1
|
Meng Y, Li S, Lu D, Chen X, Li L, Duan Y, Wang G, Huang W, Liu R. Salt-inducible kinase 2 confers radioresistance in colorectal cancer by facilitating homologous recombination repair. MedComm (Beijing) 2025; 6:e70083. [PMID: 39877288 PMCID: PMC11774237 DOI: 10.1002/mco2.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 01/31/2025] Open
Abstract
Resistance to radiotherapy remains a critical barrier in treating colorectal cancer (CRC), particularly in cases of locally advanced rectal cancer (LARC). To identify key kinases involved in CRC radioresistance, we employed a kinase-targeted CRISPR-Cas9 library screen. This approach aimed to identify potential kinase inhibitors as radiosensitizers. Our screening identified salt-inducible kinase 2 (SIK2) as a critical factor in CRC radioresistance. Increased SIK2 expression correlated with reduced tumor regression and poorer outcomes in LARC patients undergoing neoadjuvant chemoradiotherapy. The depletion of SIK2 significantly enhanced radiation-induced apoptosis and tumor regression. Mechanistically, SIK2 interacts with valosin-containing protein (VCP), promoting its hyperphosphorylation. This modification improves VCP's capacity to extract K48-linked ubiquitin-conjugated proteins from chromatin, thus aiding the recruitment of RPA and RAD51 to DNA damage sites. This mechanism strengthens homologous recombination-mediated DNA repair, which contributes to radioresistance. Importantly, ARN-3236, a SIK2 inhibitor, markedly sensitized CRC cells to radiation both in vivo and in vitro, providing a potential strategy to overcome radioresistance. In summary, our findings reveal a novel mechanism by which SIK2 contributes to the radioresistance of CRC, proposing SIK2 as a potential therapeutic target with its inhibitor significantly enhancing CRC radiotherapy efficacy.
Collapse
Affiliation(s)
- Yuan Meng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shuo Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Da‐Shan Lu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xue Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lu Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - You‐fa Duan
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Gao‐yuan Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wenlin Huang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- Guangdong Provincial Key Laboratory of Tumor Targeted Drugs & Guangzhou Enterprise Key Laboratory of Gene MedicineGuangzhou DoublleBioproduct Co., Ltd.GuangzhouChina
| | - Ran‐yi Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
2
|
Pinto AT, Machado AB, Osório H, Pinto ML, Vitorino R, Justino G, Santa C, Castro F, Cruz T, Rodrigues C, Lima J, Sousa JLR, Cardoso AP, Figueira R, Monteiro A, Marques M, Manadas B, Pauwels J, Gevaert K, Mareel M, Rocha S, Duarte T, Oliveira MJ. Macrophage Resistance to Ionizing Radiation Exposure Is Accompanied by Decreased Cathepsin D and Increased Transferrin Receptor 1 Expression. Cancers (Basel) 2022; 15:270. [PMID: 36612268 PMCID: PMC9818572 DOI: 10.3390/cancers15010270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To identify a molecular signature of macrophages exposed to clinically relevant ionizing radiation (IR) doses, mirroring radiotherapy sessions. METHODS Human monocyte-derived macrophages were exposed to 2 Gy/ fraction/ day for 5 days, mimicking one week of cancer patient's radiotherapy. Protein expression profile by proteomics was performed. RESULTS A gene ontology analysis revealed that radiation-induced protein changes are associated with metabolic alterations, which were further supported by a reduction of both cellular ATP levels and glucose uptake. Most of the radiation-induced deregulated targets exhibited a decreased expression, as was the case of cathepsin D, a lysosomal protease associated with cell death, which was validated by Western blot. We also found that irradiated macrophages exhibited an increased expression of the transferrin receptor 1 (TfR1), which is responsible for the uptake of transferrin-bound iron. TfR1 upregulation was also found in tumor-associated mouse macrophages upon tumor irradiation. In vitro irradiated macrophages also presented a trend for increased divalent metal transporter 1 (DMT1), which transports iron from the endosome to the cytosol, and a significant increase in iron release. CONCLUSIONS Irradiated macrophages present lower ATP levels and glucose uptake, and exhibit decreased cathepsin D expression, while increasing TfR1 expression and altering iron metabolism.
Collapse
Affiliation(s)
- Ana Teresa Pinto
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Beatriz Machado
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Champalimaud Centre for the Unknown, Fundação Champalimaud, 1400-038 Lisboa, Portugal
| | - Hugo Osório
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP–Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
- Departament of Pathology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Marta Laranjeiro Pinto
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Gonçalo Justino
- Centro de Química Estrutural–Institute of Molecular Sciences, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal
| | - Cátia Santa
- CNC–Center for Neuroscience and Cell Biology, Universidade de Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), Universidade de Coimbra, 3030-789 Coimbra, Portugal
| | - Flávia Castro
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Tânia Cruz
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carla Rodrigues
- REQUIMTE–LAQV, Chemistry Department, NOVA School of Science and Technology, Universidade de Lisboa, 2829-516 Caparica, Portugal
| | - Jorge Lima
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP–Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - José Luís R. Sousa
- Personal Health Data Science Group, Sano-Centre for Computational Personalised Medicine, 30-054 Krakow, Poland
| | - Ana Patrícia Cardoso
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rita Figueira
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Margarida Marques
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Bruno Manadas
- Institute for Interdisciplinary Research (III), Universidade de Coimbra, 3030-789 Coimbra, Portugal
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Marc Mareel
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sónia Rocha
- Institute of System, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3 GE, UK
| | - Tiago Duarte
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria José Oliveira
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Departament of Pathology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Staudacher AH, Li Y, Liapis V, Brown MP. The RNA-binding protein La/SSB associates with radiation-induced DNA double-strand breaks in lung cancer cell lines. Cancer Rep (Hoboken) 2022; 5:e1543. [PMID: 34636174 PMCID: PMC9351668 DOI: 10.1002/cnr2.1543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Platinum-based chemotherapy and radiotherapy are standard treatments for non-small cell lung cancer, which is the commonest, most lethal cancer worldwide. As a marker of treatment-induced cancer cell death, we have developed a radiodiagnostic imaging antibody, which binds to La/SSB. La/SSB is an essential, ubiquitous ribonuclear protein, which is over expressed in cancer and plays a role in resistance to cancer therapies. AIM In this study, we examined radiation-induced DNA double strand breaks (DSB) in lung cancer cell lines and examined whether La/SSB associated with these DSB. METHOD Three lung cancer lines (A549, H460 and LL2) were irradiated with different X-ray doses or X-radiated with a 5 Gy dose and examined at different time-points post-irradiation for DNA DSB in the form of γ-H2AX and Rad51 foci. Using fluorescence microscopy, we examined whether La/SSB and γ-H2AX co-localise and performed proximity ligation assay (PLA) and co-immunoprecipitation to confirm the interaction of these proteins. RESULTS We found that the radio-resistant A549 cell line compared to the radio-sensitive H460 cell line showed faster resolution of radiation-induced γ-H2AX foci over time. Conversely, we found more co-localised γ-H2AX and La/SSB foci by PLA in irradiated A549 cells. CONCLUSION The co-localisation of La/SSB with radiation-induced DNA breaks suggests a role of La/SSB in DNA repair, however further experimentation is required to validate this.
Collapse
Affiliation(s)
- Alexander H. Staudacher
- Translational Oncology Laboratory, Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSouth Australia5000Australia
- School of MedicineUniversity of AdelaideAdelaideSouth Australia5000Australia
| | - Yanrui Li
- Translational Oncology Laboratory, Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSouth Australia5000Australia
| | - Vasilios Liapis
- Translational Oncology Laboratory, Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSouth Australia5000Australia
| | - Michael P. Brown
- Translational Oncology Laboratory, Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSouth Australia5000Australia
- School of MedicineUniversity of AdelaideAdelaideSouth Australia5000Australia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSouth Australia5000Australia
| |
Collapse
|
4
|
Hong H, Gao M, Wu Q, Yang P, Liu S, Li H, Burrows PD, Cua D, Chen JY, Hsu HC, Mountz JD. IL-23 Promotes a Coordinated B Cell Germinal Center Program for Class-Switch Recombination to IgG2b in BXD2 Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:346-358. [PMID: 32554431 DOI: 10.4049/jimmunol.2000280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
Abstract
IL-23 promotes autoimmune disease, including Th17 CD4 T cell development and autoantibody production. In this study, we show that a deficiency of the p19 component of IL-23 in the autoimmune BXD2 (BXD2-p19-/- ) mouse leads to a shift of the follicular T helper cell program from follicular T helper (Tfh)-IL-17 to Tfh-IFN-γ. Although the germinal center (GC) size and the number of GC B cells remained the same, BXD2-p19-/- mice exhibited a lower class-switch recombination (CSR) in the GC B cells, leading to lower serum levels of IgG2b. Single-cell transcriptomics analysis of GC B cells revealed that whereas Ifngr1, Il21r, and Il4r genes exhibited a synchronized expression pattern with Cxcr5 and plasma cell program genes, Il17ra exhibited a synchronized expression pattern with Cxcr4 and GC program genes. Downregulation of Ighg2b in BXD2-p19-/- GC B cells was associated with decreased expression of CSR-related novel base excision repair genes that were otherwise predominantly expressed by Il17ra + GC B cells in BXD2 mice. Together, these results suggest that although IL-23 is dispensable for GC formation, it is essential to promote a population of Tfh-IL-17 cells. IL-23 acts indirectly on Il17ra + GC B cells to facilitate CSR-related base excision repair genes during the dark zone phase of GC B cell development.
Collapse
Affiliation(s)
- Huixian Hong
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Min Gao
- Informatics Institute, the University of Alabama at Birmingham, Birmingham, AL
| | - Qi Wu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - PingAr Yang
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Shanrun Liu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Hao Li
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Peter D Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel Cua
- Discovery Research, Merck Research Laboratory, Boston, MA; and
| | - Jake Y Chen
- Informatics Institute, the University of Alabama at Birmingham, Birmingham, AL
| | - Hui-Chen Hsu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - John D Mountz
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; .,Department of Medicine, Birmingham VA Medical center, Birmingham, AL
| |
Collapse
|
5
|
Munk M, Alcalde J, Lorentzen L, Villalobo A, Berchtold MW, Panina S. The impact of calmodulin on the cell cycle analyzed in a novel human cellular genetic system. Cell Calcium 2020; 88:102207. [PMID: 32408024 DOI: 10.1016/j.ceca.2020.102207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/24/2022]
Abstract
Calmodulin (CaM) is the principle mediator of the Ca2+ signal in all eukaryotic cells. A huge variety of basic cellular processes including cell cycle control, proliferation, secretion and motility, among many others are governed by CaM, which regulates activities of myriads of target proteins. Mammalian CaM is encoded by three genes localized on different chromosomes all producing an identical protein. In this study, we have generated HeLa human cancer cells conditionally expressing CaM in a genetic background with all three genes inactivated by CRISPR/Cas9. We demonstrate that downregulation of ectopically expressed CaM is achieved after 120 h, when cells are arrested in the M phase of the cell cycle. We show for the first time that CaM downregulation in human cancer cells is followed by a multinucleated senescent state as indicated by expression of β-galactosidase as well as cell morphology typical for senescent cells. Our newly generated genetic system may be useful for the analysis of other CaM regulated processes in eukaryotic cells in the absence of endogenous CaM genes.
Collapse
Affiliation(s)
- Mads Munk
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
| | - Juan Alcalde
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Lasse Lorentzen
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Antonio Villalobo
- Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E- 28046 Madrid, Spain
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark.
| | - Svetlana Panina
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark; MonTa Biosciences ApS, Diplomvej 381 2800 Lyngby, Denmark(1)
| |
Collapse
|
6
|
Laxmi V, Tamuli R. The calmodulin gene in Neurospora crassa is required for normal vegetative growth, ultraviolet survival, and sexual development. Arch Microbiol 2016; 199:531-542. [PMID: 27888323 DOI: 10.1007/s00203-016-1319-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
We isolated a Neurospora crassa mutant of the calmodulin (cmd) gene using repeat-induced point mutation and studied its phenotypes. The cmd RIP mutant showed a defect in growth, reduced aerial hyphae, decreased carotenoid accumulation, a severe reduction in viability upon ultraviolet (UV) irradiation, and a fertility defect. Moreover, meiotic silencing of the cmd gene resulted in a barren phenotype. In addition, we also performed site-directed mutational analysis of the calcium/calmodulin-dependent kinase-2 (Ca2+/CaMK-2), a target of the CaM protein encoded by the cmd gene. The camk-2 S247A and the camk-2 T267A mutants in a homozygous cross, or in a cross with a Δcamk-2 mutant, displayed an intermediate phenotype, suggesting that serine 247 and threonine 267 phosphorylation sites of the Ca2+/CaMK-2 are essential for full fertility in N. crassa. Therefore, CaM in N. crassa is required for normal vegetative growth, UV survival, and sexual development. Additionally, serine 247 and threonine 267 phosphorylation sites are important for the Ca2+/CaMK-2 function.
Collapse
Affiliation(s)
- Vijya Laxmi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| |
Collapse
|
7
|
Ren Y, Yeoh KW, Hao P, Kon OL, Sze SK. Irradiation of Epithelial Carcinoma Cells Upregulates Calcium-Binding Proteins That Promote Survival under Hypoxic Conditions. J Proteome Res 2016; 15:4258-4264. [PMID: 27790916 DOI: 10.1021/acs.jproteome.6b00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypoxia is thought to promote tumor radio-resistance via effects on gene expression in cancer cells that modulate their metabolism, proliferation, and DNA repair pathways to enhance survival. Here we demonstrate for the first time that under hypoxic condition A431 epithelial carcinoma cells exhibit increased viability when exposed to low-dose γ-irradiation, indicating that radiotherapy can promote tumor cell survival when oxygen supply is limited. When assessed using iTRAQ quantitative proteomics and Western blotting, irradiated tumor cells were observed to significantly up-regulate the expression of calcium-binding proteins CALM1, CALU, and RCN1, suggesting important roles for these mediators in promoting tumor cell survival during hypoxia. Accordingly, shRNA-knockdown of CALM1, CALU, and RCN1 expression reduced hypoxic tumor cell resistance to low-dose radiation and increased apoptosis. These data indicate that γ-irradiation of hypoxic tumor cells induces up-regulation of calcium-binding proteins that promote cancer cell survival and may limit the efficacy of radiotherapy in the clinic.
Collapse
Affiliation(s)
- Yan Ren
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551.,BGI-Shenzhen , Yantian District Beishan Industrial Zone 11th building, Shenzhen, China 518083
| | - Kheng Wei Yeoh
- National Cancer Centre Singapore , Department of Radiation Oncology, 11 Hospital Drive, Singapore 169610
| | - Piliang Hao
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | - Oi Lian Kon
- National Cancer Centre Singapore , Division of Medical Sciences, 11 Hospital Drive, Singapore 169610
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
8
|
Araújo J, Oliveira E, Kouvonen P, Corthals G, Lodeiro C, Santos H, Capelo J. A journey through PROTEOSONICS. Talanta 2014; 121:71-80. [DOI: 10.1016/j.talanta.2013.12.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/16/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
|
9
|
Deka R, Kumar R, Tamuli R. Neurospora crassa homologue of Neuronal Calcium Sensor-1 has a role in growth, calcium stress tolerance, and ultraviolet survival. Genetica 2011; 139:885-94. [DOI: 10.1007/s10709-011-9592-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
|
10
|
Kim J, Kim BC, Lopez-Ferrer D, Petritis K, Smith RD. Nanobiocatalysis for protein digestion in proteomic analysis. Proteomics 2010; 10:687-99. [PMID: 19953546 DOI: 10.1002/pmic.200900519] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The process of protein digestion is a critical step for successful protein identification in bottom-up proteomic analyses. To substitute the present practice of in-solution protein digestion, which is long, tedious, and difficult to automate, many efforts have been dedicated for the development of a rapid, recyclable and automated digestion system. Recent advances of nanobiocatalytic approaches have improved the performance of protein digestion by using various nanomaterials such as nanoporous materials, magnetic nanoparticles, and polymer nanofibers. Especially, the unprecedented success of trypsin stabilization in the form of trypsin-coated nanofibers, showing no activity decrease under repeated uses for 1 year and retaining good resistance to proteolysis, has demonstrated its great potential to be employed in the development of automated, high-throughput, and on-line digestion systems. This review discusses recent developments of nanobiocatalytic approaches for the improved performance of protein digestion in speed, detection sensitivity, recyclability, and trypsin stability. In addition, we also introduce approaches for protein digestion under unconventional energy input for protein denaturation and the development of microfluidic enzyme reactors that can benefit from recent successes of these nanobiocatalytic approaches.
Collapse
Affiliation(s)
- Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea.
| | | | | | | | | |
Collapse
|