventions in humans. Other problems include adverse consequences of reactions between carbonyl scavengers and important endogenous carbonyls (e.g., neurotoxicity due to pyridoxal depletion), as well as the potential for drugs to form ternary complexes with carbonylated cell proteins, raising the prospect of immunotoxicological outcomes. Strategies for moving carbonyl sequestering reagents from the laboratory bench to a clinical testing environment are discussed within the context of the search for new treatments for spinal cord injury, one of the most debilitating medical conditions sustainable by humans. This condition seems an appropriate test case for assessing carbonyl sequestering drugs given growing evidence for noxious carbonyls in the wave of neuronal cell death that follows traumatic injury to the spinal cord.
Collapse
Affiliation(s)
- Philip C Burcham
- Pharmacology and Anaesthesiology Unit, School of Medicine and Pharmacology, the University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|