1
|
Wang W, Liu M, Fu X, Qi M, Zhu F, Fan F, Wang Y, Zhang K, Chu S. Hydroxysafflor yellow A ameliorates alcohol-induced liver injury through PI3K/Akt and STAT3/NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155814. [PMID: 38878526 DOI: 10.1016/j.phymed.2024.155814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a prevalent liver ailment. It has escalated into a significant public health issue, imposing substantial burdens on medical, economic, and social domains. Currently, oxidative stress, inflammation, and apoptosis are recognized as crucial culprits in improving ALD. Consequently, mitigating these issues has emerged as a promising avenue for enhancing ALD. Hydroxysafflor yellow A (HSYA) is the main ingredient in safflower, showing excellent antioxidative stress, anti-inflammatory, and anti-apoptosis traits. However, there are limited investigations into the mechanisms by which HSYA ameliorates ALD PURPOSE: We investigated whether HSYA, a significant constituent of Asteraceae safflower, exerts antioxidant stress and attenuates inflammation and anti-apoptotic effects through PI3K/Akt and STAT3/NF-κB pathways, thereby ameliorating ALD METHODS: We established two experimental models: an ethanol-induced liver damage mouse model in vivo and a HepG2 cell alcohol injury model in vitro RESULTS: The results demonstrated that HSYA effectively ameliorated liver tissue damage, reduced levels of ALT, AST, LDL-C, TG, TC, and MDA, enhanced HDL-C levels, SOD and GSH activities, reduced ROS accumulation in cells, and activated the Nrf2 pathway, a transcription factor involved in antioxidant defense. By regulating the PI3K/Akt and STAT3/NF-κB pathways, HSYA exhibits notable antioxidative stress, anti-inflammatory, and anti-apoptotic effects, effectively impeding ALD's advancement. To further confirm the regulatory effect of HSYA on PI3K/Akt and downstream signaling pathways, the PI3K activator 740 Y-P was used and was found to reverse the downregulation of PI3K by HSYA CONCLUSION: This study supports the effectiveness of HSYA in reducing ALD by regulating the PI3K/Akt and STAT3/NF-κB pathways, indicating its potential medicinal value.
Collapse
Affiliation(s)
- Wenxuan Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Min Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Xianglei Fu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Man Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Furong Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Furong Fan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Yuanchuang Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Kaiyue Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China
| | - Shenghui Chu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, PR China.
| |
Collapse
|
2
|
Xie J, Xiong S, Li Y, Xia B, Li M, Zhang Z, Shi Z, Peng Q, Li C, Lin L, Liao D. Phenolic acids from medicinal and edible homologous plants: a potential anti-inflammatory agent for inflammatory diseases. Front Immunol 2024; 15:1345002. [PMID: 38975345 PMCID: PMC11224438 DOI: 10.3389/fimmu.2024.1345002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Inflammation has been shown to trigger a wide range of chronic diseases, particularly inflammatory diseases. As a result, the focus of research has been on anti-inflammatory drugs and foods. In recent years, the field of medicinal and edible homology (MEH) has developed rapidly in both medical and food sciences, with 95% of MEH being associated with plants. Phenolic acids are a crucial group of natural bioactive substances found in medicinal and edible homologous plants (MEHPs). Their anti-inflammatory activity is significant as they play a vital role in treating several inflammatory diseases. These compounds possess enormous potential for developing anti-inflammatory drugs and functional foods. However, their development is far from satisfactory due to their diverse structure and intricate anti-inflammatory mechanisms. In this review, we summarize the various types, structures, and distribution of MEHP phenolic acids that have been identified as of 2023. We also analyze their anti-inflammatory activity and molecular mechanisms in inflammatory diseases through NF-κB, MAPK, NLRP3, Nrf2, TLRs, and IL-17 pathways. Additionally, we investigate their impact on regulating the composition of the gut microbiota and immune responses. This analysis lays the groundwork for further exploration of the anti-inflammatory structure-activity relationship of MEHP phenolic acids, aiming to inspire structural optimization and deepen our understanding of their mechanism, and provides valuable insights for future research and development in this field.
Collapse
Affiliation(s)
- Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Suhui Xiong
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Minjie Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qiuxian Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Wang SZ, Liu JN, Zhou FF, Wang YJP, Zhang P, Cheng ST. Decreased Nrf2 protein level and low sperm quality in intractable spermatocystitis. Asian J Androl 2024; 26:189-194. [PMID: 37934170 PMCID: PMC10919431 DOI: 10.4103/aja202361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/24/2023] [Indexed: 11/08/2023] Open
Abstract
To investigate the molecular etiology of low sperm quality in patients with intractable spermatocystitis, spermatozoa samples from patients with persistent hematospermia undergoing transurethral seminal vesiculoscopy and healthy volunteers were utilized. Spermatozoa samples were collected from the seminal vesicles through transurethral seminal vesiculoscopy or by masturbation ejaculation. Sperm quality was analyzed by a WLJY-9000 color semen analysis system. Measurement of tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) in the seminal plasma was performed using enzyme-linked immunosorbent assay (ELISA). Measurement of H 2 O 2 in the seminal plasma was performed with a hydrogen peroxide kit. The protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and phosphorylated-Nrf2 (p-Nrf2) were measured by western blot analysis and immunofluorescence assays. Low sperm quality parameters and increased levels of inflammatory cytokines (TNFα, IL-6, and H 2 O 2 ) in the seminal plasma were detected among the semen samples from the patients with persistent hematospermia. Nrf2 and p-Nrf2 were strongly expressed in the nucleus and periphery of human sperm cells, according to the results of the immunofluorescence assays. The protein levels of Nrf2 and p-Nrf2 were significantly lower in the spermatozoa samples from patients with persistent hematospermia than in those from healthy volunteers with normal sperm motility. The results suggested that Nrf2 signaling might play a role in the low sperm quality of patients with intractable spermatocystitis.
Collapse
Affiliation(s)
- Shi-Ze Wang
- Department of Urology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jian-Nan Liu
- Department of Urology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Fen-Fang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ye-Jin-Peng Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Peng Zhang
- Department of Health Management and Clinical Medicine, School of Medicine and Health, Wuhan Polytechnic University, Wuhan 430071, China
| | - Song-Tao Cheng
- Department of Urology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
4
|
Qi XY, Peng GC, Han QT, Yan J, Chen LZ, Wang T, Xu LT, Liu MJ, Xu ZP, Wang XN, Shen T. Phthalides from the rhizome of Ligusticum chuanxiong Hort. attenuate diabetic nephropathy in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117247. [PMID: 37777028 DOI: 10.1016/j.jep.2023.117247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In many famous formulas of traditional Chinese medicine (TCM), the rhizome of Ligusticum chuanxiong (L. chuanxiong) is commonly used as an ingredient for promoting blood circulation and resolving blood stasis to treat diabetic nephropathy. However, its material basis and mechanism of action are still needed to be explored. AIM OF THE STUDY The aim of this work is to elucidate the potential effective parts (phthalides) of L. chuanxiong responsible for renal protection and to explore the possible mechanism of renal protection. MATERIALS AND METHODS A method based on column chromatography of macroporous resin was established to enrich an effective part (LCE70), and the composition of LCE70 was identified by HPLC-UV and UPLC-MS/MS methods. Mice model was induced by streptozotocin (STZ) to evaluate the protective effect of LCE70 on diabetic nephropathy (DN). In vitro, the suppressive effect of LCE70 on oxidative damage, inflammation and its mechanism were tested using immunoblot analysis, ELISA, etc. Cellular thermal shift assay (CETSA) was adopted to verify the interaction between the phthalides and the key targets involved in renal injury. RESULTS LCE70 displayed therapeutic potential against metabolic disorders, renal dysfunction, and fibrosis in a DN model induced by STZ in mice. Furthermore, it markedly reduced oxidative stress of the kidney in DN mice by activating Nrf2 pathway. Z-ligustilide, the main component of LCE70, reacted with Keap1, and thus promoted Nrf2 dissociating from Keap1 to activate Nrf2 pathway. CONCLUSIONS LCE70 improved hyperglycemia-induced renal function by enhancing the Nrf2 activation, reducing collagen deposition, and alleviating inflammation and oxidative stress, which suggested its potential as a therapeutic agent for DN.
Collapse
Affiliation(s)
- Xin-Yu Qi
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Guang-Cheng Peng
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Qing-Tong Han
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| | - Jing Yan
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Lu-Zhou Chen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Tian Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Lin-Tao Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Ming-Jie Liu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zhen-Peng Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
5
|
Chen TX, Wang SK, Zhang YQ, Wang W, Wang Q, Yu JC, Zhao SC, Xi GL, Jin Z, Chen ZS, Tang YZ. 7,8-dihydroxyflavone displayed antioxidant effect through activating HO-1 expression and inhibiting caspase-3/PARP activation in RAW264.7 cells. J Biochem Mol Toxicol 2024; 38:e23602. [PMID: 38053484 DOI: 10.1002/jbt.23602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/03/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023]
Abstract
Flavonoids, which contain a benzo-γ-pyrone (C6-C3-C6) skeleton, have been reported to exhibit effective antioxidant ability. This study aimed to compare the antioxidant activities of 7,8-dihydroxyflavone (7,8-DHF) and 7-hydroxyflavone (7-HF) in H2 O2 , lipopolysaccharide (LPS), or tert-butyl hydroperoxide (t-BHP)-induced RAW264.7 cells, respectively. The antioxidant capacities of 7,8-DHF and 7-HF were firstly evaluated by 2,2-azinobis-3-ethyl-benzothiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Then, reactive oxygen species (ROS), super oxide dismutase (SOD), and malondialdehyde (MDA) productions in H2 O2 , LPS, or t-BHP-induced RAW264.7 cells were tested and compared, respectively. Finally, the antioxidant mechanisms of 7-HF and 7,8-DHF were initially investigated by western blot. Our results showed that 7,8-DHF possessed stronger free-radical scavenging capacity than 7-HF. Both 7,8-DHF and 7-HF suppressed MDA production and ROS accumulation, improved the activity of SOD in H2 O2 , LPS, or t-BHP-induced RAW264.7 cells, respectively. And 7,8-DHF exerted a better antioxidant effect than 7-HF, especially in t-BHP-induced oxidative stress. Mechanically, 7,8-DHF prevented the activation of poly ADP-ribosepolymerase and caspase-3, meanwhile markedly upregulated the expression of HO-1 protein in t-BHP-induced oxidative stress. These results suggested that 7,8-DHF might serve as a potential pharmaceutical drug against oxidative stress injury.
Collapse
Affiliation(s)
- Ting-Xiao Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shou-Kai Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yu-Qing Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian-Chun Yu
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan, China
| | - Sheng-Chen Zhao
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan, China
| | - Gao-Lei Xi
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ze-Shao Chen
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
6
|
Zhang K, Shen F, Lei W, Han Y, Ma X, Lu Y, Hou Y, Liu W, Jiang M, Zhang T, Bai G. Ligustilide covalently binds to Cys129 of HMGCS1 to ameliorate dyslipidemia. Biomed Pharmacother 2023; 166:115323. [PMID: 37579692 DOI: 10.1016/j.biopha.2023.115323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023] Open
Abstract
Dyslipidemia is characterized by elevated levels of total cholesterol and triglycerides in serum, and has become the primary human health killer because of the major risk factors for cardiovascular diseases. Although there exist plenty of drugs for dyslipidemia, the number of patients who could benefit from lipid-lowering drugs still remains a concern. Ligustilide (Lig), a natural phthalide derivative, was reported to regulate lipid metabolic disorders. However, its specific targets and underlying molecular mechanism are still unclear. In this study, we found that Lig alleviated high fat diet-induced dyslipidemia by inhibiting cholesterol biosynthesis. Furthermore, a series of chemical biological analysis methods were used to identify its target protein for regulating lipid metabolism. Collectively, 3-hydroxy-3-methylglutaryl coenzyme A synthetase 1 (HMGCS1) of hepatic cells was identified as a target for Lig to regulate lipid metabolism. The mechanistic study confirmed that Lig irreversibly binds to Cys129 of HMGCS1 via its metabolic intermediate 6,7-epoxyligustilide, thereby reducing cholesterol synthesis and improving lipid metabolism disorders. These findings not only systematically elucidated the lipid-lowering mechanism of Lig, but also provided a new structural compound for the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Kaixue Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Wei Lei
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yanqi Han
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Key Laboratory of Quality markers of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, PR China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Yujie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China.
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China.
| | - Tiejun Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Key Laboratory of Quality markers of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, PR China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, PR China
| |
Collapse
|
7
|
Marzioni D, Mazzucchelli R, Fantone S, Tossetta G. NRF2 modulation in TRAMP mice: an in vivo model of prostate cancer. Mol Biol Rep 2023; 50:873-881. [PMID: 36335520 DOI: 10.1007/s11033-022-08052-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most common cancers worldwide and oxidative stress is involved in its occurrence, development and progression. In fact, in transgenic adenocarcinoma of mouse prostate (TRAMP) mice, prostate cancer onset is associated with the methylation of the first five CpG in the nuclear factor erythroid 2-related factor 2 (NRF2) promoter, a key regulator of oxidative stress response, leading to its downregulation and accumulation of reactive oxygen species (ROS). It has been demonstrated that both natural and synthetic compounds can reactivate NRF2 expression inhibiting the methylation status of its promoter by downregulation of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). Interestingly, NRF2 re-expression significantly reduced prostate cancer onset in TRAMP mice highlighting an important role of NRF2 in prostate tumorigenesis. METHODS AND RESULTS We analysed the current literature regarding the role of natural and synthetic compounds in modulating NRF2 pathway in TRAMP mice, an in vivo model of prostate cancer, to give an overview on prostate carcinogenesis and its possible prevention. CONCLUSION We can conclude that specific natural and synthetic compounds can downregulate DNMTs and/or HDACs inhibiting the methylation status of NRF2 promoter, then reactivating the expression of NRF2 protecting normal prostatic cells from ROS damage and tumorigenesis.
Collapse
Affiliation(s)
- Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, School of Medicine, United Hospitals, Università Politecnica Delle Marche, Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy. .,Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica Delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| |
Collapse
|
8
|
Wang S, Zhang K, Yao Y, Li J, Deng S. Bacterial Infections Affect Male Fertility: A Focus on the Oxidative Stress-Autophagy Axis. Front Cell Dev Biol 2021; 9:727812. [PMID: 34746124 PMCID: PMC8566953 DOI: 10.3389/fcell.2021.727812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Numerous factors trigger male infertility, including lifestyle, the environment, health, medical resources and pathogenic microorganism infections. Bacterial infections of the male reproductive system can cause various reproductive diseases. Several male reproductive organs, such as the testicles, have unique immune functions that protect the germ cells from damage. In the reproductive system, immune cells can recognize the pathogen-associated molecular patterns carried by pathogenic microorganisms and activate the host's innate immune response. Furthermore, bacterial infections can lead to oxidative stress through multiple signaling pathways. Many studies have revealed that oxidative stress serves dual functions: moderate oxidative stress can help clear the invaders and maintain sperm motility, but excessive oxidative stress will induce host damage. Additionally, oxidative stress is always accompanied by autophagy which can also help maintain host homeostasis. Male reproductive system homeostasis disequilibrium can cause inflammation of the genitourinary system, influence spermatogenesis, and even lead to infertility. Here, we focus on the effect of oxidative stress and autophagy on bacterial infection in the male reproductive system, and we also explore the crosslink between oxidative stress and autophagy during this process.
Collapse
Affiliation(s)
- Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuchang Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Xu SY, Zhang R, Zhang SS, Feng CG. Enantioselective synthesis of 3-aryl-phthalides through a nickel-catalyzed stereoconvergent cross-coupling reaction. Org Biomol Chem 2021; 19:4492-4496. [PMID: 33960992 DOI: 10.1039/d1ob00487e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A nickel-catalyzed asymmetric Suzuki-Miyaura cross-coupling of racemic 3-bromo-phthalides and arylboronic acids was realized for the synthesis of diverse chiral 3-aryl-phthalides in moderate to excellent reaction yields. The reaction proceeded in a stereoconvergent manner and high enantioselectivities were observed for most examined examples. A number of functional groups like aldehyde, ester and bromide were well tolerated. Heteroaromatic boronic acids were also competent coupling partners in this reaction.
Collapse
Affiliation(s)
- Si-Yu Xu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Rui Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Shu-Sheng Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. and CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Molecular Mechanism of Cellular Oxidative Stress Sensing by Keap1. Cell Rep 2020; 28:746-758.e4. [PMID: 31315052 DOI: 10.1016/j.celrep.2019.06.047] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/20/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022] Open
Abstract
The Keap1-Nrf2 system plays a central role in the oxidative stress response; however, the identity of the reactive oxygen species sensor within Keap1 remains poorly understood. Here, we show that a Keap1 mutant lacking 11 cysteine residues retains the ability to target Nrf2 for degradation, but it is unable to respond to cysteine-reactive Nrf2 inducers. Of the 11 mutated cysteine residues, we find that 4 (Cys226/613/622/624) are important for sensing hydrogen peroxide. Our analyses of multiple mutant mice lines, complemented by MEFs expressing a series of Keap1 mutants, reveal that Keap1 uses the cysteine residues redundantly to set up an elaborate fail-safe mechanism in which specific combinations of these four cysteine residues can form a disulfide bond to sense hydrogen peroxide. This sensing mechanism is distinct from that used for electrophilic Nrf2 inducers, demonstrating that Keap1 is equipped with multiple cysteine-based sensors to detect various endogenous and exogenous stresses.
Collapse
|
11
|
Dayalan Naidu S, Dinkova-Kostova AT. KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease. Open Biol 2020; 10:200105. [PMID: 32574549 PMCID: PMC7333886 DOI: 10.1098/rsob.200105] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/22/2020] [Indexed: 12/29/2022] Open
Abstract
Redox imbalance and persistent inflammation are the underlying causes of most chronic diseases. Mammalian cells have evolved elaborate mechanisms for restoring redox homeostasis and resolving acute inflammatory responses. One prominent mechanism is that of inducing the expression of antioxidant, anti-inflammatory and other cytoprotective proteins, while also suppressing the production of pro-inflammatory mediators, through the activation of transcription factor nuclear factor-erythroid 2 p45-related factor 2 (NRF2). At homeostatic conditions, NRF2 is a short-lived protein, which avidly binds to Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 functions as (i) a substrate adaptor for a Cullin 3 (CUL3)-based E3 ubiquitin ligase that targets NRF2 for ubiquitination and proteasomal degradation, and (ii) a cysteine-based sensor for a myriad of physiological and pharmacological NRF2 activators. Here, we review the intricate molecular mechanisms by which KEAP1 senses electrophiles and oxidants. Chemical modification of specific cysteine sensors of KEAP1 results in loss of NRF2-repressor function and alterations in the expression of NRF2-target genes that encode large networks of diverse proteins, which collectively restore redox balance and resolve inflammation, thus ensuring a comprehensive cytoprotection. We focus on the cyclic cyanoenones, the most potent NRF2 activators, some of which are currently in clinical trials for various pathologies characterized by redox imbalance and inflammation.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Xie Q, Zhang L, Xie L, Zheng Y, Liu K, Tang H, Liao Y, Li X. Z‐ligustilide: A review of its pharmacokinetics and pharmacology. Phytother Res 2020; 34:1966-1991. [DOI: 10.1002/ptr.6662] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/17/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Qingxuan Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Linlin Zhang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Long Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yu Zheng
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Kai Liu
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Hailong Tang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yanmei Liao
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaofang Li
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
13
|
Mao Y, Chen X, Xia Y, Xie X. Repair Effects of KGF on Ischemia-Reperfusion–Induced Flap Injury via Activating Nrf2 Signaling. J Surg Res 2019; 244:547-557. [DOI: 10.1016/j.jss.2019.06.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/09/2019] [Accepted: 06/19/2019] [Indexed: 01/12/2023]
|
14
|
Fan L, Luo B, Luo Z, Zhang L, Fan J, Xue W, Tang L, Li Y. Synthesis and antifungal activities of 3-substituted phthalide derivatives. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/znb-2019-0110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract
In order to obtain novel bioactive compounds with significant antifungal activities, two series of 3-substituted phthalide derivatives were designed and synthesized via reduction, bromine substitution, and etherification. In addition, the antifungal activities of all target compounds against nine phytopathogenic fungi in vitro were tested by using the mycelial growth rate method at the concentration of 50 μg mL−1. Preliminary bioassay tests showed that some compounds exhibited more potent antifungal activities as compared with hymexazol. The preliminary structure-activity relationships (SARs) of all target compounds were also investigated.
Collapse
Affiliation(s)
- Lingling Fan
- College of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D , Guizhou Medical University , Guiyang 550004 , P.R. China
| | - Bilan Luo
- College of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D , Guizhou Medical University , Guiyang 550004 , P.R. China
| | - Zhongfu Luo
- College of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D , Guizhou Medical University , Guiyang 550004 , P.R. China
| | - Li Zhang
- College of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D , Guizhou Medical University , Guiyang 550004 , P.R. China
| | - Judi Fan
- College of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D , Guizhou Medical University , Guiyang 550004 , P.R. China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang 550025 , P.R. China
| | - Lei Tang
- College of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D , Guizhou Medical University , Guiyang 550004 , P.R. China , Tel./Fax: +86-0851-86908318
| | - Yong Li
- College of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R & D , Guizhou Medical University , Guiyang 550004 , P.R. China , Tel./Fax: +86-0851-86908318
| |
Collapse
|
15
|
Zhu Y, Zhang Y, Huang X, Xie Y, Qu Y, Long H, Gu N, Jiang W. Z-Ligustilide protects vascular endothelial cells from oxidative stress and rescues high fat diet-induced atherosclerosis by activating multiple NRF2 downstream genes. Atherosclerosis 2019; 284:110-120. [PMID: 30897380 DOI: 10.1016/j.atherosclerosis.2019.02.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Oxidative stress-induced endothelial dysfunction is considered to exert a vital role in the development of atherosclerotic coronary heart disease (CHD). NRF2 is a key transcriptional factor against oxidative stress through activation of multiple ARE-mediated genes. Z-Lig is derived from the Ligusticum species with antitumor, anti-inflammation and neuroprotection activities. However, the antioxidant potentials of Z-Lig on endothelial dysfunction and atherosclerosis have not been well elucidated. Therefore, in the present work, we appraise the cytoprotective property and anti-atherosclerosis effect of Z-Lig. METHODS Potential NRF2 activators were screened and verified by luciferase reporter gene assay. The protein and mRNA levels of NRF2 and ARE-mediated genes, and GSH/GSSG level in EA.hy926 cells treated with Z-Lig were detected. The cytoprotective property of Z-Lig was assessed in the tert-butyl hydroperoxide (t-BHP)-evoked oxidative stress model. Cell viability and reactive oxygen species (ROS) levels in EA.hy926 cells were determined. An atherosclerosis model induced by HFD was used to determine the anti-atherosclerosis effect of Z-Lig in HFD-fed Ldlr-deficient mice. RESULTS In vitro, 100 μM Z-Lig upregulated expressions of NRF2 and ARE-driven genes, promoted accumulation of nuclear NRF2 and unbound NRF2- KEAP1 complex in EA.hy926 cells. Furthermore, Z-Lig alleviated oxidative stress and cell injury caused by t-BHP via stimulation of the NRF2/ARE pathway. In vivo, intervention with 20 mg/kg Z-Lig markedly restrained atherosclerosis progression, including attenuation of HFD-induced atherosclerotic plaque formation, alleviation of lipid peroxidation and increase in antioxidant enzyme activity in aortas of HFD-fed Ldlr-/- mice. The chemopreventive effects of Z-Lig might be associated with the activation of NRF2 and ARE-driven genes. CONCLUSIONS The present study suggested that Z-Lig is an effective NRF2 activator, which can protect vascular endothelial cells from oxidative stress and rescue HFD-induced atherosclerosis.
Collapse
Affiliation(s)
- Yao Zhu
- Department of Cardiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; First clinical medicine college of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yajie Zhang
- Department of Central Laboratory, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Department of Clinical Biobank, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Xia Huang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Department of Cardiology, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yong Xie
- Department of Cardiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; First clinical medicine college of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yuan Qu
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Department of Cardiology, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Hongyan Long
- Department of Central Laboratory, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; Department of Clinical Biobank, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Ning Gu
- Department of Cardiology, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China.
| | - Weimin Jiang
- Department of Cardiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China; First clinical medicine college of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China.
| |
Collapse
|
16
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Itaconate: an emerging determinant of inflammation in activated macrophages. Immunol Cell Biol 2018; 97:134-141. [PMID: 30428148 DOI: 10.1111/imcb.12218] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022]
Abstract
Macrophages play a central role in innate immunity as the first line of defense against pathogen infection. Upon exposure to inflammatory stimuli, macrophages rapidly respond and subsequently undergo metabolic reprogramming to substantially produce cellular metabolites such as itaconate. As a derivate of the tricarboxylic acid cycle, itaconate is derived from the decarboxylation of cis-aconitate mediated by immunoresponsive gene 1 in the mitochondrial matrix. It is well known that itaconate has a direct antimicrobial effect by inhibiting isocitrate lyase. Strikingly, two recent studies published in Nature showed that itaconate markedly decreases the production of proinflammatory mediators in lipopolysaccharide-treated macrophages and ameliorates sepsis and psoriasis in animal models, revealing a novel biological action of itaconate beyond its regular roles in antimicrobial defense. The mechanism for this anti-inflammatory effect has been proposed to involve the inhibition of succinate dehydrogenase, blockade of IκBζ translation and activation of Nrf2. These intriguing discoveries provide a new explanation for how macrophages are switched from a pro- to an anti-inflammatory state to limit the damage and facilitate tissue repair under proinflammatory conditions. Thus, the emerging effect of itaconate as a crucial determinant of macrophage inflammation has important implications in further understanding cellular immunometabolism and developing future therapeutics for the treatment of inflammatory diseases. In this review, we focus on the roles of itaconate in controlling the inflammatory response during macrophage activation, providing a rationale for future investigation and therapeutic intervention.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Chao-Ke Tang
- Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
17
|
Xu K, Liu G, Fu C. The Tryptophan Pathway Targeting Antioxidant Capacity in the Placenta. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1054797. [PMID: 30140360 PMCID: PMC6081554 DOI: 10.1155/2018/1054797] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
The placenta plays a vital role in fetal development during pregnancy. Dysfunction of the placenta can be caused by oxidative stress and can lead to abnormal fetal development. Preventing oxidative stress of the placenta is thus an important measure to ensure positive birth outcomes. Research shows that tryptophan and its metabolites can efficiently clean free radicals (including the reactive oxygen species and activated chlorine). Consequently, tryptophan and its metabolites are suggested to act as potent antioxidants in the placenta. However, the mechanism of these antioxidant properties in the placenta is still unknown. In this review, we summarize research on the antioxidant properties of tryptophan, tryptophan metabolites, and metabolic enzymes. Two predicted mechanisms of tryptophan's antioxidant properties are discussed. (1) Tryptophan could activate the phosphorylation of p62 after the activation of mTORC1; phosphorylated p62 then uncouples the interaction between Nrf2 and Keap1, and activated Nrf2 enters the nucleus to induce expressions of antioxidant proteins, thus improving cellular antioxidation. (2) 3-Hydroxyanthranilic acid, a tryptophan kynurenine pathway metabolite, changes conformation of Keap1, inducing the dissociation of Nrf2 and Keap1, activating Nrf2 to enter the nucleus and induce expressions of antioxidant proteins (such as HO-1), thereby enhancing cellular antioxidant capacity. These mechanisms may enrich the theory of how to apply tryptophan as an antioxidant during pregnancy, providing technical support for its use in regulating the pregnancy's redox status and enriching our understanding of amino acids' nutritional value.
Collapse
Affiliation(s)
- Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Gang Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Chenxing Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients and Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, Hunan 410128, China
| |
Collapse
|
18
|
Liu MM, Huang KM, Qian L, Chatterjee P, Zhang S, Li R, Zhou S, Wang Z, Luo Y, Huang Y. Effects of bioactive constituents in the Traditional Chinese Medicinal formula Si-Wu-Tang on Nrf2 signaling and neoplastic cellular transformation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:1-9. [PMID: 29496161 DOI: 10.1016/j.phymed.2017.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/28/2017] [Accepted: 12/26/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND The nuclear factor erythroid 2-related factor 2 (Nrf2) is a potential molecular target for cancer chemoprevention. Si-Wu-Tang (SWT), a popular traditional Chinese medicine for women's health, was reported with a novel activity of cancer prevention. PURPOSE The present study was aimed to identify the bioactive constituents in SWT responsible for the Nrf2 activating and cancer preventive activity and explore the pharmacological mechanisms. METHODS Nine compounds detectable from various batches of SWT were ranked using in silico molecular docking based on their ability to interfere the forming of Nrf2-Keap1 complex. The predicted Nrf2 activating effect was validated using the antioxidant response element (ARE) luciferase reporter assay and quantitative RT-PCR analysis for select Nrf2 regulated genes Hmox1, Nqo1 and Slc7a11. The antimutagenic activity of the compounds were determined by the Ames test. The chemopreventive activity of these compounds were assessed on EGF-induced neoplastic transformation of JB6 P+ cells, an established non-cancerous murine epidermal model for studying tumor promotion and identifying cancer preventive agents. These compounds were further characterized using luciferase reporter assay on EGF-induced activation of AP-1, a known transcription factor mediating carcinogenesis. RESULTS Three of the nine compounds predicted as Nrf2 activators by molecular docking, gallic acid (GA), Z-liguistilide (LIG), and senkyunolide A (SA), were confirmed with highest potency of increasing the Nrf2/ARE promoter activity and upregulating the expression of Hmox1, Nqo1 and Slc7a11. In addition, GA, LIG and SA exhibited an antimutagenic activity against the direct mutagen 2-nitrofluorene while no mutagenic effects were observed at the same time in Ames test. At nontoxic concentrations, GA, LIG, and SA inhibited EGF-induced neoplastic transformation of JB6 P+ cells. Combined treatment of GA, LIG and SA, in the same ratio as detected in SWT, showed enhanced effect against JB6 transformation compared with that of the single compound alone. GA, LIG and SA, alone or in combination, suppressed EGF-induced activation of AP-1. CONCLUSION We identified three bioactive constituents in SWT responsible for the Nrf2 activating and cancer preventive activity. This study provides evidence supporting novel molecular basis of SWT in cancer prevention.
Collapse
Affiliation(s)
- Mandy M Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Kevin M Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Li Qian
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Payal Chatterjee
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Suhui Zhang
- Department of Pharmacology and Toxicology, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Rui Li
- Department of Pharmacology and Toxicology, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Su Zhou
- Department of Pharmacology and Toxicology, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Zhijun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, United States; Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA 92831, United States
| | - Yun Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, United States.
| |
Collapse
|
19
|
Diligustilide releases H2S and stabilizes S-nitrosothiols in ethanol-induced lesions on rat gastric mucosa. Inflammopharmacology 2017; 26:611-619. [DOI: 10.1007/s10787-017-0392-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/19/2017] [Indexed: 11/25/2022]
|
20
|
Zhao B, Kang Q, Peng Y, Xie Y, Chen C, Li B, Wu Q. Effect of Angelica sinensis Root Extract on Cancer Prevention in Different Stages of an AOM/DSS Mouse Model. Int J Mol Sci 2017; 18:ijms18081750. [PMID: 28800083 PMCID: PMC5578140 DOI: 10.3390/ijms18081750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/17/2017] [Accepted: 08/08/2017] [Indexed: 01/07/2023] Open
Abstract
Angelica sinensis root (ASR) extract was obtained to investigate its effects on colorectal carcinogenesis in different stages of an Azoxymethane/Dextran sodium sulphate (AOM/DSS) model. In this study, we showed that ASR extract administration in the initial stage of the AOM/DSS model had cancer preventive effects with decreasing tumor incidence and a high-grade of intraepithelial neoplasia incidence. With respect to DNA damage, the amounts of 8-oxoguanine and γ-H2AX were suppressed in colon tissue. The balance of apoptosis and proliferation was approaching the normal state. In contrast, ASR extract administration in the promotion stage of the AOM/DSS model accelerated the progression of carcinogenesis. The maximum tumor size reached 49.85 ± 25.04 mm3. High-grade pathological changes were significantly increased. Decreased DNA damage and P53 level reflected the disrupted reactive oxygen species (ROS) concentration in colorectal tissue, which led to an imbalance of proliferative and apoptotic relationships. These findings suggested that the cancer-preventive effect of ASR extract may be stage-dependent in the process of carcinogenesis.
Collapse
Affiliation(s)
- Bochen Zhao
- School of Chinese Material Medica, Beijing University of Chinese Medicine, No. 6, Wangjing Zhonghuan Nanlu, Beijing 100102, China.
| | - Qian Kang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, No. 6, Wangjing Zhonghuan Nanlu, Beijing 100102, China.
| | - Yu Peng
- School of Chinese Material Medica, Beijing University of Chinese Medicine, No. 6, Wangjing Zhonghuan Nanlu, Beijing 100102, China.
| | - Yuanping Xie
- School of Chinese Material Medica, Beijing University of Chinese Medicine, No. 6, Wangjing Zhonghuan Nanlu, Beijing 100102, China.
| | - Cheng Chen
- School of Chinese Material Medica, Beijing University of Chinese Medicine, No. 6, Wangjing Zhonghuan Nanlu, Beijing 100102, China.
| | - Bingshao Li
- School of Chinese Material Medica, Beijing University of Chinese Medicine, No. 6, Wangjing Zhonghuan Nanlu, Beijing 100102, China.
| | - Qing Wu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, No. 6, Wangjing Zhonghuan Nanlu, Beijing 100102, China.
| |
Collapse
|
21
|
Qin W, Guan D, Ma R, Yang R, Xing G, Shi H, Tang G, Li J, Lv H, Jiang Y. Effects of trigonelline inhibition of the Nrf2 transcription factor in vitro on Echinococcus granulosus. Acta Biochim Biophys Sin (Shanghai) 2017; 49:696-705. [PMID: 28810706 DOI: 10.1093/abbs/gmx067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to investigate the impact of trigonelline (TRG) on Echinococcus granulosus, and to explore the inhibition impact of nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway on E. granulosus protoscoleces. Echinococcus granulosus protoscoleces were incubated with various concentrations of TRG, and then Nrf2 protein expression and its localization in protoscoleces were detected by western blot analysis and immunofluorescence assay, respectively. Reactive oxygen species (ROS) level in protoscoleces was measured using ROS detection kit. Caspase-3 activity was measured using a caspase-3 activity assay kit, and NAD(P)H quinone oxidoreductase (NQO)-1 and heme oxygenase (HO)-1 activities in protoscoleces were measured by ELISA. The effect of TRG on protoscoleces viability was investigated using 0.1% eosin staining, and ultrastructural alterations in protoscoleces were examined by scanning electron microscopy (SEM). Immunolocalization experiment clearly showed that Nrf2 protein was predominantly present in cells of protoscoleces. TRG treatment reduced NQO-1 and HO-1 activities in protoscoleces, but could increase ROS level at early time. Protoscoleces could not survive when treated with 250 μM TRG for 12 days. SEM results showed that TRG-treated protoscoleces presented damage in the protoscoleces region, including hook deformation, lesions, and digitiform protuberance. Nrf2 protein expression was significantly decreased and caspase-3 activity was clearly increased in protoscoleces treated with TRG for 24 and 48 h, respectively, when compared with that in controls (P < 0.05). Our results demonstrated that TRG had scolicidal activity against E. granulosus protoscoleces. Nrf2 protein was mainly expressed in the cells and TRG could efficiently inhibit the Nrf2 signaling pathway in E. granulosus.
Collapse
Affiliation(s)
- Wenjuan Qin
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
- Department of Ultrasound Diagnosis, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Dongfang Guan
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Rongji Ma
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Rentan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Guoqiang Xing
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Hongjuan Shi
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Guangyao Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Jiajie Li
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Hailong Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Yufeng Jiang
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| |
Collapse
|
22
|
Martins I, Varela A, Frija LMT, Estevão MAS, Planchon S, Renaut J, Afonso CAM, Silva Pereira C. Proteomic Insights on the Metabolism of Penicillium janczewskii during the Biotransformation of the Plant Terpenoid Labdanolic Acid. Front Bioeng Biotechnol 2017; 5:45. [PMID: 28824907 PMCID: PMC5534450 DOI: 10.3389/fbioe.2017.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 07/10/2017] [Indexed: 01/24/2023] Open
Abstract
Plant terpenoids compose a natural source of chemodiversity of exceptional value. Many of these compounds own biological/pharmacological activity, others are regarded as unique chemical skeletons for the synthesis of derivatives with improved properties. Functional chemical modification of terpenoids through biotransformation frequently relies on the use of Ascomycota strains, but information on major cellular responses is still largely lacking. Penicillium janczewskii mediates a stereo-selective hydroxylation of labdanolic acid (LA)-terpenoid found abundantly in Cistus ladanifer-producing 3β-hydroxy-labdanolic acid with yields >90%. Herein, combined analyses of mycelial and extracellular differential proteomes demonstrated that the plant terpenoid increased stress responses, especially against oxidative stress (e.g., accumulation of superoxide dismutase) and apparently altered mitochondria functioning. One putative cytochrome P450 monooxygenase differentially accumulated in the secretome and the terpenoid bioconversion was inhibited in vivo in the presence of a P450 inhibitor. The stereo-selective hydroxylation of the plant terpenoid is likely mediated by P450 enzymes, yet its unequivocal identity remains unclear. To the best of our knowledge, this is the first time that proteomics was used to investigate how a plant terpenoid impacts the metabolism of a filamentous fungus during its efficiently biotransformation. Our findings may encourage the development of new strategies for the valorization of plant natural resources through biotechnology.
Collapse
Affiliation(s)
- Isabel Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Adélia Varela
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Instituto Nacional Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Luís M. T. Frija
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica A. S. Estevão
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Sébastien Planchon
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Carlos A. M. Afonso
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| |
Collapse
|
23
|
Li J, Yu J, Ma H, Yang N, Li L, Zheng DD, Wu MX, Zhao ZL, Qi HY. Intranasal Pretreatment with Z-Ligustilide, the Main Volatile Component of Rhizoma Chuanxiong, Confers Prophylaxis against Cerebral Ischemia via Nrf2 and HSP70 Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1533-1542. [PMID: 28169530 DOI: 10.1021/acs.jafc.6b04979] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Z-Ligustilide (Z-LIG) is a major component in Rhizoma Chuanxiong, which has been traditionally used as a health food supplement for the prevention of cerebrovascular disease in China. This study investigates the ability of intranasal Z-LIG pretreatment to enhance protection against neuronal damage in rats with middle cerebral artery occlusion (MCAO) and the role of cellular stress response mechanisms Nrf2 and HSP70. Z-LIG significantly mitigated infarct volume, neurological dysfunction, blood-brain barrier disruption, and brain edema (p < 0.01). Moreover, Z-LIG prevented the loss of collagen IV, occludin, and ZO-1 (p < 0.05) and decreased MMP-2 and -9 levels (p < 0.01). Meanwhile, Z-LIG up-regulated NQO1 and HSP70. Notably, blockage of Nrf2-driven transcription or down-regulation of HSP70 remarkably attenuated the preventive effect of Z-LIG (p < 0.05). Together, intranasal delivery of Z-LIG enhanced protection against ischemic injury via Nrf2 and HSP70 signaling pathways and has prophylactic potential in the population at high risk of stroke.
Collapse
Affiliation(s)
- Juan Li
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Jie Yu
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Hui Ma
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Na Yang
- Institute of Laboratory Animals, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital , Chengdu 610212, Sichuan, China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Ding-Ding Zheng
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Ming-Xia Wu
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Zhi-Long Zhao
- Institute of Laboratory Animals, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital , Chengdu 610212, Sichuan, China
| | - Hong-Yi Qi
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| |
Collapse
|
24
|
Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 104 2017; 104:127-246. [DOI: 10.1007/978-3-319-45618-8_2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Kim HK, Son TG, Jo DG, Kim DC, Hyun DH. Cytotoxicity of lipid-soluble ginseng extracts is attenuated by plasma membrane redox enzyme NQO1 through maintaining redox homeostasis and delaying apoptosis in human neuroblastoma cells. Arch Pharm Res 2016; 39:1339-1348. [DOI: 10.1007/s12272-016-0817-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
|
26
|
Dietz BM, Hajirahimkhan A, Dunlap TL, Bolton JL. Botanicals and Their Bioactive Phytochemicals for Women's Health. Pharmacol Rev 2016; 68:1026-1073. [PMID: 27677719 PMCID: PMC5050441 DOI: 10.1124/pr.115.010843] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Botanical dietary supplements are increasingly popular for women's health, particularly for older women. The specific botanicals women take vary as a function of age. Younger women will use botanicals for urinary tract infections, especially Vaccinium macrocarpon (cranberry), where there is evidence for efficacy. Botanical dietary supplements for premenstrual syndrome (PMS) are less commonly used, and rigorous clinical trials have not been done. Some examples include Vitex agnus-castus (chasteberry), Angelica sinensis (dong quai), Viburnum opulus/prunifolium (cramp bark and black haw), and Zingiber officinale (ginger). Pregnant women have also used ginger for relief from nausea. Natural galactagogues for lactating women include Trigonella foenum-graecum (fenugreek) and Silybum marianum (milk thistle); however, rigorous safety and efficacy studies are lacking. Older women suffering menopausal symptoms are increasingly likely to use botanicals, especially since the Women's Health Initiative showed an increased risk for breast cancer associated with traditional hormone therapy. Serotonergic mechanisms similar to antidepressants have been proposed for Actaea/Cimicifuga racemosa (black cohosh) and Valeriana officinalis (valerian). Plant extracts with estrogenic activities for menopausal symptom relief include Glycine max (soy), Trifolium pratense (red clover), Pueraria lobata (kudzu), Humulus lupulus (hops), Glycyrrhiza species (licorice), Rheum rhaponticum (rhubarb), Vitex agnus-castus (chasteberry), Linum usitatissimum (flaxseed), Epimedium species (herba Epimedii, horny goat weed), and Medicago sativa (alfalfa). Some of the estrogenic botanicals have also been shown to have protective effects against osteoporosis. Several of these botanicals could have additional breast cancer preventive effects linked to hormonal, chemical, inflammatory, and/or epigenetic pathways. Finally, although botanicals are perceived as natural safe remedies, it is important for women and their healthcare providers to realize that they have not been rigorously tested for potential toxic effects and/or drug/botanical interactions. Understanding the mechanism of action of these supplements used for women's health will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.
Collapse
Affiliation(s)
- Birgit M Dietz
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Atieh Hajirahimkhan
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Tareisha L Dunlap
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Judy L Bolton
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
27
|
Zhou MX, Wei X, Li AL, Wang AM, Lu LZ, Yang Y, Ren DM, Wang XN, Wen XS, Lou HX, Shen T. Screening of traditional Chinese medicines with therapeutic potential on chronic obstructive pulmonary disease through inhibiting oxidative stress and inflammatory response. Altern Ther Health Med 2016; 16:360. [PMID: 27623767 PMCID: PMC5022167 DOI: 10.1186/s12906-016-1347-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/10/2016] [Indexed: 12/23/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a major public health problem and gives arise to severe chronic morbidity and mortality in the world. Inflammatory response and oxidative stress play dominant roles in the pathological mechanism of COPD, and have been regarded to be two important targets for the COPD therapy. Traditional Chinese medicines (TCMs) possess satisfying curative effects on COPD under guidance of the TCM theory in China, and merit in-depth investigations as a resource of lead compounds. Methods One hundred ninety-six of TCMs were collected, and extracted to establish a TCM extract library, and then further evaluated for their potency on inhibitions of oxidative stress and inflammatory response using NADP(H):quinone oxidoreductase (QR) assay and nitric oxide (NO) production assay, respectively. Results Our investigation observed that 38 of the tested TCM extracts induced QR activity in hepa 1c1c7 murine hepatoma cells, and 55 of them inhibited NO production in RAW 264.7 murine macrophages at the tested concentrations. Noteworthily, 20 of TCM extracts simultaneously inhibited oxidative stress and inflammatory responses. Conclusion The observed bioactive TCMs, particularly these 20 TCMs with dual inhibitory effects, might be useful for the treatment of COPD. More importantly, the results of the present research afford us an opportunity to discover new lead molecules as COPD therapeutic agents from these active TCMs. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1347-y) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Wu Z, Uchi H, Morino-Koga S, Shi W, Furue M. Z-ligustilide ameliorated ultraviolet B-induced oxidative stress and inflammatory cytokine production in human keratinocytes through upregulation of Nrf2/HO-1 and suppression of NF-κB pathway. Exp Dermatol 2015; 24:703-8. [DOI: 10.1111/exd.12758] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Zhouwei Wu
- Department of Dermatology; Shanghai First People's Hospital; Shanghai Jiaotong University; Shanghai China
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Hiroshi Uchi
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Saori Morino-Koga
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Weimin Shi
- Department of Dermatology; Shanghai First People's Hospital; Shanghai Jiaotong University; Shanghai China
| | - Masutaka Furue
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| |
Collapse
|
29
|
Mao J, Li Z, Lin R, Zhu X, Lin J, Peng J, Chen L. Preconditioning with Gua Lou Gui Zhi decoction enhances H 2O 2-induced Nrf2/HO-1 activation in PC12 cells. Exp Ther Med 2015; 10:877-884. [PMID: 26622408 DOI: 10.3892/etm.2015.2610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/21/2015] [Indexed: 12/30/2022] Open
Abstract
Spasticity is common in various central neurological conditions, including after a stroke. Such spasticity may cause additional problems, and often becomes a primary concern for afflicted individuals. A number of studies have identified nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as a key regulator in the adaptive survival response to oxidative stress. Elevated expression of Nrf2, combined with heme oxygenase 1 (HO-1) resistance, in the central nervous system is known to elicit key internal and external oxidation protection. Gua Lou Gui Zhi decoction (GLGZD) is a popular traditional Chinese formula with a long history of clinical use in China for the treatment of muscular spasticity following a stroke, epilepsy or a spinal cord injury. However, the mechanism underlying the efficacy of the medicine remains unclear. In the present study, the antioxidative effects of GLGZD were evaluated and the underlying molecular mechanisms were investigated, using hydrogen peroxide (H2O2)-induced rat pheochromocytoma cells (PC12 cells) as an in vitro oxidative stress model of neural cells. Upon application of different concentrations of GLGZD, a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay and ATP measurement were conducted to assess the impact on PC12 cell proliferation. In addition, inverted microscopy observations, and the MTT and ATP assessments, revealed that GLGZD attenuated H2O2-induced oxidative damage and signaling repression in PC12 cells. Furthermore, the mRNA and protein expression levels of Nrf2 and HO-1, which are associated with oxidative stress, were analyzed using reverse transcription quantitative polymerase chain reaction (PCR) and confocal microscopy. Confocal microscopy observations, as well as the quantitative PCR assay, revealed that GLGZD exerted a neuroprotective function against H2O2-induced oxidative damage in PC12 cells. Therefore, the results demonstrated that GLGZD protected PC12 cells injured by H2O2, which may be associated with the upregulation of Nrf2 and HO-1 mRNA and protein expression levels in PC12 cells.
Collapse
Affiliation(s)
- Jingjie Mao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zuanfang Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Ruhui Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaoqin Zhu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
30
|
Simmler C, Chen SN, Anderson J, Lankin DC, Phansalkar R, Krause E, Dietz B, Bolton JL, Nikolic D, van Breemen RB, Pauli GF. Botanical Integrity: The Importance of the Integration of Chemical, Biological, and Botanical Analyses, and the Role of DNA Barcoding. HERBALGRAM 2015; 106:58-60. [PMID: 30287983 PMCID: PMC6168204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Raw materials, ingredients, and products derived from plants are commonly referred to as herbs or botanicals in both the biomedical literature and the natural products health industry. This overarching term includes the breadth of crude herbs, plant parts, and the ingredients made from them, and also covers finished products such as botanical dietary supplements. Botanical dietary supplements are intended to supplement the human diet and are composed primarily of powdered plant parts, their extracts, or other preparations derived from crude herbal material; some formulations include other ingredients such as vitamins, minerals, and amino acids. Botanical dietary supplements are highly complex mixtures reflecting the diverse chemical constituents that comprise the source plant's raw material. Botanical analysis is an intricate analytical challenge requiring specialized skills and instrumentation that is different from those required for quality control of chemically simpler pharmaceuticals, or for the safety assessment of many conventional food or other products that are generally regarded as safe (GRAS).
Collapse
Affiliation(s)
- Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research College of Pharmacy, University of Illinois at Chicago Chicago, Illinois
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research College of Pharmacy, University of Illinois at Chicago Chicago, Illinois
| | - Jeff Anderson
- UIC/NIH Center for Botanical Dietary Supplements Research College of Pharmacy, University of Illinois at Chicago Chicago, Illinois
| | - David C Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research College of Pharmacy, University of Illinois at Chicago Chicago, Illinois
| | - Rasika Phansalkar
- UIC/NIH Center for Botanical Dietary Supplements Research College of Pharmacy, University of Illinois at Chicago Chicago, Illinois
| | - Elizabeth Krause
- UIC/NIH Center for Botanical Dietary Supplements Research College of Pharmacy, University of Illinois at Chicago Chicago, Illinois
| | - Birgit Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research College of Pharmacy, University of Illinois at Chicago Chicago, Illinois
| | - Judy L Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research College of Pharmacy, University of Illinois at Chicago Chicago, Illinois
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research College of Pharmacy, University of Illinois at Chicago Chicago, Illinois
| | - Richard B van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research College of Pharmacy, University of Illinois at Chicago Chicago, Illinois
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research College of Pharmacy, University of Illinois at Chicago Chicago, Illinois
| |
Collapse
|
31
|
Hun Lee J, Shu L, Fuentes F, Su ZY, Tony Kong AN. Cancer chemoprevention by traditional chinese herbal medicine and dietary phytochemicals: targeting nrf2-mediated oxidative stress/anti-inflammatory responses, epigenetics, and cancer stem cells. J Tradit Complement Med 2014; 3:69-79. [PMID: 24716158 PMCID: PMC3924975 DOI: 10.4103/2225-4110.107700] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Excessive oxidative stress induced by reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive metabolites of carcinogens alters cellular homeostasis, leading to genetic/epigenetic changes, genomic instability, neoplastic transformation, and cancer initiation/progression. As a protective mechanism against oxidative stress, antioxidant/detoxifying enzymes reduce these reactive species and protect normal cells from endo-/exogenous oxidative damage. The transcription factor nuclear factor-erythroid 2 p45 (NF-E2)-related factor 2 (Nrf2), a master regulator of the antioxidative stress response, plays a critical role in the expression of many cytoprotective enzymes, including NAD(P)H:quinine oxidoreductase (NQO1), heme oxygenase-1 (HO-1), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST). Recent studies demonstrated that many dietary phytochemicals derived from various vegetables, fruits, spices, and herbal medicines induce Nrf2-mediated antioxidant/detoxifying enzymes, restore aberrant epigenetic alterations, and eliminate cancer stem cells (CSCs). The Nrf2-mediated antioxidant response prevents many age-related diseases, including cancer. Owing to their fundamental contribution to carcinogenesis, epigenetic modifications and CSCs are novel targets of dietary phytochemicals and traditional Chinese herbal medicine (TCHM). In this review, we summarize cancer chemoprevention by dietary phytochemicals, including TCHM, which have great potential as a safer and more effective strategy for preventing cancer.
Collapse
Affiliation(s)
- Jong Hun Lee
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Limin Shu
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Francisco Fuentes
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA ; Department of Desert Agriculture and Biotechnology, Arturo Prat University, PO box 121, Iquique, Chile
| | - Zheng-Yuan Su
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
Wu Z, Uchi H, Morino-Koga S, Nakamura-Satomura A, Kita K, Shi W, Furue M. Z-Ligustilide inhibits benzo(a)pyrene-induced CYP1A1 upregulation in cultured human keratinocytes via ROS-dependent Nrf2 activation. Exp Dermatol 2014; 23:260-5. [DOI: 10.1111/exd.12360] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Zhouwei Wu
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Department of Dermatology; Shanghai First People's Hospital; Shanghai Jiaotong University; Shanghai China
| | - Hiroshi Uchi
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Research and Clinical Center for Yusho and Dioxin; Kyushu University; Fukuoka Japan
| | - Saori Morino-Koga
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Akiko Nakamura-Satomura
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Research and Clinical Center for Yusho and Dioxin; Kyushu University; Fukuoka Japan
| | - Kazuyo Kita
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Research and Clinical Center for Yusho and Dioxin; Kyushu University; Fukuoka Japan
| | - Weimin Shi
- Department of Dermatology; Shanghai First People's Hospital; Shanghai Jiaotong University; Shanghai China
| | - Masutaka Furue
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Research and Clinical Center for Yusho and Dioxin; Kyushu University; Fukuoka Japan
| |
Collapse
|
33
|
Liu M, Ravula R, Wang Z, Zuo Z, Chow MS, Thakkar A, Prabhu S, Andresen B, Huang Y. Traditional Chinese medicinal formula Si-Wu-Tang prevents oxidative damage by activating Nrf2-mediated detoxifying/antioxidant genes. Cell Biosci 2014; 4:8. [PMID: 24507416 PMCID: PMC3930016 DOI: 10.1186/2045-3701-4-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/19/2013] [Indexed: 12/14/2022] Open
Abstract
Background Induction of Nrf2-mediated detoxifying/antioxidant genes has been recognized as an effective strategy for cancer chemoprevention. Si-Wu-Tang (SWT), comprising the combination of four herbs, Paeoniae, Angelicae, Chuanxiong and Rehmanniae, is one of the most popular traditional oriental medicines for women’s diseases. The purpose of this study is to determine the effects of SWT on Nrf2 pathway in vitro and in vivo and to identify the active component(s). Results Cell viability and apoptosis were analyzed in the non-cancerous breast epithelial cell line MCF-10A after H2O2 treatment in the presence or absence of SWT using the Sulphorhodamine B assay, Annexin-V/Propidium iodide staining and flow cytometry. SWT strongly reduced H2O2 -induced cytotoxicity and apoptosis in MCF-10A cells. Expression of Nrf2 and Nrf2-regulated genes HMOX1 (heme oxygenase 1) and SLC7A11 (xCT) was evaluated by quantitative RT-PCR, Western Blot and immunocytochemistry. SWT strongly induced Nrf2-regulated genes at mRNA and protein levels and increased the nuclear translocation of Nrf2 in MCF-10A cells. The in vivo pharmacodynamic effect of SWT was evaluated in healthy female Sprague–Dawley rats. Short-term oral administration of SWT (1,000 mg/kg per day for six consecutive days) to rats resulted in an increased expression of Nrf2-regulated genes Hmox1 and Slc7A11 in the liver detected by quantitative RT-PCR. Among nine compounds that have been identified previously in the SWT products, z-liguistilide was discovered as the main component responsible for the effect of Nrf2 activation using the antioxidant response element-luciferase reporter gene assay. Z-liguistilide was confirmed with a high potency to induce Nrf2-regulated genes and Nrf2 nuclear translocation. Conclusions Our results demonstrated that SWT and its component z-liguistilide are able to activate the Nrf2 pathway in non-cancerous cells and organs in vitro and in vivo, suggesting that SWT might be an orally effective and nontoxic agent for cancer chemoprevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California.
| |
Collapse
|
34
|
Kumar H, Kim IS, More SV, Kim BW, Choi DK. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep 2014; 31:109-39. [DOI: 10.1039/c3np70065h] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Zhang XY, Qiao H, Shi YB. HPLC method with fluorescence detection for the determination of ligustilide in rat plasma and its pharmacokinetics. PHARMACEUTICAL BIOLOGY 2014; 52:21-30. [PMID: 24044763 DOI: 10.3109/13880209.2013.805790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Few methods have been reported for the quantification of ligustilide (LIG) in biosamples: the pretreatment of the biological samples were laborious and time-consuming. OBJECTIVE A high-performance liquid chromatographic method with fluorescence detection (HPLC-FLD) for the determination of LIG in rat plasma was developed and validated. Pharmacokinetics and bioavailability of LIG were determined by systematic investigation in Sprague-Dawley rats. MATERIALS AND METHODS LIG was isolated from the volatile oil of Radix Angelica sinensis and further purified by silica gel column chromatography. Podophyllotoxin was used as an internal standard. The analytes were detected by using fluorescence detection at an excitation and emission wavelength of 290 and 395 nm during 0-4 min, and 336 and 453 nm during 4-14 min, respectively. LIG pharmacokinetics was studied in rats after oral and intravenous administration of 12.5, 25 and 50 mg/kg doses. RESULTS Two calibration curves (Y = 133.49 X - 14.27 (r = 0.9995), Y = 145.61 X + 13.76 (r = 0.9996)) were constructed in the range of 2.44-10,000 ng/mL for LIG with a lower limit of quantitation of 2.44 ng/mL. Both intra-day and inter-day precision were less than 6%. Accuracy ranged from 88.93 to 99.52%. The recovery ranged from 89.07 to 99.71%. The absolute bioavailability values were 71.36, 68.26 and 75.44% for oral doses of 12.5, 25 and 50 mg/kg, respectively. CONCLUSION The present HPLC-FLD method was rapid, sensitive and reliable. LIG was absorbed and eliminated rapidly in rat.
Collapse
|
36
|
Saw CLL, Wu Q, Su ZY, Wang H, Yang Y, Xu X, Huang Y, Khor TO, Kong ANT. Effects of natural phytochemicals inAngelica sinensis(Danggui) on Nrf2-mediated gene expression of phase II drug metabolizing enzymes and anti-inflammation. Biopharm Drug Dispos 2013; 34:303-11. [DOI: 10.1002/bdd.1846] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/17/2013] [Accepted: 03/24/2013] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | | | - Yinhua Yang
- Department of Pharmaceutics, School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing; 100102; People's Republic of China
| | - Xiaoting Xu
- Department of Pharmaceutics, School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing; 100102; People's Republic of China
| | | | | | | |
Collapse
|
37
|
Su ZY, Khor TO, Shu L, Lee JH, Saw CLL, Wu TY, Huang Y, Suh N, Yang CS, Conney AH, Wu Q, Kong ANT. Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and Radix angelica sinensis via promoter CpG demethylation. Chem Res Toxicol 2013; 26:477-85. [PMID: 23441843 DOI: 10.1021/tx300524p] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cancer development has been linked to epigenetic modifications of cancer oncogenes and tumor suppressor genes; in advanced metastatic cancers, severe epigenetic modifications are present. We previously demonstrated that the progression of prostate tumors in TRAMP mice is associated with methylation silencing of the Nrf2 promoter and a reduced level of transcription of Nrf2 and Nrf2 target genes. Radix Angelicae Sinensis (RAS; Danggui) is a medicinal herb and health food supplement that has been widely used in Asia for centuries. Z-Ligustilide (Lig) is one of the bioactive components of RAS. We investigated the potential of Lig and RAS to restore Nrf2 gene expression through epigenetic modification in TRAMP C1 cells. Lig and RAS induced the mRNA and protein expression of endogenous Nrf2 and Nrf2 downstream target genes, such as HO-1, NQO1, and UGT1A1. Bisulfite genomic sequencing revealed that Lig and RAS treatment decreased the level of methylation of the first five CpGs of the Nrf2 promoter. A methylation DNA immunoprecipitation assay demonstrated that Lig and RAS significantly decreased the relative amount of methylated DNA in the Nrf2 gene promoter region. Lig and RAS also inhibited DNA methyltransferase activity in vitro. Collectively, these results suggest that Lig and RAS are able to demethylate the Nrf2 promoter CpGs, resulting in the re-expression of Nrf2 and Nrf2 target genes. Epigenetic modifications of genes, including Nrf2, may therefore contribute to the overall health benefits of RAS, including the anticancer effect of RAS and its bioactive component, Lig.
Collapse
Affiliation(s)
- Zheng-Yuan Su
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 2012; 85:705-17. [PMID: 23219527 DOI: 10.1016/j.bcp.2012.11.016] [Citation(s) in RCA: 779] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 12/13/2022]
Abstract
The transcription factor Nrf2 (NF-E2-related factor 2) plays a vital role in maintaining cellular homeostasis, especially upon the exposure of cells to chemical or oxidative stress, through its ability to regulate the basal and inducible expression of a multitude of antioxidant proteins, detoxification enzymes and xenobiotic transporters. In addition, Nrf2 contributes to diverse cellular functions including differentiation, proliferation, inflammation and lipid synthesis and there is an increasing association of aberrant expression and/or function of Nrf2 with pathologies including cancer, neurodegeneration and cardiovascular disease. The activity of Nrf2 is primarily regulated via its interaction with Keap1 (Kelch-like ECH-associated protein 1), which directs the transcription factor for proteasomal degradation. Although it is generally accepted that modification (e.g. chemical adduction, oxidation, nitrosylation or glutathionylation) of one or more critical cysteine residues in Keap1 represents a likely chemico-biological trigger for the activation of Nrf2, unequivocal evidence for such a phenomenon remains elusive. An increasing body of literature has revealed alternative mechanisms of Nrf2 regulation, including phosphorylation of Nrf2 by various protein kinases (PKC, PI3K/Akt, GSK-3β, JNK), interaction with other protein partners (p21, caveolin-1) and epigenetic factors (micro-RNAs -144, -28 and -200a, and promoter methylation). These and other processes are potentially important determinants of Nrf2 activity, and therefore may contribute to the maintenance of cellular homeostasis. Here, we dissect evidence supporting these Keap1-dependent and -independent mechanisms of Nrf2 regulation. Furthermore, we highlight key knowledge gaps in this important field of biology, and suggest how these may be addressed experimentally.
Collapse
Affiliation(s)
- Holly K Bryan
- MRC Centre for Drug Safety Science, Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GE, UK
| | | | | | | |
Collapse
|
39
|
Snelten CS, Dietz B, Bolton JL. Modulation of Estrogen Chemical Carcinogenesis by Botanical Supplements used for Postmenopausal Women's Health. ACTA ACUST UNITED AC 2012; 9. [PMID: 24223609 DOI: 10.1016/j.ddmec.2012.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer risk has been associated with long-term estrogen exposure including traditional hormone therapy (HT, formally hormone replacement therapy). To avoid traditional HT and associated risks, women have been turning to botanical supplements such as black cohosh, red clover, licorice, hops, dong gui, and ginger to relieve menopausal symptoms despite a lack of efficacy evidence. The mechanisms of estrogen carcinogenesis involve both hormonal and chemical pathways. Botanical supplements could protect women from estrogen carcinogenesis by modulating key enzymatic steps [aromatase, P4501B1, P4501A1, catechol-O-methyltransferase (COMT), NAD(P)H quinone oxidoreductase 1 (NQO1), and reactive oxygen species (ROS) scavenging] in estradiol metabolism leading to estrogen carcinogenesis as outlined in Figure 1. This review summarizes the influence of popular botanical supplements used for women's health on these key steps in the estrogen chemical carcinogenesis pathway, and suggests that botanical supplements may have added chemopreventive benefits by modulating estrogen metabolism.
Collapse
Affiliation(s)
- Courtney S Snelten
- Department of Medicinal Chemistry and Pharmacognosy and UIC/NIH Center for Botanical Dietary Supplements Research in Women's Health, University of Illinois at Chicago, College of Pharmacy, 833 S. Wood Street, M/C 781, Chicago, Illinois, 60612-7231
| | | | | |
Collapse
|
40
|
Natural product nitric oxide chemistry: new activity of old medicines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:873210. [PMID: 22548122 PMCID: PMC3324039 DOI: 10.1155/2012/873210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/19/2012] [Indexed: 01/19/2023]
Abstract
The use of complementary and alternative medicine (CAM) as a therapy and preventative care measure for cardiovascular diseases (CVD) may prove to be beneficial when used in conjunction with or in place of conventional medicine. However, the lack of understanding of a mechanism of action of many CAMs limits their use and acceptance in western medicine. We have recently recognized and characterized specific nitric oxide (NO) activity of select alternative and herbal medicines that may account for many of their reported health benefits. The ability of certain CAM to restore NO homeostasis both through enhancing endothelial production of NO and by providing a system for reducing nitrate and nitrite to NO as a compensatory pathway for repleting NO bioavailability may prove to be a safe and cost-effective strategy for combating CVD. We will review the current state of science behind NO activity of herbal medicines and their effects on CVD.
Collapse
|
41
|
Z-Ligustilide Potentiates the Cytotoxicity of Dopamine in Rat Dopaminergic PC12 Cells. Neurotox Res 2012; 22:345-54. [DOI: 10.1007/s12640-012-9319-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 01/01/2023]
|
42
|
Potential roles of PI3K/Akt and Nrf2–Keap1 pathways in regulating hormesis of Z-ligustilide in PC12 cells against oxygen and glucose deprivation. Neuropharmacology 2012; 62:1659-70. [DOI: 10.1016/j.neuropharm.2011.11.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 11/02/2011] [Accepted: 11/20/2011] [Indexed: 12/23/2022]
|
43
|
Tkachev VO, Menshchikova EB, Zenkov NK. Mechanism of the Nrf2/Keap1/ARE signaling system. BIOCHEMISTRY (MOSCOW) 2011; 76:407-22. [PMID: 21585316 DOI: 10.1134/s0006297911040031] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nrf2 regulates expression of genes containing antioxidant-respons(iv)e element (ARE) in their promoters and plays a pivotal role among all redox-sensitive transcription factors. Nrf2 is constitutively controlled by repressor protein Keap1, which acts as a molecular sensor of disturbances in cellular homeostasis. These molecular patterns are in close interconnection and function as parts of the integrated redox-sensitive signaling system Nrf2/Keap1/ARE. Depending on cellular redox balance, activity of this signaling system changes at the levels of transcription, translation, posttranslational modification, nuclear translocation of transcription factor, and its binding to ARE-driven gene promoters. This review summarizes current conceptions of Nrf2/Keap1/ARE induction and inactivation.
Collapse
Affiliation(s)
- V O Tkachev
- Scientific Center of Clinical and Experimental Medicine, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia.
| | | | | |
Collapse
|
44
|
Zhong J, Pollastro F, Prenen J, Zhu Z, Appendino G, Nilius B. Ligustilide: a novel TRPA1 modulator. Pflugers Arch 2011; 462:841-9. [PMID: 21894528 DOI: 10.1007/s00424-011-1021-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 12/01/2022]
Abstract
TRPA1 is activated by electrophilic compounds such as mustard oil (MO). Here, we demonstrate a bimodal sensitivity of TRPA1 to ligustilide (Lig), an electrophilic volatile dihydrophthalide of dietary and medicinal relevance. Lig is a potent TRPA1 activator and is also capable to induce a modest block of MO activated currents. Aromatization to dehydroligustilide (DH-Lig), as occurs during aging of its botanical sources, reversed this profile, enhancing TRPA1 inhibition and reducing activation. Mutation of the reactive cysteines in mouseTRPA1 (C622S, C642S, C666S) dramatically reduced activation by MO and significantly reduced that by Lig, but had an almost negligible effect on the action of DH-Lig, whose activation mechanism of TRPA1 is therefore largely independent from the alkylation of cysteine residues. Taken together, these observations show that the phthalide structural motif is a versatile platform to investigate the modulation of TRPA1 by small molecules, being tunable in terms of activation/inhibition profile and mechanism of interaction. Finally, the action of Lig on TRPA1 may contribute to the gustatory effects of celery, its major dietary source, and to the pharmacological action of important plants from the Chinese and native American traditional medicines.
Collapse
Affiliation(s)
- Jian Zhong
- Department of Cell Biology, Laboratory of Ion Channel Research, Campus Gasthuisberg, KU Leuven, Herestraat 49, bus 802, 3000 Louvain, Belgium
| | | | | | | | | | | |
Collapse
|
45
|
Gödecke T, Yao P, Napolitano JG, Nikolić D, Dietz BM, Bolton JL, van Breemen RB, Farnsworth NR, Chen SN, Lankin DC, Pauli GF. Integrated standardization concept for Angelica botanicals using quantitative NMR. Fitoterapia 2011; 83:18-32. [PMID: 21907766 DOI: 10.1016/j.fitote.2011.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/17/2011] [Accepted: 08/20/2011] [Indexed: 11/29/2022]
Abstract
Despite numerous in vitro/vivo and phytochemical studies, the active constituents of Angelica sinensis (AS) have not been conclusively identified for the standardization to bioactive markers. Phytochemical analyses of AS extracts and fractions that demonstrate activity in a panel of in vitro bioassays, have repeatedly pointed to ligustilide as being (associated with) the active principle(s). Due to the chemical instability of ligustilide and related issues in GC/LC analyses, new methods capable of quantifying ligustilide in mixtures that do not rely on an identical reference standard are in high demand. This study demonstrates how NMR can satisfy the requirement for simultaneous, multi-target quantification and qualitative identification. First, the AS activity was concentrated into a single fraction by RP-solid-phase extraction, as confirmed by an alkaline phosphatase, (anti-)estrogenicity and cytotoxicity assay. Next, a quantitative (1)H NMR (qHNMR) method was established and validated using standard compounds and comparing processing methods. Subsequent 1D/2D NMR and qHNMR analysis led to the identification and quantification of ligustilide and other minor components in the active fraction, and to the development of quality criteria for authentic AS preparations. The absolute and relative quantities of ligustilide, six minor alkyl phthalides, and groups of phenylpropanoids, polyynes, and poly-unsaturated fatty acids were measured by a combination of qHNMR and 2D COSY. The qNMR approach enables multi-target quality control of the bioactive fraction, and enables the integrated biological and chemical standardization of AS botanicals. This methodology can potentially be transferred to other botanicals with active principles that act synergistically, or that contain closely related and/or constituents, which have not been conclusively identified as the active principles.
Collapse
Affiliation(s)
- Tanja Gödecke
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy and PCRPS, M/C 781, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chao WW, Lin BF. Bioactivities of major constituents isolated from Angelica sinensis (Danggui). Chin Med 2011; 6:29. [PMID: 21851645 PMCID: PMC3170324 DOI: 10.1186/1749-8546-6-29] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 08/19/2011] [Indexed: 01/20/2023] Open
Abstract
Danggui, also known as Angelica sinensis (Oliv.) Diels (Apiaceae), has been used in Chinese medicine to treat menstrual disorders. Over 70 compounds have been isolated and identified from Danggui. The main chemical constituents of Angelica roots include ferulic acid, Z-ligustilide, butylidenephthalide and various polysaccharides. Among these compounds, ferulic acid exhibits many bioactivities especially anti-inflammatory and immunostimulatory effects; Z-ligustilide exerts anti-inflammatory, anti-cancer, neuroprotective and anti-hepatotoxic effects; n-butylidenephthalide exerts anti-inflammatory, anti-cancer and anti-cardiovascular effects.
Collapse
Affiliation(s)
- Wen-Wan Chao
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Bi-Fong Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
47
|
Guo J, Shang EX, Duan JA, Tang Y, Qian D. Determination of ligustilide in the brains of freely moving rats using microdialysis coupled with ultra performance liquid chromatography/mass spectrometry. Fitoterapia 2011; 82:441-5. [DOI: 10.1016/j.fitote.2010.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 11/22/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
|
48
|
Wen Z, Wang Z, Wang S, Ravula R, Yang L, Xu J, Wang C, Zuo Z, Chow MSS, Shi L, Huang Y. Discovery of molecular mechanisms of traditional Chinese medicinal formula Si-Wu-Tang using gene expression microarray and connectivity map. PLoS One 2011; 6:e18278. [PMID: 21464939 PMCID: PMC3065471 DOI: 10.1371/journal.pone.0018278] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 02/25/2011] [Indexed: 12/14/2022] Open
Abstract
To pursue a systematic approach to discovery of mechanisms of action of traditional Chinese medicine (TCM), we used microarrays, bioinformatics and the “Connectivity Map” (CMAP) to examine TCM-induced changes in gene expression. We demonstrated that this approach can be used to elucidate new molecular targets using a model TCM herbal formula Si-Wu-Tang (SWT) which is widely used for women's health. The human breast cancer MCF-7 cells treated with 0.1 µM estradiol or 2.56 mg/ml of SWT showed dramatic gene expression changes, while no significant change was detected for ferulic acid, a known bioactive compound of SWT. Pathway analysis using differentially expressed genes related to the treatment effect identified that expression of genes in the nuclear factor erythroid 2-related factor 2 (Nrf2) cytoprotective pathway was most significantly affected by SWT, but not by estradiol or ferulic acid. The Nrf2-regulated genes HMOX1, GCLC, GCLM, SLC7A11 and NQO1 were upreguated by SWT in a dose-dependent manner, which was validated by real-time RT-PCR. Consistently, treatment with SWT and its four herbal ingredients resulted in an increased antioxidant response element (ARE)-luciferase reporter activity in MCF-7 and HEK293 cells. Furthermore, the gene expression profile of differentially expressed genes related to SWT treatment was used to compare with those of 1,309 compounds in the CMAP database. The CMAP profiles of estradiol-treated MCF-7 cells showed an excellent match with SWT treatment, consistent with SWT's widely claimed use for women's diseases and indicating a phytoestrogenic effect. The CMAP profiles of chemopreventive agents withaferin A and resveratrol also showed high similarity to the profiles of SWT. This study identified SWT as an Nrf2 activator and phytoestrogen, suggesting its use as a nontoxic chemopreventive agent, and demonstrated the feasibility of combining microarray gene expression profiling with CMAP mining to discover mechanisms of actions and to identify new health benefits of TCMs.
Collapse
Affiliation(s)
- Zhining Wen
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Zhijun Wang
- Department of Pharmaceutical Sciences and Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Steven Wang
- Department of Pharmaceutical Sciences and Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Ranadheer Ravula
- Department of Pharmaceutical Sciences and Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Lun Yang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- Department of Clinical Pharmacy and Center for Pharmacogenomics, School of Pharmacy, Fudan University, Shanghai, China
| | - Jun Xu
- Clinical Transcriptional Genomics Core, Medical Genetics Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Charles Wang
- Functional Genomics Core, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Moses S. S. Chow
- Department of Pharmaceutical Sciences and Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Leming Shi
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- Department of Clinical Pharmacy and Center for Pharmacogenomics, School of Pharmacy, Fudan University, Shanghai, China
- * E-mail: (LS); (YH)
| | - Ying Huang
- Department of Pharmaceutical Sciences and Center for Advancement of Drug Research and Evaluation, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (LS); (YH)
| |
Collapse
|
49
|
Ferguson LR. Antimutagenesis Studies: Where Have They Been and Where Are They Heading? Genes Environ 2011. [DOI: 10.3123/jemsge.33.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
50
|
Holland R, Fishbein JC. Chemistry of the cysteine sensors in Kelch-like ECH-associated protein 1. Antioxid Redox Signal 2010; 13:1749-61. [PMID: 20486763 PMCID: PMC2959180 DOI: 10.1089/ars.2010.3273] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The protein Kelch-like ECH-associated protein 1 (Keap1) is a cysteine-rich regulatory and scaffold protein. Human Keap1 contains 27 cysteines. Some of these cysteines are believed to mediate derepression of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which subsequently upregulates phase 2 enzymes, in response to electrophilic/oxidative assault. Some current models depict a highly select group of two and possibly a few more cysteine residues as key sensors. The assumptions and approaches undergirding these models are commented upon. The chemical reactivity of the cysteines of Keap1 toward an array of electrophiles and one oxidant is reviewed. A number of reports in the recent literature of molecules that putatively modify cysteines of Keap1 are also included. Insights into the current molecular basis of electrophile/oxidant activation of the Nrf2 pathway via reaction at cysteines of Keap1 are discussed. Finally, important knowns and unknowns are summarized.
Collapse
Affiliation(s)
- Ryan Holland
- The Laboratory of Comparative Carcinogenesis, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | | |
Collapse
|