1
|
Nagar N, Saxena H, Pathak A, Mishra A, Poluri KM. A review on structural mechanisms of protein-persistent organic pollutant (POP) interactions. CHEMOSPHERE 2023; 332:138877. [PMID: 37164191 DOI: 10.1016/j.chemosphere.2023.138877] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
With the advent of the industrial revolution, the accumulation of persistent organic pollutants (POPs) in the environment has become ubiquitous. POPs are halogen-containing organic molecules that accumulate, and remain in the environment for a long time, thus causing toxic effects in living organisms. POPs exhibit a high affinity towards biological macromolecules such as nucleic acids, proteins and lipids, causing genotoxicity and impairment of homeostasis in living organisms. Proteins are essential members of the biological assembly, as they stipulate all necessary processes for the survival of an organism. Owing to their stereochemical features, POPs and their metabolites form energetically favourable complexes with proteins, as supported by biological and dose-dependent toxicological studies. Although individual studies have reported the biological aspects of protein-POP interactions, no comprehensive study summarizing the structural mechanisms, thermodynamics and kinetics of protein-POP complexes is available. The current review identifies and classifies protein-POP interaction according to the structural and functional basis of proteins into five major protein targets, including digestive and other enzymes, serum proteins, transcription factors, transporters, and G-protein coupled receptors. Further, analysis detailing the molecular interactions and structural mechanism evidenced that H-bonds, van der Waals, and hydrophobic interactions essentially mediate the formation of protein-POP complexes. Moreover, interaction of POPs alters the protein conformation through kinetic and thermodynamic processes like competitive inhibition and allostery to modulate the cellular signalling processes, resulting in various pathological conditions such as cancers and inflammations. In summary, the review provides a comprehensive insight into the critical structural/molecular aspects of protein-POP interactions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Harshi Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Aakanksha Pathak
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
2
|
Kitamura S. [Effect of the Metabolic Modification of Environmental Chemicals on Endocrine-disrupting Activity]. YAKUGAKU ZASSHI 2018; 138:693-713. [PMID: 29710015 DOI: 10.1248/yakushi.17-00214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endocrine-disrupting activities of various environmental chemicals are metabolically activated. For example, diphenyls, styrene oligomers, chalcones, trans-stilbene and 2-nitrofluorene are not estrogens, but after incubation with liver microsomes, their metabolites show estrogenic activities. Thus, these chemicals are estrogenically activated by the cytochrome P450 system. In contrast, the antiandrogenic activity of fenthion, an organophosphorus insecticide, is abolished after metabolism to sulfoxide and sulfone derivatives. Structural requirements of twenty bisphenol A related compounds, as well as various benzophenones, for estrogenic and antiandrogenic activities have been investigated. The estrogenic and antiandrogenic activities of Benzophenone 3, a representative UV absorbant, are activated by oxidative metabolism. Parabens (used as antimicrobial agents) exhibit estrogenic activity, and their potency shows a bell-shaped curve between C1 (methylparaben) and C12 (dodecylparaben) parabens. The AhR ligand activity of indirubin is decreased by metabolism. Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDE) are activated by hydroxylation to show estrogenic and thyroid hormone-disrupting activities. Halogen adjacent to a hydroxyl group is essential for thyroid hormone-disrupting activity. Tetrabromobisphenol A, tetrachlorobisphenol A and tetramethylbisphenol A also exhibit thyroid hormone-disrupting activity. Amphibian metamorphosis of tadpoles to frogs is affected by hydroxylated PCB, hydroxylated PBDE and bisphenol A derivatives. These chemicals suppress thyroid hormone-dependent metamorphosis, acting as antagonists of thyroid hormone. Thus, metabolic modification can have a dramatic impact on the endocrine-disrupting activities of environmental chemicals.
Collapse
|
3
|
Nomiyama K, Hirakawa S, Eguchi A, Kanbara C, Imaeda D, Yoo J, Kunisue T, Kim EY, Iwata H, Tanabe S. Toxicological assessment of polychlorinated biphenyls and their metabolites in the liver of Baikal seal (Pusa sibirica). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13530-13539. [PMID: 25343573 DOI: 10.1021/es5043386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have previously reported that high accumulation of dioxins and related compounds induced cytochrome P450 (CYP 1s) isozymes in the liver of wild Baikal seals, implying the enhanced hydroxylation of polychlorinated biphenyls (PCBs). The present study attempted to elucidate the residue concentrations and patterns of PCBs and hydroxylated PCBs (OH-PCBs) in the livers of Baikal seals. The hepatic residue concentrations were used to assess the potential effects of PCBs and OH-PCBs in combination with the analyses of serum thyroid hormones, hepatic mRNA levels, and biochemical markers. The hepatic expression levels of CYP1 genes were positively correlated with the concentration of each OH-PCB congener. This suggests chronic induction of these CYP1 isozymes by exposure to PCBs and hydroxylation of PCBs induced by CYP 1s. Hepatic mRNA expression monitoring using a custom microarray showed that chronic exposure to PCBs and their metabolites alters the gene expression levels related to oxidative stress, iron ion homeostasis, and inflammatory responses. In addition, the concentrations of OH-PCBs were negatively correlated with L-thyroxine (T4) levels and the ratios of 3,3',5-triiodo-L-thyronine (T3)/reverse 3,3',5'-triiodo-L-thyroninee (rT3). These observations imply that Baikal seals contaminated with high levels of OH-PCBs may undergo the disruption of mechanisms related to the formation (or metabolism) of T3 and T4 in the liver.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Imaeda D, Nomiyama K, Kunisue T, Iwata H, Tsydenova O, Amano M, Petrov EA, Batoev VB, Tanabe S. Blood levels of polychlorinated biphenyls and their hydroxylated metabolites in Baikal seals (Pusa sibirica): emphasis on interspecies comparison, gender difference and association with blood thyroid hormone levels. CHEMOSPHERE 2014; 114:1-8. [PMID: 25113177 DOI: 10.1016/j.chemosphere.2014.03.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
We have previously demonstrated that Baikal seals (Pusa sibirica) are still being exposed to polychlorinated biphenyls (PCBs), and the population is at risk. In the present study, we measured the residue levels of PCBs and their hydroxylated metabolites (OH-PCBs) in the blood of Baikal seals and assessed the impact of OH-PCBs on the thyroid function. Blood concentrations of PCBs and OH-PCBs were in the range of 2.8-130 ng g(-1)wet wt. and 0.71-4.6 ng g(-1)wetwt., respectively. Concentrations of higher-chlorinated OH-PCBs (hexa- to octa-PCBs) were more than 70% to total OH-PCB concentrations, indicating Baikal seals are mostly risked by higher-chlorinated OH-PCBs. High levels of 4OH-CB146 and 4OH-CB187 and low levels of 4OH-CB107/4'OH-CB108 found in Baikal seals were different from those in other phocidae species, suggesting the unique drug-metabolizing enzyme activities and/or contamination sources in this species. Concentrations of some OH-PCBs in males were significantly higher than those in females. These results suggest that these isomers may be preferentially transferred from mother to pup via cord blood. However, concentrations of almost all the isomers were not significantly correlated with the levels of blood total T3 and T4, implying less impact of PCB-related compounds on the thyroid hormone circulation.
Collapse
Affiliation(s)
- Daisuke Imaeda
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan.
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Oyuna Tsydenova
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Masao Amano
- Faculty of Fisheries, Nagasaki University, Bunkyo-cho 1-14, Nagasaki 852-8521, Japan
| | - Evgeny A Petrov
- The Eastern-Siberian Scientific and Production Fisheries Center, "VOSTSIBRYBCENTER", Ulan-Ude, Buryatia 670034, Russia
| | - Valeriy B Batoev
- Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Buryatia 670047, Russia
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| |
Collapse
|
5
|
Hashimoto S, Yoshimura H, Okada K, Uramaru N, Sugihara K, Kitamura S, Imaoka S. Effects of polybrominated diphenyl ethers (PBDEs) and their derivatives on protein disulfide isomerase activity and growth hormone release of GH3 cells. Chem Res Toxicol 2012; 25:656-63. [PMID: 22201216 DOI: 10.1021/tx200374s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been used in a variety of consumer products such as flame retardants and recently have been known to be widespread environmental pollutants, which probably affect biological functions of mammalian cells. However, the risk posed by PBDE metabolites has not been clarified. Our previous study suggested that bisphenol A (BPA), an endocrine-disrupting chemical, binds to protein disulfide isomerase (PDI) and inhibits its activity. PDI is an isomerase enzyme in the endoplasmic reticulum and facilitates the formation or cleavage of disulfide bonds. PDI consists of a, b, b', and a' domains and the c region, with the a and a' domains having isomerase active sites. In the present study, we tested the effects of 10 kinds of PBDE compounds and their metabolites on PDI. OH-PBDEs specifically inhibited the isomerase activity of PDI, with 4'-OH-PBDE more effective than 2' (or 2)-OH-PBDEs. 4'-OH-PBDE inhibited the isomerase activity of the b'a'c fragment but not that of ab and a'c, suggesting that the b' domain of PDI is essential for the inhibition by 4'-OH-PBDE. We also investigated the effects of these chemicals on the production of growth hormone (GH) in GH3 cells. In GH3 cells, levels of mRNA and protein of GH stimulated by T(3) were reduced by 4'-OH-PBDE and 4'-MeO-PBDE. The reduction in GH expression caused by these compounds was not changed by the overexpression or knockdown of PDI in GH3 cells, while these manipulations of PDI levels significantly suppressed the expression of GH. These results suggest that the biological effects of PBDEs differed depending on their brominated and hydroxylated positions.
Collapse
Affiliation(s)
- Shoko Hashimoto
- Research Center for Environmental Bioscience and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Hashimoto S, Shiomoto K, Okada K, Imaoka S. The binding site of bisphenol A to protein disulphide isomerase. ACTA ACUST UNITED AC 2011; 151:35-45. [DOI: 10.1093/jb/mvr122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Hashida T, Kotake Y, Ohta S. Protein disulfide isomerase knockdown-induced cell death is cell-line-dependent and involves apoptosis in MCF-7 cells. J Toxicol Sci 2011; 36:1-7. [DOI: 10.2131/jts.36.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tomoyo Hashida
- Graduate School of Biomedical Sciences, Hiroshima University
| | - Yaichiro Kotake
- Graduate School of Biomedical Sciences, Hiroshima University
| | - Shigeru Ohta
- Graduate School of Biomedical Sciences, Hiroshima University
| |
Collapse
|
8
|
Chemical stress on protein disulfide isomerases and inhibition of their functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:121-66. [PMID: 21875564 DOI: 10.1016/b978-0-12-386037-8.00003-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein disulfide isomerase (PDI) is a folding assistant in the endoplasmic reticulum (ER) of eukaryotic cells. PDI has multiple roles, acting as a chaperone, a binding partner of other proteins, and a hormone reservoir as well as a disulfide isomerase in the formation of disulfide bonds. PDI only interacts covalently with the cysteines of its substrates, but also binds a variety of peptides/proteins and small chemical ligands such as thyroid hormone. Oxidative stress and nitrosative stress can cause damage to chaperones, protein misfolding, and neurodegenerative disease, by affecting the functional integrity of PDI. There are 20 putative PDI-family members in the ER of human cells, but their functional differentiation is far from complete. This review discusses recent advances in our understanding of the mammalian PDI family of enzymes and focuses on their functional properties and interaction with substrates and small chemical ligands.
Collapse
|
9
|
Okada K, Hashimoto S, Imaoka S. Biological Functions of Protein Disulfide Isomerase as a Target of Phenolic Endocrine-disrupting Chemicals. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazushi Okada
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Shoko Hashimoto
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Susumu Imaoka
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|