1
|
Wei S, He Q, Duan J, Zheng H, Ma L, Wang Y. An Exploration of the Transformation of the 8-Oxo-7,8-Dihydroguanine Radical Cation to Protonated 2-Amino-5-Hydroxy-7,9-Dihydropurine-6,8-Dione in a Base Pair. Chemphyschem 2023; 24:e202200625. [PMID: 36175389 DOI: 10.1002/cphc.202200625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Indexed: 02/04/2023]
Abstract
A theoretical investigation was performed to disclose the transformation mechanism of 8-oxo-7,8-dihydroguanine radical cation (8-oxoG⋅+ ) to protonated 2-amino-5-hydroxy-7,9-dihydropurine-6,8-dione (5-OH-8-oxoG) in base pair. The energy profiles for three possible pathways of the events were mapped. It is shown that direct loss of H7 from base paired 8-oxoG⋅+ is the only energetically favorable pathway to generate neutral radical, 8-oxoG(-H7)⋅. Further oxidation of 8-oxoG(-H7)⋅ : C to 8-oxoG(-H7)+ : C is exothermic. However, the 8-oxoG(-H7)+ : C deprotonation from all possible active sites is infeasible, indicating the inaccessible second proton loss and the lack of essential intermediate 2-amino-7,9-dihydropurine-6,8-dione (8-oxoGOX ). This makes 8-oxoG(-H7)+ act as the precursor of hydration leading to the generation of protonated 5-HO-8-oxoG by stepwise fashion in base pair, which would initiate the step down guanidinohydantoin (Gh) pathway. These results clearly specify the structure-dependent transformation for 8-oxoG⋅+ and verify the emergence of protonated 5-HO-8-oxoG in base pair.
Collapse
Affiliation(s)
- Simin Wei
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, 712083, China
| | - Qihao He
- Institution Shaanxi Transportation Holding Group Co., Ltd., Xi'an, 710065, China
| | - Jinwei Duan
- College of Science, Chang'an University, Xi'an, 710064, China
| | - Huayu Zheng
- College of Science, Chang'an University, Xi'an, 710064, China
| | - Lei Ma
- College of Science, Chang'an University, Xi'an, 710064, China
| | - Yinghui Wang
- College of Science, Chang'an University, Xi'an, 710064, China
| |
Collapse
|
2
|
Fleming AM, Burrows CJ. Chemistry of ROS-mediated oxidation to the guanine base in DNA and its biological consequences. Int J Radiat Biol 2022; 98:452-460. [PMID: 34747670 PMCID: PMC8881305 DOI: 10.1080/09553002.2021.2003464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE One outcome of DNA damage from hydroxyl radical generated by ionizing radiation (IR) or by the Fenton reaction is oxidation of the nucleobases, especially guanine (G). While 8-oxo-7,8-dihydroguanine (OG) is a commonly studied oxidized lesion, several others are formed in high abundance, including 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), a prevalent product in in vitro chemistry that is challenging to study from cellular sources. In this short review, we have a goal of explaining new insights into hydroxyl radical-induced oxidation chemistry of G in DNA and comparing it to endogenous DNA damage, as well as commenting on the biological outcomes of DNA base damage. CONCLUSIONS Pathways of oxidation of G are discussed and a comparison is made between IR (hydroxyl radical chemistry) and endogenous oxidative stress that largely forms carbonate radical anion as a reactive intermediate. These pathways overlap with the formation of OG and 2Ih, but other guanine-derived lesions are more pathway specific. The biological consequences of guanine oxidation include both mutagenesis and epigenetics; a new mechanism of gene regulation via the base excision repair pathway is described for OG, whereas the impact of IR in forming guanine modifications may be to confound this process in addition to introduction of mutagenic sites.
Collapse
|
3
|
Sun Y, Tsai M, Moe MM, Liu J. Dynamics and Multiconfiguration Potential Energy Surface for the Singlet O2 Reactions with Radical Cations of Guanine, 9-Methylguanine, 2′-Deoxyguanosine, and Guanosine. J Phys Chem A 2021; 125:1564-1576. [DOI: 10.1021/acs.jpca.1c00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College 31-10 Thomson Avenue, Long Island City, New York 11101, United States
| | - May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
4
|
Sun Y, Tsai M, Zhou W, Lu W, Liu J. Reaction Kinetics, Product Branching, and Potential Energy Surfaces of 1O 2-Induced 9-Methylguanine-Lysine Cross-Linking: A Combined Mass Spectrometry, Spectroscopy, and Computational Study. J Phys Chem B 2019; 123:10410-10423. [PMID: 31718186 DOI: 10.1021/acs.jpcb.9b08796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a kinetics and mechanistic study on the 1O2 oxidation of 9-methylguanine (9MG) and the cross-linking of the oxidized intermediate 2-amino-9-methyl-9H-purine-6,8-dione (9MOGOX) with Nα-acetyl-lysine-methyl ester (abbreviated as LysNH2) in aqueous solutions of different pH. Experimental measurements include the determination of product branching ratios and reaction kinetics using mass spectrometry and absorption spectroscopy, and the characterization of product structures by employing collision-induced dissociation. Strong pH dependence was revealed for both 9MG oxidation and the addition of nucleophiles (water and LysNH2) at the C5 position of 9MOGOX. The 1O2 oxidation rate constant of 9MG was determined to be 3.6 × 107 M-1·s-1 at pH 10.0 and 0.3 × 107 M-1·s-1 at pH 7.0, both of which were measured in the presence of 15 mM LysNH2. The ωB97XD density functional theory coupled with various basis sets and the SMD implicit solvation model was used to explore the reaction potential energy surfaces for the 1O2 oxidation of 9MG and the formation of C5-water and C5-LysNH2 adducts of 9MOGOX. Computational results have shed light on reaction pathways and product structures for the different ionization states of the reactants. The present work has confirmed that the initial 1O2 addition represents the rate-limiting step for the oxidative transformations of 9MG. All of the downstream steps are exothermic with respect to the starting reactants. The C5-cross-linking of 9MOGOX with LysNH2 significantly suppressed the formation of spiroiminodihydantoin (9MSp) resulting from the C5-water addition. The latter became dominant only at the low concentration (∼1 mM) of LysNH2.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry , Queens College of the City University of New York , 65-30 Kissena Blvd. , Queens , New York 11367 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , 365 5th Avenue , New York , New York 10016 , United States
| | - Midas Tsai
- Department of Natural Sciences , LaGuardia Community College , 31-10 Thomson Avenue , Long Island City , New York 11101 , United States
| | - Wenjing Zhou
- Department of Chemistry and Biochemistry , Queens College of the City University of New York , 65-30 Kissena Blvd. , Queens , New York 11367 , United States
| | - Wenchao Lu
- Department of Chemistry and Biochemistry , Queens College of the City University of New York , 65-30 Kissena Blvd. , Queens , New York 11367 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , 365 5th Avenue , New York , New York 10016 , United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry , Queens College of the City University of New York , 65-30 Kissena Blvd. , Queens , New York 11367 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , 365 5th Avenue , New York , New York 10016 , United States
| |
Collapse
|
5
|
Hebert SP, Schlegel HB. Computational Study of the Oxidation of Guanine To Form 5-Carboxyamido-5-formamido-2-iminohydantoin (2Ih). Chem Res Toxicol 2019; 32:2295-2304. [PMID: 31571479 DOI: 10.1021/acs.chemrestox.9b00304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative damage to DNA leads to a number of two-electron oxidation products of guanine such as 8-oxo-7,8-dihydroguanine (8oxoG). 5-Carboxyamido-5-formamido-2-iminohydantoin (2Ih) is another two-electron oxidation product that forms in competition with 8oxoG. The pathways for the formation of 2Ih have been studied by density functional theory using the ωB97XD functional with the 6-31+G(d,p) basis set and SMD implicit water solvation plus a small number of explicit water molecules positioned to help stabilize charged species and facilitate reaction steps. For oxidative conditions that produce hydroxyl radical, such as Fenton chemistry, hydroxy radical can add at C4, C5, or C8. Addition at C4 or C5 followed by loss of H2O produces guanine radical. Guanine radical can also be produced directly by oxidation of guanine by reactive oxygen species (ROS). A C5-OH intermediate can be formed by addition of superoxide to C5 of guanine radical followed by reduction. Alternatively, the C5-OH intermediate can be formed by hydroxy radical addition at C5 and oxidation by 3O2. The competition between oxidative and reductive pathways depends on the reaction conditions. Acyl migration of the C5-OH intermediate yields reduced spiroiminodihydantoin (Spred). Subsequent water addition at C8 of Spred and N7-C8 ring opening produces 2Ih. Hydroxy radical addition at C8 can lead to a number of products. Oxidation and tautomerization produces 8oxoG. Alternatively, addition of superoxide at C5 and reduction results in a C5, C8 dihydroxy intermediate. For this species, the low energy pathway to 2Ih is N7-C8 ring opening followed by acyl migration. Ring opening occurs more easily at C8-N9 but leads to a higher energy analogue of 2Ih. Thus, the dominant pathway for the production of 2Ih depends on the nature of the reactive oxygen species and on the presence or absence of reducing agents.
Collapse
Affiliation(s)
- Sebastien P Hebert
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - H Bernhard Schlegel
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
6
|
Thapa B, Hebert SP, Munk BH, Burrows CJ, Schlegel HB. Computational Study of the Formation of C8, C5, and C4 Guanine:Lysine Adducts via Oxidation of Guanine by Sulfate Radical Anion. J Phys Chem A 2019; 123:5150-5163. [DOI: 10.1021/acs.jpca.9b03598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bishnu Thapa
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sebastien P. Hebert
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Barbara H. Munk
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
7
|
Hebert SP, Schlegel HB. Computational Study of the pH-Dependent Competition between Carbonate and Thymine Addition to the Guanine Radical. Chem Res Toxicol 2019; 32:195-210. [PMID: 30592213 DOI: 10.1021/acs.chemrestox.8b00302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When oligonucleotides are oxidized by carbonate radical, thymine and carbonate can add to guanine radical, yielding either a guanine-thymine cross-link product (G∧T) or 8-oxo-7,8-dehydroguanine (8oxoG) and its further oxidation products such as spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh). The ratio of thymine addition to carbonate addition depends strongly on the pH. Details of the mechanism have been explored by density functional calculations using the ωB97XD/6-31+G(d,p) level of theory with the SMD implicit solvation method, augmented with a few explicit waters. Free energies of intermediates and transition states in aqueous solution have been calculated along the pathways for addition of thymine, CO32-/HCO3- and carbonate radical to guanine radical. The pH dependence was examined by using appropriate explicit proton donors/acceptors as computational models for buffers at pH 2.5, 7, and 10. Deprotonation of thymine is required for nucleophilic addition at C8 of guanine radical, and thus is favored at higher pH. The barrier for carbonate radical addition is lower than for bicarbonate or carbonate dianion addition; however, for low concentrations of carbonate radical, the reaction may proceed by addition of bicarbonate/carbonate dianion to guanine radical. Thymine and bicarbonate/carbonate dianion addition are followed by oxidation by O2, loss of a proton from C8 and decarboxylation of the carbonate adduct. At pH 2.5, guanine radical cation can be formed by oxidization with sulfate radical. Water addition to guanine radical cation is the preferred path for forming 8oxoG at pH 2.5.
Collapse
Affiliation(s)
- Sebastien P Hebert
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - H Bernhard Schlegel
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
8
|
Lu W, Sun Y, Zhou W, Liu J. pH-Dependent Singlet O2 Oxidation Kinetics of Guanine and 9-Methylguanine: An Online Mass Spectrometry and Spectroscopy Study Combined with Theoretical Exploration. J Phys Chem B 2017; 122:40-53. [DOI: 10.1021/acs.jpcb.7b09515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wenchao Lu
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Yan Sun
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Wenjing Zhou
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
| | - Jianbo Liu
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
9
|
Liu P, Wang Q, Niu M, Wang D. Multi-level Quantum Mechanics and Molecular Mechanics Study of Ring Opening Process of Guanine Damage by Hydroxyl Radical in Aqueous Solution. Sci Rep 2017; 7:7798. [PMID: 28798372 PMCID: PMC5552687 DOI: 10.1038/s41598-017-08219-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
Combining multi-level quantum mechanics theories and molecular mechanics with an explicit water model, we investigated the ring opening process of guanine damage by hydroxyl radical in aqueous solution. The detailed, atomic-level ring-opening mechanism along the reaction pathway was revealed in aqueous solution at the CCSD(T)/MM levels of theory. The potentials of mean force in aqueous solution were calculated at both the DFT/MM and CCSD(T)/MM levels of the theory. Our study found that the aqueous solution has a significant effect on this reaction in solution. In particular, by comparing the geometries of the stationary points between in gas phase and in aqueous solution, we found that the aqueous solution has a tremendous impact on the torsion angles much more than on the bond lengths and bending angles. Our calculated free-energy barrier height 31.6 kcal/mol at the CCSD(T)/MM level of theory agrees well with the one obtained based on gas-phase reaction profile and free energies of solvation. In addition, the reaction path in gas phase was also mapped using multi-level quantum mechanics theories, which shows a reaction barrier at 19.2 kcal/mol at the CCSD(T) level of theory, agreeing very well with a recent ab initio calculation result at 20.8 kcal/mol.
Collapse
Affiliation(s)
- Peng Liu
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Qiong Wang
- College of Chemistry, Shandong Normal University, Jinan, 250014, China
| | - Meixing Niu
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Dunyou Wang
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
10
|
Cadet J, Davies KJA, Medeiros MH, Di Mascio P, Wagner JR. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med 2017; 107:13-34. [PMID: 28057600 PMCID: PMC5457722 DOI: 10.1016/j.freeradbiomed.2016.12.049] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/27/2016] [Accepted: 12/31/2016] [Indexed: 12/18/2022]
Abstract
In this review article, emphasis is placed on the critical survey of available data concerning modified nucleobase and 2-deoxyribose products that have been identified in cellular DNA following exposure to a wide variety of oxidizing species and agents including, hydroxyl radical, one-electron oxidants, singlet oxygen, hypochlorous acid and ten-eleven translocation enzymes. In addition, information is provided about the generation of secondary oxidation products of 8-oxo-7,8-dihydroguanine and nucleobase addition products with reactive aldehydes arising from the decomposition of lipid peroxides. It is worth noting that the different classes of oxidatively generated DNA damage that consist of single lesions, intra- and interstrand cross-links were unambiguously assigned and quantitatively detected on the basis of accurate measurements involving in most cases high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The reported data clearly show that the frequency of DNA lesions generated upon severe oxidizing conditions, including exposure to ionizing radiation is low, at best a few modifications per 106 normal bases. Application of accurate analytical measurement methods has also allowed the determination of repair kinetics of several well-defined lesions in cellular DNA that however concerns so far only a restricted number of cases.
Collapse
Affiliation(s)
- Jean Cadet
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, United States; Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, United States
| | - Marisa Hg Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| |
Collapse
|
11
|
Thapa B, Munk BH, Burrows CJ, Schlegel HB. Computational Study of the Radical Mediated Mechanism of the Formation of C8, C5, and C4 Guanine:Lysine Adducts in the Presence of the Benzophenone Photosensitizer. Chem Res Toxicol 2016; 29:1396-409. [DOI: 10.1021/acs.chemrestox.6b00057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bishnu Thapa
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Barbara H. Munk
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, Salt Lake
City, Utah 84112, United States
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
12
|
Lu W, Liu J. Capturing Transient Endoperoxide in the Singlet Oxygen Oxidation of Guanine. Chemistry 2016; 22:3127-38. [PMID: 26813583 DOI: 10.1002/chem.201504140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 12/11/2022]
Abstract
The chemistry of singlet O2 toward the guanine base of DNA is highly relevant to DNA lesion, mutation, cell death, and pathological conditions. This oxidative damage is initiated by the formation of a transient endoperoxide through the Diels-Alder cycloaddition of singlet O2 to the guanine imidazole ring. However, no endoperoxide formation was directly detected in native guanine or guanosine, even at -100 °C. Herein, gas-phase ion-molecule scattering mass spectrometry was utilized to capture unstable endoperoxides in the collisions of hydrated guanine ions (protonated or deprotonated) with singlet O2 at ambient temperature. Corroborated by results from potential energy surface exploration, kinetic modeling, and dynamics simulations, various aspects of endoperoxide formation and transformation (including its dependence on guanine ionization and hydration states, as well as on collision energy) were determined. This work has pieced together reaction mechanisms, kinetics, and dynamics data concerning the early stage of singlet O2 induced guanine oxidation, which is missing from conventional condensed-phase studies.
Collapse
Affiliation(s)
- Wenchao Lu
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center, of the City University of New York, 65-30 Kissena Blvd, Queens, NY, 11367, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center, of the City University of New York, 65-30 Kissena Blvd, Queens, NY, 11367, USA.
| |
Collapse
|
13
|
Jena NR, Bansal M, Mishra PC. Conformational stabilities of iminoallantoin and its base pairs in DNA: implications for mutagenicity. Phys Chem Chem Phys 2016; 18:12774-83. [DOI: 10.1039/c6cp02212j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Under acidic conditions, insertion of G opposite Ia may lead to G to C mutations in DNA.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology
- Design and Manufacturing
- Jabalpur-482005
- India
| | - Manju Bansal
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - P. C. Mishra
- Department of Physics
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
14
|
Jena NR, Mishra PC. Normal and reverse base pairing of Iz and Oz lesions in DNA: structural implications for mutagenesis. RSC Adv 2016. [DOI: 10.1039/c6ra14031a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During replication, incorporation of G opposite Oz lesion is mainly responsible for G to C mutations in DNA.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology
- Design and Manufacturing
- Jabalpur-482005
- India
| | - P. C. Mishra
- Department of Physics
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
15
|
Jena NR, Gaur V, Mishra PC. The R- and S-diastereoisomeric effects on the guanidinohydantoin-induced mutations in DNA. Phys Chem Chem Phys 2015; 17:18111-20. [DOI: 10.1039/c5cp02636a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although, Gh (Gh1 or Gh2) in DNA would induce mainly G to C mutations, other mutations cannot be ignored.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology
- Design and Manufacturing
- Jabalpur-482005
- India
| | - Vivek Gaur
- Discipline of Mechanical Engineering
- Indian Institute of Information Technology
- Design and Manufacturing
- Jabalpur-482005
- India
| | - P. C. Mishra
- NASI Senior Scientist
- Department of Physics
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
16
|
Suzuki M, Kino K, Morikawa M, Kobayashi T, Miyazawa H. Calculating distortions of short DNA duplexes with base pairing between an oxidatively damaged guanine and a guanine. Molecules 2014; 19:11030-44. [PMID: 25072203 PMCID: PMC6271426 DOI: 10.3390/molecules190811030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 11/16/2022] Open
Abstract
DNA is constantly being oxidized, and oxidized DNA is prone to mutation; moreover, guanine is highly sensitive to several oxidative stressors. Several oxidatively damaged forms of guanine—including 2,2,4-triamino-5(2H)-oxazolone (Oz), iminoallantoin (Ia), and spiroiminodihydantoin (Sp)—can be paired with guanine, and cause G:C-C:G transversions. Previous findings indicate that guanine is incorporated more efficiently opposite Oz than opposite Ia or Sp, and that these differences in efficiency cannot be explained by differences in the stabilities of G:Oz, G:Ia, and G:Sp base pairs calculated abinitio. Here, to explain previous experimental result, we used a 3-base-pair model DNA duplex to calculate the difference in the stability and the distortion of DNA containing a G:Oz, G:Ia, or G:Sp base pair. We found that the stability of the structure containing 5' and 3' base pairs adjacent to G:Oz was more stable than that containing the respective base pairs adjacent to G:Ia or G:Sp. Moreover, the distortion of the structure in the DNA model duplex that contained a G:Oz was smaller than that containing a G:Ia or G:Sp. Therefore, our discussion can explain the previous results involving translesion synthesis past an oxidatively damaged guanine.
Collapse
Affiliation(s)
- Masayo Suzuki
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193, Japan.
| | - Katsuhito Kino
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193, Japan.
| | - Masayuki Morikawa
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193, Japan.
| | - Takanobu Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193, Japan.
| | - Hiroshi Miyazawa
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193, Japan.
| |
Collapse
|
17
|
Psciuk BT, Schlegel HB. Computational Prediction of One-Electron Reduction Potentials and Acid Dissociation Constants for Guanine Oxidation Intermediates and Products. J Phys Chem B 2013; 117:9518-31. [DOI: 10.1021/jp4062412] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brian T. Psciuk
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| |
Collapse
|
18
|
Nguyen KV, Burrows CJ. Whence flavins? Redox-active ribonucleotides link metabolism and genome repair to the RNA world. Acc Chem Res 2012; 45:2151-9. [PMID: 23054469 DOI: 10.1021/ar300222j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Present-day organisms are under constant environmental stress that damages bases in DNA, leading to mutations. Without DNA repair processes to correct these errors, such damage would be catastrophic. Organisms in all kingdoms have repair processes ranging from direct reversal to base excision and nucleotide excision repair, and the recently characterized giant viruses also include these mechanisms. At what point in the evolution of genomes did active repair mechanisms become critical? In particular, how did early RNA genomes protect themselves from UV photodamage that would have hampered nonenzymatic replication and led to a mutation rate too high to pass on accurate sequence information from one generation to the next? Photolyase is a widespread and phylogenetically ancient enzyme that utilizes longer wavelength light to cleave thymine dimers in DNA produced via photodamage. The protein serves as a binding scaffold but does not contribute to the catalytic chemistry; the action of the dinucleotide cofactor FADH(2) breaks the chemical bonds. This small bit of RNA, hailed as a "fossil of the RNA World," contains the flavin heterocycle, whose redox activity has been harnessed for myriad functions of life from metabolism to DNA repair. In present-day biochemistry, flavin biosynthesis begins with guanosine and proceeds through seven steps catalyzed by protein-based enzymes. This leads to the question of how flavins originally evolved. Did the RNA world include ancestral RNA bases with greater redox activity than G, A, C, and U that were capable of photorepair of uracil dimers? Could those ancestral bases have chemically evolved to the current flavin structure? Or did flavins already exist from prebiotic chemical synthesis? And were they then co-opted as catalysts for repair sometime after metabolism was established? In this Account, we analyze simple derivatives of guanosine and other bases that show two prerequisites for flavin-like photolyase activity: a significantly lowered one-electron reduction potential and a red-shifted adsorption spectrum that facilitates excited-state electron transfer in a spectral window that does not produce cyclobutane pyrimidine dimers. Curiously, the best candidate for a primordial flavin is a base damage product, 8-oxo-7,8-dihydroguanine (8-oxoGua or "OG"). Other redox-active ribonucleotides include 5-hydroxycytidine and 5-hydroxyuridine, which display some of the characteristics of flavins, but might also behave like NADH.
Collapse
Affiliation(s)
- Khiem Van Nguyen
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
19
|
Jena NR, Mishra PC. Formation of ring-opened and rearranged products of guanine: mechanisms and biological significance. Free Radic Biol Med 2012; 53:81-94. [PMID: 22583701 DOI: 10.1016/j.freeradbiomed.2012.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/30/2012] [Accepted: 04/06/2012] [Indexed: 11/16/2022]
Abstract
DNA damage by endogenous and exogenous agents is a serious concern, as the damaged products can affect genome integrity severely. Damage to DNA may arise from various factors such as DNA base modifications, strand break, inter- and intrastrand crosslinks, and DNA-protein crosslinks. Among these factors, DNA base modification is a common and important form of DNA damage that has been implicated in mutagenesis, carcinogenesis, and many other pathological conditions. Among the four DNA bases, guanine (G) has the smallest oxidation potential, because of which it is frequently modified by reactive species, giving rise to a plethora of lethal lesions. Similarly, 8-oxo-7,8-dihydroguanine (8-oxoG), an oxidatively damaged guanine lesion, also undergoes various degradation reactions giving rise to several mutagenic species. The various products formed from reactions of G or 8-oxoG with different reactive species are mainly 2,6-diamino-4-oxo-5-formamidopyrimidine, 2,5-diamino-4H-imidazolone, 2,2,4-triamino-5-(2H)-oxazolone, 5-guanidino-4-nitroimidazole, guanidinohydantoin, spiroiminodihydantoin, cyanuric acid, parabanic acid, oxaluric acid, and urea, among others. These products are formed from either ring opening or ring opening and subsequent rearrangement. The main aim of this review is to provide a comprehensive overview of various possible reactions and the mechanisms involved, after which these ring-opened and rearranged products of guanine would be formed in DNA. The biological significance of oxidatively damaged products of G is also discussed.
Collapse
Affiliation(s)
- N R Jena
- Department of Physics, Indian Institute of Information Technology, Design and Manufacturing, Khamaria, Jabalpur 482005, India.
| | | |
Collapse
|
20
|
Hepel M, Stobiecka M, Peachey J, Miller J. Intervention of glutathione in pre-mutagenic catechol-mediated DNA damage in the presence of copper(II) ions. Mutat Res 2012; 735:1-11. [PMID: 22683503 DOI: 10.1016/j.mrfmmm.2012.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 05/25/2012] [Accepted: 05/29/2012] [Indexed: 11/28/2022]
Abstract
The catechol-mediated DNA damage in the presence of Cu(II) ions involves oxidation of guanine to 8-oxoguanine (8-oxoG) and DNA strand scission. It proceeds through the reactive oxygen species (ROS) generation. The mutagenicity of 8-oxoG lesions is due to its miscoding propensity reflected in GC→TA transversion taking place during the DNA repair process. To gain new insights into the nature of catechol-mediated DNA damage and its prevention, we have investigated the changes in DNA melting characteristics and 8-oxoG formation as the indicators of DNA damage in a model calf-thymus DNA system. A novel fluorescence method for DNA melting temperature determination, based on DAPI fluorescent-probe staining, has been proposed. The DNA melting-onset temperature has been found to be more sensitive to DNA damage than the standard melting temperature due to the increased width of the melting transition observed in oxidatively damaged DNA. We have found that the efficiency of Fenton cascade in generating DNA-damaging ROS is higher for catechol than for GSH, two strong antioxidants, mainly due to the much longer distance between ROS-generating radical group in GS to nucleobases than that of semiquinone radical group to nucleobases (2.1nm vs. 0.27nm), making the ROS transport from GSH an order of magnitude less likely to damage DNA because of short lifetime of HO radicals. The antioxidant and DNA-protecting behaviors of GSH have been elucidated. We have found that the redox potential of GSH/GSSG couple is lower than that of catechol/semiquinone couple. Hence, GSH keeps catechol in the reduced state, thereby shutting down the initial step of the catechol-mediated Fenton cascade. The catechol-induced DNA damage in the presence of Cu(II) ions has also been confirmed in studies of ON-OFF hairpin-oligonucleotide beacons.
Collapse
Affiliation(s)
- Maria Hepel
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, United States.
| | | | | | | |
Collapse
|
21
|
Calculation of the stabilization energies of oxidatively damaged guanine base pairs with guanine. Molecules 2012; 17:6705-15. [PMID: 22728364 PMCID: PMC6268328 DOI: 10.3390/molecules17066705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 05/18/2012] [Accepted: 05/25/2012] [Indexed: 02/05/2023] Open
Abstract
DNA is constantly exposed to endogenous and exogenous oxidative stresses. Damaged DNA can cause mutations, which may increase the risk of developing cancer and other diseases. G:C-C:G transversions are caused by various oxidative stresses. 2,2,4-Triamino-5(2H)-oxazolone (Oz), guanidinohydantoin (Gh)/iminoallantoin (Ia) and spiro-imino-dihydantoin (Sp) are known products of oxidative guanine damage. These damaged bases can base pair with guanine and cause G:C-C:G transversions. In this study, the stabilization energies of these bases paired with guanine were calculated in vacuo and in water. The calculated stabilization energies of the Ia:G base pairs were similar to that of the native C:G base pair, and both bases pairs have three hydrogen bonds. By contrast, the calculated stabilization energies of Gh:G, which form two hydrogen bonds, were lower than the Ia:G base pairs, suggesting that the stabilization energy depends on the number of hydrogen bonds. In addition, the Sp:G base pairs were less stable than the Ia:G base pairs. Furthermore, calculations showed that the Oz:G base pairs were less stable than the Ia:G, Gh:G and Sp:G base pairs, even though experimental results showed that incorporation of guanine opposite Oz is more efficient than that opposite Gh/Ia and Sp.
Collapse
|
22
|
Delaney S, Jarem DA, Volle CB, Yennie CJ. Chemical and biological consequences of oxidatively damaged guanine in DNA. Free Radic Res 2012; 46:420-41. [PMID: 22239655 DOI: 10.3109/10715762.2011.653968] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Of the four native nucleosides, 2'-deoxyguanosine (dGuo) is most easily oxidized. Two lesions derived from dGuo are 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy)∙dGuo. Furthermore, while steady-state levels of 8-oxodGuo can be detected in genomic DNA, it is also known that 8-oxodGuo is more easily oxidized than dGuo. Thus, 8-oxodGuo is susceptible to further oxidation to form several hyperoxidized dGuo products. This review addresses the structural impact, the mutagenic and genotoxic potential, and biological implications of oxidatively damaged DNA, in particular 8-oxodGuo, Fapy∙dGuo, and the hyperoxidized dGuo products.
Collapse
Affiliation(s)
- Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | | | | | | |
Collapse
|
23
|
Solivio MJ, Nemera DB, Sallans L, Merino EJ. Biologically relevant oxidants cause bound proteins to readily oxidatively cross-link at Guanine. Chem Res Toxicol 2012; 25:326-36. [PMID: 22216745 DOI: 10.1021/tx200376e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative DNA-protein cross-links have received less attention than other types of DNA damage and remain as one of the least understood types of oxidative lesion. A model system using ribonuclease A and a 27-nucleotide DNA was used to determine the propensity of oxidative cross-linking to occur in the presence of oxidants. Cross-link formation was examined using four different oxidation systems that generate singlet oxygen, superoxide, and metal-based Fenton reactions. It is shown that oxidative cross-linking occurs in yields ranging from 14% to a maximal yield of 61% in all oxidative systems when equivalent concentrations of DNA and protein are present. Because singlet oxygen is the most efficient oxidation system in generating DNA-protein cross-links, it was chosen for further analyses. Cross-linking occurred with single-stranded DNA binding protein and not with bovine serum albumin. Addition of salt lowered nonspecific binding affinity and lowered cross-link yield by up to 59%. The yield of cross-linking increased with increased ratios of protein compared with DNA. Cross-linking was highly dependent on the number of guanines in a DNA sequence. Loss of guanine content on the 27-nucleotide DNA led to nearly complete loss in cross-linking, while primer extension studies showed cross-links to predominantly occur at guanine base on a 100-nucleotide DNA. The chemical species generated were examined using two peptides derived from the ribonuclease A sequence, N-acetyl-AAAKF and N-acetyl-AYKTT, which were cross-linked to 2'-deoxyguanosine. The cross-link products were spiroiminodihydantoin, guanidinohydantoin, and tyrosyl-based adducts. Formation of tyrosine-based adducts may be competitive with the more well-studied lysine-based cross-links. We conclude that oxidative cross-links may be present at high levels in cells since the propensity to oxidatively cross-link is high and so much of the genomic DNA is coated with protein.
Collapse
Affiliation(s)
- Morwena J Solivio
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | | | | | | |
Collapse
|