1
|
Mussulini BHM, Wasilewski M, Chacinska A. Methods to monitor mitochondrial disulfide bonds. Methods Enzymol 2024; 706:125-158. [PMID: 39455213 DOI: 10.1016/bs.mie.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria contain numerous proteins that utilize the chemistry of cysteine residues, which can be reversibly oxidized. These proteins are involved in mitochondrial biogenesis, protection against oxidative stress, metabolism, energy transduction to adenosine triphosphate, signaling and cell death among other functions. Many proteins located in the mitochondrial intermembrane space are imported by the mitochondrial import and assembly pathway the activity of which is based on the reversible oxidation of cysteine residues and oxidative trapping of substrates. Oxidative modifications of cysteine residues are particularly difficult to study because of their labile character. Here we present techniques that allow for monitoring the oxidative state of mitochondrial proteins as well as to investigate the mitochondrial import and assembly pathway. This chapter conveys basic concepts on sample preparation and techniques to monitor the redox state of cysteine residues in mitochondrial proteins as well as the strategies to study mitochondrial import and assembly pathway.
Collapse
|
2
|
Ndreu L, Sasse S, Karlberg AT, Karlsson I. Haptenation of Macrophage Migration Inhibitory Factor: A Potential Biomarker for Contact Hypersensitivity. FRONTIERS IN TOXICOLOGY 2022; 4:856614. [PMID: 35465102 PMCID: PMC9019732 DOI: 10.3389/ftox.2022.856614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
The immunological response in contact hypersensitivity is incited by small electrophilic compounds, known as haptens, that react with endogenous proteins after skin absorption. However, the identity of hapten-modified proteins seen as immunogenic remains as yet largely unknown. In a recent study, we have for the first time identified a hapten-modified protein in the local lymph nodes of mice treated topically with the model hapten tetramethylrhodamine isothiocyanate (TRITC). The TRITC modification was located on the N-terminal proline of the protein macrophage migration inhibitory factor (MIF). The focus of the current study was to investigate the presence of the same hapten-protein conjugate in blood samples from mice treated topically with TRITC. Furthermore, TRITC modifications of the two major blood proteins, namely hemoglobin (Hb) and albumin (Alb), as well as TRITC modifications of MIF other than the N-terminal proline, were examined. Following incubation with different molar ratios of TRITC, a proteomic approach was applied to characterize conjugate formation of the three aforementioned proteins, using high resolution mass spectrometry (HRMS). The targeted screening of the TRITC-treated mice blood and lymph node samples for these sites led to the identification of only the same TRITC-MIF conjugate previously detected in the lymph nodes. No Hb and Alb conjugates were detected. Quantification of both the TRITC-modified and unmodified N-terminal peptide of MIF in blood and lymph node samples gave interesting insights of MIF’s role in murine contact hypersensitivity. Incubation of MIF with four different haptens encompassing different reactivity mechanisms and potencies, showed adduct formation at different amino acid residues, suggesting that MIF can be the preferred target for a wide variety of haptens. The present study provides essential progress toward understanding of hapten-protein conjugate formation in contact hypersensitivity and identifies hapten-modified MIF as a potential biomarker for this condition. Further investigation of MIF as a target protein can be a next step to determine if MIF is a biomarker that can be used to develop better diagnostic tools and targeted therapeutics for individuals with allergic contact dermatitis.
Collapse
Affiliation(s)
- Lorena Ndreu
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Samantha Sasse
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Isabella Karlsson
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
- *Correspondence: Isabella Karlsson,
| |
Collapse
|
3
|
Schupp T, Plehiers PM. Absorption, distribution, metabolism, and excretion of methylene diphenyl diisocyanate and toluene diisocyanate: Many similarities and few differences. Toxicol Ind Health 2022; 38:500-528. [PMID: 35301910 DOI: 10.1177/07482337211060133] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) are high production volume chemicals used for the manufacture of polyurethanes. For both substances, the most relevant adverse health effects after overexposure in the workplace are isocyanate-induced asthma, lung function decrement and, to a much lesser extent, skin effects. Over the last two decades many articles have addressed the reactivity of MDI and TDI in biological media and the associated biochemistry, which increased the understanding of their biochemical and physiological behavior. In this review, these new insights with respect to similarities and differences concerning the adsorption, distribution, metabolism, and excretion (ADME) of these two diisocyanates and the implications on their toxicities are summarized. Both TDI and MDI show very similar behavior in reactivity to biological macromolecules, distribution, metabolism, and excretion. Evidence suggests that the isocyanate (NCO) group is scavenged at the portal-of-entry and is not systemically available in unbound reactive form. This explains the lack of other than portal-of-entry toxicity observed in repeated-dose inhalation tests.
Collapse
Affiliation(s)
- Thomas Schupp
- 39002Münster University of Applied Sciences, Steinfurt, Germany
| | | |
Collapse
|
4
|
Karlsson I, Samuelsson K, Simonsson C, Stenfeldt AL, Nilsson U, Ilag LL, Jonsson C, Karlberg AT. The Fate of a Hapten - From the Skin to Modification of Macrophage Migration Inhibitory Factor (MIF) in Lymph Nodes. Sci Rep 2018; 8:2895. [PMID: 29440696 PMCID: PMC5811565 DOI: 10.1038/s41598-018-21327-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/31/2018] [Indexed: 12/02/2022] Open
Abstract
Skin (contact) allergy, the most prevalent form of immunotoxicity in humans, is caused by low molecular weight chemicals (haptens) that penetrate stratum corneum and modify endogenous proteins. The fate of haptens after cutaneous absorption, especially what protein(s) they react with, is largely unknown. In this study the fluorescent hapten tetramethylrhodamine isothiocyanate (TRITC) was used to identify hapten-protein conjugates in the local lymph nodes after topical application, as they play a key role in activation of the adaptive immune system. TRITC interacted with dendritic cells but also with T and B cells in the lymph nodes as shown by flow cytometry. Identification of the most abundant TRITC-modified protein in lymph nodes by tandem mass spectrometry revealed TRITC-modification of the N-terminal proline of macrophage migration inhibitory factor (MIF) – an evolutionary well-conserved protein involved in cell-mediated immunity and inflammation. This is the first time a hapten-modified protein has been identified in lymph nodes after topical administration of the hapten. Most haptens are electrophiles and can therefore modify the N-terminal proline of MIF, which has an unusually reactive amino group under physiological conditions; thus, modification of MIF by haptens may have an immunomodulating role in contact allergy as well as in other immunotoxicity reactions.
Collapse
Affiliation(s)
- Isabella Karlsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
| | - Kristin Samuelsson
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Carl Simonsson
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Lena Stenfeldt
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Nilsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Leopold L Ilag
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Charlotte Jonsson
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Natsch A, Emter R. Reaction Chemistry to Characterize the Molecular Initiating Event in Skin Sensitization: A Journey to Be Continued. Chem Res Toxicol 2016; 30:315-331. [DOI: 10.1021/acs.chemrestox.6b00365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andreas Natsch
- Biosciences, Givaudan Schweiz AG, Ueberlandstrasse 138, CH-8600 Duebendorf, Switzerland
| | - Roger Emter
- Biosciences, Givaudan Schweiz AG, Ueberlandstrasse 138, CH-8600 Duebendorf, Switzerland
| |
Collapse
|
6
|
Lang M, Giménez-Arnau E, Lepoittevin JP. Is it possible to assess the allergenicity of mixtures based onin chemicomethods? Preliminary results on common fragrance aldehydes. FLAVOUR FRAG J 2016. [DOI: 10.1002/ffj.3359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Matthieu Lang
- Laboratoire de Dermatochimie, Institut de Chimie de Strasbourg (CNRS UMR 7177); Université de Strasbourg, Institut le Bel, 4 Rue Blaise Pascal; 67081 Strasbourg France
| | - Elena Giménez-Arnau
- Laboratoire de Dermatochimie, Institut de Chimie de Strasbourg (CNRS UMR 7177); Université de Strasbourg, Institut le Bel, 4 Rue Blaise Pascal; 67081 Strasbourg France
| | - Jean-Pierre Lepoittevin
- Laboratoire de Dermatochimie, Institut de Chimie de Strasbourg (CNRS UMR 7177); Université de Strasbourg, Institut le Bel, 4 Rue Blaise Pascal; 67081 Strasbourg France
| |
Collapse
|
7
|
Peptide Reactivity of Isothiocyanates--Implications for Skin Allergy. Sci Rep 2016; 6:21203. [PMID: 26883070 PMCID: PMC4756319 DOI: 10.1038/srep21203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/15/2016] [Indexed: 11/29/2022] Open
Abstract
Skin allergy is a chronic condition that affects about 20% of the population of the western world. This disease is caused by small reactive compounds, haptens, able to penetrate into the epidermis and modify endogenous proteins, thereby triggering an immunogenic reaction. Phenyl isothiocyanate (PITC) and ethyl isothiocyanate (EITC) have been suggested to be responsible for allergic skin reactions to chloroprene rubber, the main constituent of wetsuits, orthopedic braces, and many types of sports gear. In the present work we have studied the reactivity of the isothiocyanates PITC, EITC, and tetramethylrhodamine-6-isothiocyanate (6-TRITC) toward peptides under aqueous conditions at physiological pH to gain information about the types of immunogenic complexes these compounds may form in the skin. We found that all three compounds reacted quickly with cysteine moieties. For PITC and 6-TRITC the cysteine adducts decomposed over time, while stable adducts with lysine were formed. These experimental findings were verified by DFT calculations. Our results may suggest that the latter are responsible for allergic reactions to isothiocyanates. The initial adduct formation with cysteine residues may still be of great importance as it prevents hydrolysis and facilitates the transport of isothiocyanates into epidermis where they can form stable immunogenic complexes with lysine-containing proteins.
Collapse
|
8
|
Debeuckelaere C, Moussallieh FM, Elbayed K, Namer IJ, Berl V, Giménez-Arnau E, Lepoittevin JP. In situ chemical behaviour of methylisothiazolinone (MI) and methylchloroisothiazolinone (MCI) in reconstructed human epidermis: a new approach to the cross-reactivity issue. Contact Dermatitis 2016; 74:159-67. [PMID: 26899805 DOI: 10.1111/cod.12524] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/22/2015] [Accepted: 11/22/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Methylisothiazolinone (MI) [with methylchloroisothiazolinone (MCI) in a ratio of 1:3, a well-recognized allergenic preservative] was released as an individual preservative in the 2000s for industrial products and in 2005 for cosmetics. The high level of exposure to MI since then has provoked an epidemic of contact allergy to MI, and an increase in MI/MCI allergy. There are questions concerning the MI/MCI cross-reaction pattern. OBJECTIVES To bring a new perspective on the MI/MCI cross-reactivity issue by studying their in situ chemical behaviour in 3D reconstructed human epidermis (RHE). METHODS MI and MCI were synthesized with (13) C substitution at positions C-4/C-5 and C-5, respectively. Their in situ chemical behaviours in an RHE model were followed by use of the high-resolution magic angle spinning nuclear magnetic resonance technique. RESULTS MI was found to react exclusively with cysteine thiol residues, whereas MCI reacted with histidines and lysines. The reaction mechanisms were found to be different for MI and MCI, and the adducts formed had different molecular structures. CONCLUSION In RHE, different MI/MCI reactions towards different nucleophilic amino acids were observed, making it difficult to explain cross-reactivity between MI and MCI.
Collapse
Affiliation(s)
- Camille Debeuckelaere
- Dermatochemistry Laboratory, Institut de Chimie de Strasbourg, UMR 7177/Université de Strasbourg - CNRS, 67081, Strasbourg, France
| | - François-Marie Moussallieh
- Dermatochemistry Laboratory, Institut de Chimie de Strasbourg, UMR 7177/Université de Strasbourg - CNRS, 67081, Strasbourg, France.,Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), UMR 7357/Université de Strasbourg - CNRS, 674012, Illkirch, France
| | - Karim Elbayed
- Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), UMR 7357/Université de Strasbourg - CNRS, 674012, Illkirch, France
| | - Izzie-Jacques Namer
- Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), UMR 7357/Université de Strasbourg - CNRS, 674012, Illkirch, France
| | - Valérie Berl
- Dermatochemistry Laboratory, Institut de Chimie de Strasbourg, UMR 7177/Université de Strasbourg - CNRS, 67081, Strasbourg, France
| | - Elena Giménez-Arnau
- Dermatochemistry Laboratory, Institut de Chimie de Strasbourg, UMR 7177/Université de Strasbourg - CNRS, 67081, Strasbourg, France
| | - Jean-Pierre Lepoittevin
- Dermatochemistry Laboratory, Institut de Chimie de Strasbourg, UMR 7177/Université de Strasbourg - CNRS, 67081, Strasbourg, France
| |
Collapse
|
9
|
Debeuckelaere C, Berl V, Elbayed K, Moussallieh FM, Namer IJ, Lepoittevin JP. Matrix Effect of Human Reconstructed Epidermis on the Chemoselectivity of a Skin Sensitizing α-Methylene-γ-Butyrolactone: Consequences for the Development of in Chemico Alternative Methods. Chem Res Toxicol 2015; 28:2192-8. [DOI: 10.1021/acs.chemrestox.5b00363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camille Debeuckelaere
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
| | - Valérie Berl
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
| | - Karim Elbayed
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
- Laboratoire
des sciences de l’ingénieur, de l’informatique
et de l’imagerie (ICube), CNRS UMR 7357 and University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - François-Marie Moussallieh
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
- Laboratoire
des sciences de l’ingénieur, de l’informatique
et de l’imagerie (ICube), CNRS UMR 7357 and University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Izzie-Jacques Namer
- Laboratoire
des sciences de l’ingénieur, de l’informatique
et de l’imagerie (ICube), CNRS UMR 7357 and University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - J.-P. Lepoittevin
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
| |
Collapse
|
10
|
Wisnewski AV, Liu J, Colangelo CM. Glutathione reaction products with a chemical allergen, methylene-diphenyl diisocyanate, stimulate alternative macrophage activation and eosinophilic airway inflammation. Chem Res Toxicol 2015; 28:729-37. [PMID: 25635619 DOI: 10.1021/tx5005002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Isocyanates have been a leading chemical cause of occupational asthma since their utility for generating polyurethane was first recognized over 60 years ago, yet the mechanisms of isocyanate asthma pathogenesis remain unclear. The present study provides in vivo evidence that a GSH mediated pathway underlies asthma-like eosinophilic inflammatory responses to respiratory tract isocyanate exposure. In naïve mice, a mixture of GSH reaction products with the chemical allergen, methylene-diphenyl diisocyanate (MDI), induced innate immune responses, characterized by significantly increased airway levels of Chitinase YM-1 and IL-12/IL-23β (but not α) subunit. However, in mice immunologically sensitized to MDI via prior skin exposure, identical GSH-MDI doses induced substantially greater inflammatory responses, including significantly increased airway eosinophil numbers and mucus production, along with IL-12/IL-23β, chitinases, and other indicators of alternative macrophage activation. The "self"-protein albumin in mouse airway fluid was uniquely modified by GSH-MDI at position (414)K, a preferred site of MDI reactivity on human albumin. The (414)K-MDI conjugation appears to covalently cross-link GSH to albumin via GSH's NH2-terminus, a unique conformation possibly resulting from cyclized mono(GSH)-MDI or asymmetric (S,N'-linked) bis(GSH)-MDI conjugates. Together, the data support a possible thiol mediated transcarbamoylating mechanism linking MDI exposure to pathogenic eosinophilic inflammatory responses.
Collapse
|
11
|
Natsch A, Emter R, Gfeller H, Haupt T, Ellis G. Predicting skin sensitizer potency based on in vitro data from KeratinoSens and kinetic peptide binding: global versus domain-based assessment. Toxicol Sci 2014; 143:319-32. [PMID: 25338925 DOI: 10.1093/toxsci/kfu229] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Three in vitro methods for the prediction of the skin sensitization hazard have been validated. However, predicting sensitizer potency is a key requirement for risk assessment. Here, we report a database of 312 chemicals tested in the KeratinoSens™ assay and for kinetic peptide binding. These data were used in multiple regression analysis against potency in the local lymph node assay (LLNA). The dataset covers the majority of chemicals from the validation of the LLNA to predict human potency and this subset was analyzed for prediction of human sensitization potency by in vitro data. Global analysis yields a regression of in vitro data to LLNA pEC3 with an R(2) of 60% predicting LLNA EC3 with a mean error of 3.5-fold. The highest weight in the regression has the reaction rate with peptides, followed by Nrf2-induction and cytotoxicity in KeratinoSens™. The correlation of chemicals tested positive in vitro with human data has an R(2) of 49%, which is similar to the correlation between LLNA and human data. Chemicals were then grouped into mechanistic domains based on experimentally observed peptide-adduct formation and predictions from the TIMES SS software. Predictions within these domains with a leave-one-out approach were more accurate, and for several mechanistic domains LLNA EC3 can be predicted with an error of 2- to 3-fold. However, prediction accuracy differs between domains and domain assignment cannot be made for all chemicals. Thus, this comprehensive analysis indicates that combining global and domain models to assess sensitizer potency may be a practical way forward.
Collapse
Affiliation(s)
- Andreas Natsch
- *Bioscience and Analytical Chemistry, Givaudan Schweiz AG, CH-8600 Duebendorf, Switzerland and Regulatory Affairs and Product Safety, Givaudan International SA, CH-1214 Vernier, Switzerland
| | - Roger Emter
- *Bioscience and Analytical Chemistry, Givaudan Schweiz AG, CH-8600 Duebendorf, Switzerland and Regulatory Affairs and Product Safety, Givaudan International SA, CH-1214 Vernier, Switzerland
| | - Hans Gfeller
- *Bioscience and Analytical Chemistry, Givaudan Schweiz AG, CH-8600 Duebendorf, Switzerland and Regulatory Affairs and Product Safety, Givaudan International SA, CH-1214 Vernier, Switzerland
| | - Tina Haupt
- *Bioscience and Analytical Chemistry, Givaudan Schweiz AG, CH-8600 Duebendorf, Switzerland and Regulatory Affairs and Product Safety, Givaudan International SA, CH-1214 Vernier, Switzerland
| | - Graham Ellis
- *Bioscience and Analytical Chemistry, Givaudan Schweiz AG, CH-8600 Duebendorf, Switzerland and Regulatory Affairs and Product Safety, Givaudan International SA, CH-1214 Vernier, Switzerland
| |
Collapse
|
12
|
Johansson Mali'n T, Lindberg S, Åstot C. Novel glutathione conjugates of phenyl isocyanate identified by ultra-performance liquid chromatography/electrospray ionization mass spectrometry and nuclear magnetic resonance. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:68-79. [PMID: 24446265 DOI: 10.1002/jms.3306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 06/03/2023]
Abstract
Phenyl isocyanate is a highly reactive compound that is used as a reagent in organic synthesis and in the production of polyurethanes. The potential for extensive occupational exposure to this compound makes it important to elucidate its reactivity towards different nucleophiles and potential targets in the body. In vitro reactions between glutathione and phenyl isocyanate were studied. Three adducts of glutathione with phenyl isocyanate were identified using ultra-performance liquid chromatography/electrospray ionization mass spectrometry and nuclear magnetic resonance (NMR). Mass spectrometric data for these adducts have not previously been reported. Nucleophilic attack on phenyl isocyanate occurred via either the cysteinyl thiol group or the glutamic acid α-amino group of glutathione. In addition, a double adduct was formed by the reaction of both these moieties. NMR analysis confirmed the proposed structure of the double adduct, which has not previously been described. These results suggest that phenyl isocyanate may react with free cysteines, the α-amino group and also with lysine residues whose side chain contains a primary amine.
Collapse
|
13
|
Wisnewski AV, Liu J, Redlich CA. Connecting glutathione with immune responses to occupational methylene diphenyl diisocyanate exposure. Chem Biol Interact 2013; 205:38-45. [PMID: 23791970 PMCID: PMC3767171 DOI: 10.1016/j.cbi.2013.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 05/12/2013] [Accepted: 06/03/2013] [Indexed: 02/04/2023]
Abstract
Methylene diphenyl diisocyanate (MDI) is among the leading chemical causes of occupational asthma world-wide, however, the mechanisms of disease pathogenesis remain unclear. This study tests the hypothesis that glutathione (GSH) reacts with MDI to form quasi-stable conjugates, capable of mediating the formation of MDI-conjugated "self" protein antigens, which may participate in pathogenic inflammatory responses. To test this hypothesis, an occupationally relevant dose of MDI (0.1%w/v) was reacted with varying concentrations of GSH (10μM-10mM), and the reaction products were characterized with regard to mass/structure, and ability to carbamoylate human albumin, a major carrier protein for MDI in vivo. LC-MS/MS analysis of GSH-MDI reaction products identified products possessing the exact mass of previously described S-linked bis(GSH)-MDI and its partial hydrolysis product, as well as novel cyclized GSH-MDI structures. Upon co-incubation of GSH-MDI reaction products with human albumin, MDI was rapidly transferred to specific lysines of albumin, and the protein's native conformation/charge was altered, based on electrophoretic mobility. Three types of modification were observed, intra-molecular MDI cross-linking, addition of partially hydrolyzed MDI, and addition of "MDI-GSH", where MDI's 2nd NCO had reacted with GSH's "N-terminus". Importantly, human albumin carbamoylated by GSH-MDI was specifically recognized by serum IgG from MDI exposed workers, with binding dependent upon the starting GSH concentration, pH, and NaCl levels. Together, the data define a non-enzymatic, thiol-mediated transcarbamoylating mechanism by which GSH may promote immune responses to MDI exposure, and identify specific factors that might further modulate this process.
Collapse
Affiliation(s)
- Adam V Wisnewski
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | | | | |
Collapse
|
14
|
Lalko JF, Kimber I, Gerberick GF, Foertsch LM, Api AM, Dearman RJ. The Direct Peptide Reactivity Assay: Selectivity of Chemical Respiratory Allergens. Toxicol Sci 2012; 129:421-31. [DOI: 10.1093/toxsci/kfs205] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Frauhiger BE, Ondisco MT, White PS, Templeton JL. Seeking a Mechanistic Analogue of the Water–Gas Shift Reaction: Carboxamido Ligand Formation and Isocyanate Elimination from Complexes Containing the Tp′PtMe Fragment. J Am Chem Soc 2012; 134:8902-10. [DOI: 10.1021/ja301213j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bryan E. Frauhiger
- W.R. Kenan Laboratory, Department of Chemistry, University of North at Chapel Hill Chapel Hill, North
Carolina 27599-3290, United States
| | - Matthew T. Ondisco
- W.R. Kenan Laboratory, Department of Chemistry, University of North at Chapel Hill Chapel Hill, North
Carolina 27599-3290, United States
| | - Peter S. White
- W.R. Kenan Laboratory, Department of Chemistry, University of North at Chapel Hill Chapel Hill, North
Carolina 27599-3290, United States
| | - Joseph L. Templeton
- W.R. Kenan Laboratory, Department of Chemistry, University of North at Chapel Hill Chapel Hill, North
Carolina 27599-3290, United States
| |
Collapse
|
16
|
Wisnewski AV, Hettick JM, Siegel PD. Toluene diisocyanate reactivity with glutathione across a vapor/liquid interface and subsequent transcarbamoylation of human albumin. Chem Res Toxicol 2011; 24:1686-93. [PMID: 21806041 DOI: 10.1021/tx2002433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutathione has previously been identified as a reaction target for toluene diisocyanate (TDI) in vitro and in vivo, and has been suggested to contribute to toxic and allergic reactions to exposure. In this study, the reactivity of reduced glutathione (GSH) with TDI in vitro was further investigated using a mixed phase (vapor/liquid) exposure system to model the in vivo biophysics of exposure in the lower respiratory tract. HPLC/MS/MS was used to characterize the observed reaction products. Under the conditions tested, the major reaction products between TDI vapor and GSH were S-linked bis(GSH)-TDI and to a lesser extent mono(GSH)-TDI conjugates (with one N═C═O hydrolyzed). The vapor-phase-generated GSH-TDI conjugates were capable of transcarbamoylating human albumin in a pH-dependent manner, resulting in changes in the self-protein's conformation/charge, on the basis of electrophoretic mobility under native conditions. Specific sites of human albumin-TDI conjugation, mediated by GSH-TDI, were identified (Lys(73), Lys(159), Lys(190), Lys(199), Lys(212), Lys(351), Lys(136/137), Lys(413/414), and Lys(524/525)) along with overlap with those susceptible to direct conjugation by TDI. Together, the data extend the proof-of-principle for GSH to act as a "shuttle" for a reactive form of TDI, which could contribute to clinical responses to exposure.
Collapse
Affiliation(s)
- Adam V Wisnewski
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8057, USA.
| | | | | |
Collapse
|
17
|
Chemical reactivity measurements: Potential for characterization of respiratory chemical allergens. Toxicol In Vitro 2011; 25:433-45. [DOI: 10.1016/j.tiv.2010.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 10/01/2010] [Accepted: 11/11/2010] [Indexed: 01/13/2023]
|