1
|
Giuliani C, Di Dalmazi G, Bucci I, Napolitano G. Quercetin and Thyroid. Antioxidants (Basel) 2024; 13:1202. [PMID: 39456456 PMCID: PMC11505551 DOI: 10.3390/antiox13101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Quercetin is the most abundant flavonoid present in fruits and vegetables. For its antiproliferative, antiviral, anti-inflammatory and antioxidants activities, it is an active ingredient of several herbal remedies and is available as a nutraceutical. Experimental studies performed in vitro have demonstrated that quercetin inhibits growth and function in normal thyroid cells and may act as a thyroid disruptor. These effects have also been confirmed in vivo using rodent models. Some studies have reported the ability of quercetin to interfere with the metabolism of thyroid hormones, since it inhibits the 5'-deiodinase type 1 (D1) activity in the thyroid, as well as in the liver. Besides the effects on normal thyroid cells, several experiments performed in vitro have shown a potential therapeutic role of quercetin in thyroid cancer. Indeed, quercetin inhibits the growth, the adhesion and the migration of thyroid cancer cells, and it also has redifferentiation properties in some thyroid cancer cell lines. In conclusion, these data suggest that, although its effects can be of benefit in hyperthyroidism and thyroid cancer, caution is required in the use of high doses of quercetin due to its anti-thyroid properties. Further in vivo studies are certainly needed to confirm these hypotheses.
Collapse
Affiliation(s)
- Cesidio Giuliani
- Unit of Endocrinology, Department of Medicine and Sciences of Aging and Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy; (G.D.D.); (I.B.); (G.N.)
| | | | | | | |
Collapse
|
2
|
Dong H, Friedman KP, Filiatreault A, Thomson EM, Wade MG. A high throughput screening assay for human Thyroperoxidase inhibitors. Toxicol In Vitro 2024; 101:105946. [PMID: 39349109 DOI: 10.1016/j.tiv.2024.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Rapid, human relevant assays are needed to assess potential hazards of the many chemicals in commerce. An assay of thyroid peroxidase (TPO) inhibition, using the substrate Amplex Ultra Red, was recently adapted for human TPO (AUR-hTPO). We tested a large number (788) of chemicals through this AUR-hTPO assay and compared performance with published results from an assay using enzyme from rat thyroid microsomes (AUR-rTPO). Coded chemicals, from the US EPA ToxCast Inventory, were tested in a tiered approach: 1) Initial screening at a single concentration; 2) Potency estimation for active chemicals with multiple concentrations; 3) Screening active chemicals for the non-specific activity. The assay gave consistent results for positive chemical methimazole and several positive and negative reference chemicals. hTPO inhibition was observed for 190 chemicals reported as positive in rTPO. Of these, 158 showed no confounding activity (interference due to fluorescence or non-specific protein inhibition). Comparison of all result with rTPO data and with evidence of TPO inhibition found in the literature suggest that the current assay has a higher rate of false negative but a much lower rate of false positive compared with the rTPO screen. These findings underscore the effectiveness of the AUR assay, using hTPO enzyme from engineered cell lines, to identify moderate to strong inhibitors but some improvements may be needed to detect weak TPO inhibitors.
Collapse
Affiliation(s)
- Hongyan Dong
- Hazard Identification Division, Environmental Health Science & Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA.
| | - Alain Filiatreault
- Hazard Identification Division, Environmental Health Science & Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | - Errol M Thomson
- Hazard Identification Division, Environmental Health Science & Research Bureau, Health Canada, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Michael G Wade
- Hazard Identification Division, Environmental Health Science & Research Bureau, Health, Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
Caro-Ramírez JY, Franca CA, Lavecchia M, Naso LG, Williams PAM, Ferrer EG. Exploring the potential anti-thyroid activity of Acetyl-L-carnitine: Lactoperoxidase inhibition profile, iodine complexation and scavenging power against H 2O 2. Experimental and theoretical studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124098. [PMID: 38460232 DOI: 10.1016/j.saa.2024.124098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
L-Acetylcarnitine (ALC), a versatile compound, has demonstrated beneficial effects in depression, Alzheimer's disease, cognitive impairment, and other conditions. This study focuses on its antithyroid activity. The precursor molecule, L-carnitine, inhibited the uptake of triiodothyronine (T3) and thyroxine (T4), and it is possible that ALC may reduce the iodination process of T3 and T4. Currently, antithyroid drugs are used to control the excessive production of thyroid hormones (TH) through various mechanisms: (i) forming electron donor-acceptor complexes with molecular iodine, (ii) eliminating hydrogen peroxide, and (iii) inhibiting the enzyme thyroid peroxidase. To understand the pharmacological properties of ALC, we investigated its plausible mechanisms of action. ALC demonstrated the ability to capture iodine (Kc = 8.07 ± 0.32 x 105 M-1), inhibit the enzyme lactoperoxidase (LPO) (IC50 = 17.60 ± 0.76 µM), and scavenge H2O2 (39.82 ± 0.67 mM). A comprehensive physicochemical characterization of ALC was performed using FTIR, Raman, and UV-Vis spectroscopy, along with theoretical DFT calculations. The inhibition process was assessed through fluorescence spectroscopy and vibrational analysis. Docking and molecular dynamics simulations were carried out to predict the binding mode of ALC to LPO and to gain a better understanding into the inhibition process. Furthermore, albumin binding experiments were also conducted. These findings highlight the potential of ALC as a therapeutic agent, providing valuable insights for further investigating its role in the treatment of thyroid disorders.
Collapse
Affiliation(s)
- Janetsi Y Caro-Ramírez
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Carlos A Franca
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Martín Lavecchia
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Luciana G Naso
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962- (B1900AVV) -1900 La Plata, Argentina.
| |
Collapse
|
4
|
Deng TT, Ding WY, Lu XX, Zhang QH, Du JX, Wang LJ, Yang MN, Yin Y, Liu FJ. Pharmacological and mechanistic aspects of quercetin in osteoporosis. Front Pharmacol 2024; 15:1338951. [PMID: 38333006 PMCID: PMC10851760 DOI: 10.3389/fphar.2024.1338951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Osteoporosis (OP) is a bone disease associated with increasing age. Currently, the most common medications used to treat OP are anabolic agents, anti-resorptive agents, and medications with other mechanisms of action. However, many of these medications have unfavorable adverse effects or are not intended for long-term use, potentially exerting a severe negative impact on a patient's life and career and placing a heavy burden on families and society. There is an urgent need to find new drugs that can replace these and have fewer adverse effects. Quercetin (Que) is a common flavonol in nature. Numerous studies have examined the therapeutic applications of Que. However, a comprehensive review of the anti-osteoporotic effects of Que has not yet been conducted. This review aimed to describe the recent studies on the anti-osteoporotic effects of Que, including its biological, pharmacological, pharmacokinetic, and toxicological properties. The outcomes demonstrated that Que could enhance OP by increasing osteoblast differentiation and activity and reducing osteoclast differentiation and activity via the pathways of Wnt/β-catenin, BMP/SMAD/RUNX2, OPG/RANKL/RANK, ERK/JNK, oxidative stress, apoptosis, and transcription factors. Thus, Que is a promising novel drug for the treatment of OP.
Collapse
Affiliation(s)
- Ting-Ting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Yu Ding
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, China
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xi-Xue Lu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qing-Hao Zhang
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jin-Xin Du
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li-Juan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mei-Na Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Ying Yin
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fan-Jie Liu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
5
|
Gatta E, Maltese V, Cavadini M, Anelli V, Bambini F, Buoso C, Facondo P, Pirola I, Delbarba A, Cappelli C. Interference or Noninterference Between Soy and Levothyroxine: That Is the Question. A Narrative Review of Literature. Endocr Pract 2023; 29:897-901. [PMID: 37633413 DOI: 10.1016/j.eprac.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVE To evaluate the effect of soy intake on levothyroxine (L-T4) absorption among different L-T4 formulations. METHODS A PubMed/MEDLINE, Web of Science, and Scopus research was performed. Case reports, case series, and original studies written in English and published online up to November 30, 2022, were selected and reviewed. The final reference list was defined based on the relevance of each study to the scope of this review. RESULTS Few data, mainly case reports, seemed to suggest a possible interference of soy products on L-T4 tablets absorption. However, the only prospective randomized cross-over study showed no differences in L-T4 absorption when L-T4 and soy isoflavones were assumed concomitantly. The very little data available on liquid L-T4 formulations did not allow for any conclusions to be made, even if a double-blind placebo-controlled trial showed no impaired L-T4 absorption. CONCLUSION The inference of soy products on L-T4 absorption, if present, seems to have little clinical impact. Considering this fact, the Hamlet-like question whether soy milk interferes with L-T4 absorption remains unanswered.
Collapse
Affiliation(s)
- Elisa Gatta
- Department of Clinical and Experimental Sciences, SSVD Endocrinologia, University of Brescia, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Virginia Maltese
- Department of Clinical and Experimental Sciences, SSVD Endocrinologia, University of Brescia, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Maria Cavadini
- Department of Clinical and Experimental Sciences, SSVD Endocrinologia, University of Brescia, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Valentina Anelli
- Department of Clinical and Experimental Sciences, SSVD Endocrinologia, University of Brescia, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Francesca Bambini
- Department of Clinical and Experimental Sciences, SSVD Endocrinologia, University of Brescia, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Caterina Buoso
- Department of Clinical and Experimental Sciences, SSVD Endocrinologia, University of Brescia, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Paolo Facondo
- Department of Clinical and Experimental Sciences, SSVD Endocrinologia, University of Brescia, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Ilenia Pirola
- Department of Clinical and Experimental Sciences, SSVD Endocrinologia, University of Brescia, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Andrea Delbarba
- Department of Clinical and Experimental Sciences, SSVD Endocrinologia, University of Brescia, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Carlo Cappelli
- Department of Clinical and Experimental Sciences, SSVD Endocrinologia, University of Brescia, Azienda Socio-Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy.
| |
Collapse
|
6
|
Szukiewicz D. Insight into the Potential Mechanisms of Endocrine Disruption by Dietary Phytoestrogens in the Context of the Etiopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:12195. [PMID: 37569571 PMCID: PMC10418522 DOI: 10.3390/ijms241512195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Phytoestrogens (PEs) are estrogen-like nonsteroidal compounds derived from plants (e.g., nuts, seeds, fruits, and vegetables) and fungi that are structurally similar to 17β-estradiol. PEs bind to all types of estrogen receptors, including ERα and ERβ receptors, nuclear receptors, and a membrane-bound estrogen receptor known as the G protein-coupled estrogen receptor (GPER). As endocrine-disrupting chemicals (EDCs) with pro- or antiestrogenic properties, PEs can potentially disrupt the hormonal regulation of homeostasis, resulting in developmental and reproductive abnormalities. However, a lack of PEs in the diet does not result in the development of deficiency symptoms. To properly assess the benefits and risks associated with the use of a PE-rich diet, it is necessary to distinguish between endocrine disruption (endocrine-mediated adverse effects) and nonspecific effects on the endocrine system. Endometriosis is an estrogen-dependent disease of unknown etiopathogenesis, in which tissue similar to the lining of the uterus (the endometrium) grows outside of the uterus with subsequent complications being manifested as a result of local inflammatory reactions. Endometriosis affects 10-15% of women of reproductive age and is associated with chronic pelvic pain, dysmenorrhea, dyspareunia, and infertility. In this review, the endocrine-disruptive actions of PEs are reviewed in the context of endometriosis to determine whether a PE-rich diet has a positive or negative effect on the risk and course of endometriosis.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
7
|
Duda-Chodak A, Tarko T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023; 28:molecules28062536. [PMID: 36985507 PMCID: PMC10058246 DOI: 10.3390/molecules28062536] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Polyphenols are an important component of plant-derived food with a wide spectrum of beneficial effects on human health. For many years, they have aroused great interest, especially due to their antioxidant properties, which are used in the prevention and treatment of many diseases. Unfortunately, as with any chemical substance, depending on the conditions, dose, and interactions with the environment, it is possible for polyphenols to also exert harmful effects. This review presents a comprehensive current state of the knowledge on the negative impact of polyphenols on human health, describing the possible side effects of polyphenol intake, especially in the form of supplements. The review begins with a brief overview of the physiological role of polyphenols and their potential use in disease prevention, followed by the harmful effects of polyphenols which are exerted in particular situations. The individual chapters discuss the consequences of polyphenols’ ability to block iron uptake, which in some subpopulations can be harmful, as well as the possible inhibition of digestive enzymes, inhibition of intestinal microbiota, interactions of polyphenolic compounds with drugs, and impact on hormonal balance. Finally, the prooxidative activity of polyphenols as well as their mutagenic, carcinogenic, and genotoxic effects are presented. According to the authors, there is a need to raise public awareness about the possible side effects of polyphenols supplementation, especially in the case of vulnerable subpopulations.
Collapse
|
8
|
3-Phenyl-10-(2,3,4-trimethoxyphenyl)-9,10-dihydro-4H,8H-pyrano [2,3-f]chromene-4,8-dione. MOLBANK 2022. [DOI: 10.3390/m1516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An efficient telescoped method for synthesis of 3-phenyl-10-(2,3,4-trimethoxyphenyl)-9,10-dihydro-4H,8H-pyrano[2,3-f]chromene-4,8-dione was elaborated. The presented protocol includes the one-pot multicomponent reaction of 7-hydroxy-3-phenyl-4H-chromen-4-one, 2,3,4-trimethoxybenzaldehyde and Meldrum’s acid. Advantages of this method are the application of readily available starting reagents, atom economy and easy procedure of preparation and purification of the target product. The structure of the synthesized polycyclic compound was proved by 1H, 13C-NMR, IR spectroscopy and high-resolution mass spectrometry with electrospray ionization (ESI-HRMS).
Collapse
|
9
|
Abstract
BACKGROUND Increasingly, patients are asking their physicians about the benefits of dietary and alternative approaches to manage their diseases, including thyroid disease. We seek to review the evidence behind several of the vitamins, minerals, complementary medicines, and elimination diets that patients are most commonly using for the treatment of thyroid disorders. SUMMARY Several trace elements are essential to normal thyroid function, and their supplementation has been studied in various capacities. Iodine supplementation has been implemented on national scales through universal salt iodization with great success in preventing severe thyroid disease, but can conversely cause thyroid disorders when given in excess. Selenium and zinc supplementation has been found to be beneficial in specific populations with otherwise limited generalizability. Other minerals, such as vitamin B12, low-dose naltrexone, and ashwagandha root extract, have little to no evidence of any impact on thyroid disorders. Avoidance of gluten and dairy has positive impacts only in patients with concomitant sensitivities to those substances, likely by improving absorption of levothyroxine. Avoidance of cruciferous vegetables and soy has little proven benefit in patients with thyroid disorders. CONCLUSION While many patients are seeking to avoid conventional therapy and instead turn to alternative and dietary approaches to thyroid disease management, many of the most popular approaches have no proven benefit or have not been well studied. It is our responsibility to educate our patients about the evidence for or against benefit, potential harms, or dearth of knowledge behind these strategies.
Collapse
Affiliation(s)
- Dana Larsen
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Sargun Singh
- Government Medical College Amritsar, Amritsar, Punjab, India
| | - Maria Brito
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
10
|
Carlson JM, Janulewicz PA, Kleinstreuer NC, Heiger-Bernays W. Impact of High-Throughput Model Parameterization and Data Uncertainty on Thyroid-Based Toxicological Estimates for Pesticide Chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5620-5631. [PMID: 35446564 PMCID: PMC9070357 DOI: 10.1021/acs.est.1c07143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 05/23/2023]
Abstract
Chemical-induced alteration of maternal thyroid hormone levels may increase the risk of adverse neurodevelopmental outcomes in offspring. US federal risk assessments rely almost exclusively on apical endpoints in animal models for deriving points of departure (PODs). New approach methodologies (NAMs) such as high-throughput screening (HTS) and mechanistically informative in vitro human cell-based systems, combined with in vitro to in vivo extrapolation (IVIVE), supplement in vivo studies and provide an alternative approach to calculate/determine PODs. We examine how parameterization of IVIVE models impacts the comparison between IVIVE-derived equivalent administered doses (EADs) from thyroid-relevant in vitro assays and the POD values that serve as the basis for risk assessments. Pesticide chemicals with thyroid-based in vitro bioactivity data from the US Tox21 HTS program were included (n = 45). Depending on the model structure used for IVIVE analysis, up to 35 chemicals produced EAD values lower than the POD. A total of 10 chemicals produced EAD values higher than the POD regardless of the model structure. The relationship between IVIVE-derived EAD values and the in vivo-derived POD values is highly dependent on model parameterization. Here, we derive a range of potentially thyroid-relevant doses that incorporate uncertainty in modeling choices and in vitro assay data.
Collapse
Affiliation(s)
- Jeffrey M. Carlson
- Environmental
Health Department, Boston University School
of Public Health, 715 Albany Street, Boston, Massachusetts 02118, United States
| | - Patricia A. Janulewicz
- Environmental
Health Department, Boston University School
of Public Health, 715 Albany Street, Boston, Massachusetts 02118, United States
| | - Nicole C. Kleinstreuer
- Division
of Intramural Research, Biostatistics and Computational Biology Branch,
and National Toxicology Program Interagency Center for the Evaluation
of Alternative Toxicological Methods, National
Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Durham, North Carolina 27709, United States
| | - Wendy Heiger-Bernays
- Environmental
Health Department, Boston University School
of Public Health, 715 Albany Street, Boston, Massachusetts 02118, United States
| |
Collapse
|
11
|
In silico prediction models for thyroid peroxidase inhibitors and their application to synthetic flavors. Food Sci Biotechnol 2022; 31:483-495. [PMID: 35464247 PMCID: PMC8994803 DOI: 10.1007/s10068-022-01041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 11/27/2022] Open
Abstract
AbstractSystematic toxicity tests are often waived for the synthetic flavors as they are added in a very small amount in foods. However, their safety for some endpoints such as endocrine disruption should be concerned as they are likely to be active in low levels. In this case, structure–activity-relationship (SAR) models are good alternatives. In this study, therefore, binary, ternary, and quaternary prediction models were designed using simple or complex machine-learning methods. Overall, hard-voting classifiers outperformed other methods. The test scores for the best binary, ternary, and quaternary models were 0.6635, 0.5083, and 0.5217, respectively. Along with model development, some substructures including primary aromatic amine, (enol)ether, phenol, heterocyclic sulfur, and heterocyclic nitrogen, dominantly occurred in the most highly active compounds. The best predicting models were applied to synthetic flavors, and 22 agents appeared to have a strong inhibitory potential towards TPO activities.
Collapse
|
12
|
Stagi S, Municchi G, Ferrari M, Wasniewska MG. An Overview on Different L-Thyroxine (l-T 4) Formulations and Factors Potentially Influencing the Treatment of Congenital Hypothyroidism During the First 3 Years of Life. Front Endocrinol (Lausanne) 2022; 13:859487. [PMID: 35757415 PMCID: PMC9218053 DOI: 10.3389/fendo.2022.859487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Congenital hypothyroidism (CH) is a relatively frequent congenital endocrine disorder, caused by defective production of thyroid hormones (THs) at birth. Because THs are essential for the development of normal neuronal networks, CH is also a common preventable cause of irreversible intellectual disability (ID) in children. Prolonged hypothyroidism, particularly during the THs-dependent processes of brain development in the first years of life, due to delays in diagnosis, inadequate timing and dosing of levothyroxine (l-thyroxine or l-T4), the non-compliance of families, incorrect follow-up and the interference of foods, drugs and medications affecting the absorption of l-T4, may be responsible for more severe ID. In this review we evaluate the main factors influencing levels of THs and the absorption of l-T4 in order to provide a practical guide, based on the existing literature, to allow optimal follow-up for these patients.
Collapse
Affiliation(s)
- Stefano Stagi
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
- *Correspondence: Stefano Stagi,
| | - Giovanna Municchi
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Marta Ferrari
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | | |
Collapse
|
13
|
Fan Y, Qian H, Wu Z, Li Z, Li X, Zhang Y, Xu Q, Lu C, Wang X. Exploratory analysis of the associations between urinary phytoestrogens and thyroid hormones among adolescents and adults in the United States: National Health and Nutrition Examination Survey 2007-2010. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2974-2984. [PMID: 34383217 DOI: 10.1007/s11356-021-14553-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Phytoestrogens are naturally plant-derived compounds that could bind to estrogen receptors and mimic estrogenic effects. Previous studies showed a positive association between phytoestrogens and hypothyroidism; however, little is known on phytoestrogens and thyroid hormones. This study was designed to investigate the associations between urinary phytoestrogens and thyroid hormone levels. Based on the US National Health and Nutrition Examination Survey (NHANES) 2007-2010, 4103 participants were recruited in this cross-sectional study. Linear regression models and multiple linear regressions models were applied to examine the relationships between urinary phytoestrogens and thyroid hormone levels. Urinary O-desmethylangolensin (O-DMA) was found to be correlated with serum FT4 levels in the female 20-60-year-of-age group (β=0.018, 95% CI: 0.006, 0.031). Higher enterolactone (ENT) levels were significantly positively associated with TSH levels in the 12-19-year-of-age female group (β=0.196, 95% CI: 0.081, 0.311). In the male group, enterodiol (END) was significantly positively correlated with TSH and TT3 in the 12-19-year-of-age group, respectively (TT3: β=3.444, 95% CI: 0.150, 6.737; TSH: β=0.104, 95% CI: 0.005, 0.203). However, equol (EQU) levels were negatively associated with TT4 (12-19-year-of-age: β=- 0.166, 95% CI: - 0.279, - 0.034; 20-60-year-of-age: β=- 0.132, 95% CI: - 0.230, - 0.034). Our study provided epidemiological evidence that urinary phytoestrogens were powerfully associated with thyroid hormone levels. The results also supported that phytoestrogens acted as endocrine disruptors. It is imperative and important to pay attention to the intake of phytoestrogens.
Collapse
Affiliation(s)
- Yun Fan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Qian
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhuo Wu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiuzhu Li
- Nanjing Medical University Affiliated Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yan Zhang
- Kangda College of Nanjing Medical University, Lianyungang, 222002, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
14
|
Dike CS, Orish CN, Nwokocha CR, Sikoki FD, Babatunde BB, Frazzoli C, Orisakwe OE. Phytowaste as nutraceuticals in boosting public health. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00260-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe utilization of bioactive constituent of peels and seeds provide an effective, environment friendly and inexpensive therapy for different forms of human disease, and the production, improvement and documentation of novel nutraceuticals. This review systematically presents findings and further understanding of the reported benefits and therapeutic applications of peel and seed extracts on innovative cell culture and animal studies, as well as phased clinical human trial research. The extracts of seed and peels were reported to possess high quantities of bioactive substances with antioxidative, antidiabetic, hepatorenal protective, antithyroidal, anti-inflammatory, antibacterial, cardiovascular protective, neuro-protective effects, anticancer and wound healing activities. Therapeutic activities of the bioactive substances of peel and seed extracts include elevation of Superoxide dismutase (SOD), GSH-Px, t-GPx, Catalase and GST activities, with the suppression of MDA levels, hydroperoxide generation and lipid peroxidized products, the extracts also regulate inflammatory mediators and cytokines as they are reported to suppress the secretion of inflammatory cytokines, which include; IL-1β, PGE2, TGF-β and TNF-α and induces apoptosis and cell differentiation. This review revealed the therapeutic importance and best utilization of peels and seed extracts of fruits and vegetables.
Collapse
|
15
|
The Gastroprotective Effect of Naringenin against Ethanol-Induced Gastric Ulcers in Mice through Inhibiting Oxidative and Inflammatory Responses. Int J Mol Sci 2021; 22:ijms222111985. [PMID: 34769415 PMCID: PMC8584376 DOI: 10.3390/ijms222111985] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 01/28/2023] Open
Abstract
Naringenin is a major flavanone found in grapes, tangelos, blood oranges, lemons, pummelo, and tangerines. It is known to have anti-inflammatory, antioxidant, anticancer, antimutagenic, antifibrogenic, and antiatherogenic pharmacological properties. This study aims to investigate the anti-inflammatory effects of naringenin in ethanol-induced gastric damage in vivo and ethanol-stimulated KATO III cells in vitro. Our results showed that pretreatment with naringenin significantly protected mice from ethanol-induced hemorrhagic damage, epithelial cell loss, and edema with leucocytes. It reduced gastric ulcers (GU) by suppressing ethanol-induced nuclear factor-κB (NF-κB) activity and decreasing the levels of nitric oxide (NO), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and myeloperoxidase (MPO). In addition, pretreatment with naringenin might inhibit the secretion of TNF-α, IL-6, and IL-8, as well as the proteins cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) via the suppression of NF-κB and mitogen-activated protein kinase (MAPK) signaling in ethanol-stimulated stomach epithelial KATO III cells. Together, the results of this study highlight the gastroprotective effect of naringenin in GU of mice by inhibiting gastric secretion and acidity, reducing inflammation and oxidative stress, suppressing NF-κB activity, and restoring the histological architecture. These findings suggested that naringenin has therapeutic potential in the alleviation of ethanol-induced GU.
Collapse
|
16
|
Milosevic B, Omerovic I, Savic Z, Andjusic L, Milanovic V, Ciric S. Stinging nettle (Urtica dioica) in broiler nutrition. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1963645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- B. Milosevic
- Faculty Of Agriculture Kosovska Mitrovica, University Of Pristina, Pristina, Serbia
| | - I. Omerovic
- State University Of Novi Pazar, Novi Pazar, Serbia
| | - Z. Savic
- Faculty Of Agriculture Kosovska Mitrovica, University Of Pristina, Pristina, Serbia
| | - L. Andjusic
- Faculty Of Agriculture Kosovska Mitrovica, University Of Pristina, Pristina, Serbia
| | - V. Milanovic
- Faculty Of Agriculture Kosovska Mitrovica, University Of Pristina, Pristina, Serbia
| | - S. Ciric
- Faculty Of Agriculture Kosovska Mitrovica, University Of Pristina, Pristina, Serbia
| |
Collapse
|
17
|
Babić Leko M, Gunjača I, Pleić N, Zemunik T. Environmental Factors Affecting Thyroid-Stimulating Hormone and Thyroid Hormone Levels. Int J Mol Sci 2021; 22:6521. [PMID: 34204586 PMCID: PMC8234807 DOI: 10.3390/ijms22126521] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023] Open
Abstract
Thyroid hormones are necessary for the normal functioning of physiological systems. Therefore, knowledge of any factor (whether genetic, environmental or intrinsic) that alters the levels of thyroid-stimulating hormone (TSH) and thyroid hormones is crucial. Genetic factors contribute up to 65% of interindividual variations in TSH and thyroid hormone levels, but many environmental factors can also affect thyroid function. This review discusses studies that have analyzed the impact of environmental factors on TSH and thyroid hormone levels in healthy adults. We included lifestyle factors (smoking, alcohol consumption, diet and exercise) and pollutants (chemicals and heavy metals). Many inconsistencies in the results have been observed between studies, making it difficult to draw a general conclusion about how a particular environmental factor influences TSH and thyroid hormone levels. However, lifestyle factors that showed the clearest association with TSH and thyroid hormones were smoking, body mass index (BMI) and iodine (micronutrient taken from the diet). Smoking mainly led to a decrease in TSH levels and an increase in triiodothyronine (T3) and thyroxine (T4) levels, while BMI levels were positively correlated with TSH and free T3 levels. Excess iodine led to an increase in TSH levels and a decrease in thyroid hormone levels. Among the pollutants analyzed, most studies observed a decrease in thyroid hormone levels after exposure to perchlorate. Future studies should continue to analyze the impact of environmental factors on thyroid function as they could contribute to understanding the complex background of gene-environment interactions underlying the pathology of thyroid diseases.
Collapse
Affiliation(s)
| | | | | | - Tatijana Zemunik
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (M.B.L.); (I.G.); (N.P.)
| |
Collapse
|
18
|
Marty S, Beekhuijzen M, Charlton A, Hallmark N, Hannas BR, Jacobi S, Melching-Kollmuss S, Sauer UG, Sheets LP, Strauss V, Urbisch D, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - part II: how can key events of relevant adverse outcome pathways be addressed in toxicological assessments? Crit Rev Toxicol 2021; 51:328-358. [PMID: 34074207 DOI: 10.1080/10408444.2021.1910625] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The current understanding of thyroid-related adverse outcome pathways (AOPs) with adverse neurodevelopmental outcomes in mammals has been reviewed. This served to establish if standard rodent toxicity test methods and in vitro assays allow identifying thyroid-related modes-of-action potentially leading to adverse neurodevelopmental outcomes, and the human relevance of effects - in line with the European Commission's Endocrine Disruptor Criteria. The underlying hypothesis is that an understanding of the key events of relevant AOPs provides insight into differences in incidence, magnitude, or species sensitivity of adverse outcomes. The rodent studies include measurements of serum thyroid hormones, thyroid gland pathology and neurodevelopmental assessments, but do not directly inform on specific modes-of-action. Opportunities to address additional non-routine parameters reflecting critical events of AOPs in toxicological assessments are presented. These parameters appear relevant to support the identification of specific thyroid-related modes-of-action, provided that prevailing technical limitations are overcome. Current understanding of quantitative key event relationships is often weak, but would be needed to determine if the triggering of a molecular initiating event will ultimately result in an adverse outcome. Also, significant species differences in all processes related to thyroid hormone signalling are evident, but the biological implications thereof (including human relevance) are often unknown. In conclusion, careful consideration of the measurement (e.g. timing, method) and interpretation of additional non-routine parameters is warranted. These findings will be used in a subsequent paper to propose a testing strategy to identify if a substance may elicit maternal thyroid hormone imbalance and potentially also neurodevelopmental effects in the progeny.
Collapse
Affiliation(s)
- Sue Marty
- The Dow Chemical Company, Midland, MI, USA
| | | | | | | | | | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Janulewicz PA, Carlson JM, Wesselink AK, Wise LA, Hatch EE, Edwards LM, Peters JL. Urinary Isoflavones Levels in Relation to Serum Thyroid Hormone Concentrations in Female and Male Adults in the U.S. General Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:389-400. [PMID: 31490099 DOI: 10.1080/09603123.2019.1663497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Isoflavones are phytoestrogens found in plant-based foods and nutritional supplements. Experimental studies show a positive association between isoflavones and hypothyroidism, but epidemiological findings are conflicting. We used multivariable linear regression to examine the association between urinary isoflavone concentrations and serum thyroid hormone concentrations in the National Health and Nutrition Examination Survey (2007-2010). In this study, we found that Daidzein and O-DMA associations with free T4 were stronger among women: a 10-fold increase in daidzein was associated with a 3.2% (95% CI: 1.9%, 4.5%) increase in women and a 0.6% (95% CI: -1.7%, 0.6%) decrease in men and a 10-fold increase in O-DMA was related to a 2.0% (95% CI: 1.1%, 2.9%) increase in women and a 0.3% (95% CI: -1.2%, 0.5%) decrease in men. In this study, selected urinary isoflavone concentrations were associated with serum thyroid hormone concentration in a sex-dependent fashion.
Collapse
Affiliation(s)
- Patricia A Janulewicz
- Environmental Health Department, Boston University School of Public Health, Boston, MA, USA
| | - Jeffrey M Carlson
- Environmental Health Department, Boston University School of Public Health, Boston, MA, USA
| | - Amelia K Wesselink
- Epidemiology Department, Boston University School of Public Health, Boston, MA, USA
| | - Lauren A Wise
- Epidemiology Department, Boston University School of Public Health, Boston, MA, USA
| | - Elizabeth E Hatch
- Epidemiology Department, Boston University School of Public Health, Boston, MA, USA
| | - Lariah M Edwards
- Environmental Health Department, Boston University School of Public Health, Boston, MA, USA
| | - Junenette L Peters
- Environmental Health Department, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
20
|
Di Dalmazi G, Giuliani C. Plant constituents and thyroid: A revision of the main phytochemicals that interfere with thyroid function. Food Chem Toxicol 2021; 152:112158. [PMID: 33789121 DOI: 10.1016/j.fct.2021.112158] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023]
Abstract
In the past few decades, there has been a lot of interest in plant constituents for their antioxidant, anti-inflammatory, anti-microbial and anti-proliferative properties. However, concerns have been raised on their potential toxic effects particularly when consumed at high dose. The anti-thyroid effects of some plant constituents have been known for some time. Indeed, epidemiological observations have shown the causal association between staple food based on brassicaceae or soybeans and the development of goiter and/or hypothyroidism. Herein, we review the main plant constituents that interfere with normal thyroid function such as cyanogenic glucosides, polyphenols, phenolic acids, and alkaloids. In detail, we summarize the in vitro and in vivo studies present in the literature, focusing on the compounds that are more abundant in foods or that are available as dietary supplements. We highlight the mechanism of action of these compounds on thyroid cells by giving a particular emphasis to the experimental studies that can be significant for human health. Furthermore, we reveal that the anti-thyroid effects of these plant constituents are clinically evident only when they are consumed in very large amounts or when their ingestion is associated with other conditions that impair thyroid function.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy; Department of Medicine and Aging Science, Translational Medicine PhD Program, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| | - Cesidio Giuliani
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
21
|
Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Crit Rev Food Sci Nutr 2021; 62:5824-5885. [PMID: 33775173 DOI: 10.1080/10408398.2021.1895054] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, Loma Linda University, Loma Linda, California, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Aedin Cassidy
- Nutrition and Preventive Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Alison Duncan
- College of Biological Sciences, University of Guelph, Guelph, Canada
| | - Mindy Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chisato Nagato
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Martin Ronis
- Health Sciences Center, Louisiana State University Health Sciences Center, Baton Rouge, New Orleans, USA
| | - Ian Rowland
- Human Nutrition, University of Reading, Reading, England, UK
| | | | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama, Alabama, USA
| |
Collapse
|
22
|
Morsy A, Soltan Y, El-Zaiat H, Alencar S, Abdalla A. Bee propolis extract as a phytogenic feed additive to enhance diet digestibility, rumen microbial biosynthesis, mitigating methane formation and health status of late pregnant ewes. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114834] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Punt A, Pinckaers N, Peijnenburg A, Louisse J. Development of a Web-Based Toolbox to Support Quantitative In-Vitro-to-In-Vivo Extrapolations (QIVIVE) within Nonanimal Testing Strategies. Chem Res Toxicol 2021; 34:460-472. [PMID: 33382582 PMCID: PMC7887804 DOI: 10.1021/acs.chemrestox.0c00307] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 12/25/2022]
Abstract
The goal of the present study was to develop an online web-based toolbox that contains generic physiologically based kinetic (PBK) models for rats and humans, including underlying calculation tools to predict plasma protein binding and tissue:plasma distribution, to be used for quantitative in-vitro-to-in-vivo extrapolations (QIVIVE). The PBK models within the toolbox allow first estimations of internal plasma and tissue concentrations of chemicals to be made, based on the logP and pKa of the chemicals and values for intestinal uptake and intrinsic hepatic clearance. As a case study, the toolbox was used to predict oral equivalent doses of in vitro ToxCast bioactivity data for the food additives methylparaben, propyl gallate, octyl gallate, and dodecyl gallate. These oral equivalent doses were subsequently compared with human exposure estimates, as a low tier assessment allowing prioritization for further assessment. The results revealed that daily intake levels of especially propyl gallate can lead to internal plasma concentrations that are close to in vitro biological effect concentrations, particularly with respect to the inhibition of human thyroid peroxidase (TPO). Estrogenic effects were not considered likely to be induced by the food additives, as daily exposure levels of the different compounds remained 2 orders of magnitude below the oral equivalent doses for in vitro estrogen receptor activation. Overall, the results of the study show how the toolbox, which is freely accessible through www.qivivetools.wur.nl, can be used to obtain initial internal dose estimates of chemicals and to prioritize chemicals for further assessment, based on the comparison of oral equivalent doses of in vitro biological activity data with human exposure levels.
Collapse
Affiliation(s)
- Ans Punt
- Wageningen
Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - Nicole Pinckaers
- Wageningen
Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - Ad Peijnenburg
- Wageningen
Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | - Jochem Louisse
- Wageningen
Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| |
Collapse
|
24
|
Tater A, Gupta A, Upadhyay G, Deshpande A, Date R, Tamboli IY. In vitro assays for characterization of distinct multiple catalytic activities of thyroid peroxidase using LC-MS/MS. Curr Res Toxicol 2021; 2:19-29. [PMID: 34345847 PMCID: PMC8320612 DOI: 10.1016/j.crtox.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022] Open
Abstract
Multiple reactions catalyzed by thyroid peroxidase (TPO) were monitored by a battery of unique in vitro assays. Monoiodination and diiodination of L-Tyr to MIT and DIT was examined in a single assay. MIT to DIT and T3 to T4 monoiodination reactions were monitored separately. DIT to T4 conversion assay was used to study coupling of iodotyrosine phenolic rings. Distinct Km, Vmax, Kcat and Kcat/ Km values for each of the TPO catalysed reaction are presented. Differential response of 5 known inhibitors with specific TPO reactions was studied.
A diverse set of environmental contaminants have raised a concern about their potential adverse effects on endocrine signaling. Robust and widely accepted battery of in vitro assays is available to assess the disruption of androgenic and estrogenic pathways. However, such definitive systems to investigate effects on the disruption of thyroid pathways by the xenobiotics are not yet well established. One of the major “Molecular Initiating Events” (MIEs) in thyroid disruption involves targeting of thyroid peroxidase (TPO), a key enzyme involved in thyroid hormone synthesis. TPO catalyzes mono- and diiodination of L-Tyrosine (L-Tyr) to generate 3-Iodo-l-tyrosine (MIT) and 3,5-Diiodo-l-tyrosine (DIT), respectively, followed by the coupling of iodinated tyrosine rings to generate thyroid hormones, 3,3’5-Triiodo-l-thyronine (T3) and Levothyroxine (T4). We sought to develop a robust, sensitive, and rapid in vitro assay systems to evaluate the effects of test chemicals on the multiple catalytic activities of thyroid peroxidase. Simple in vitro assays were designed to study TPO mediated distinct reactions using a single LC-MS/MS method. Herein, we describe a battery of assays to investigate the iodination of L-Tyr to MIT and DIT, MIT to DIT as well as, T3 to T4 catalyzed by rat thyroid TPO. Importantly, two sequential reactions involving mono- and diiodination of L-Tyr could be analyzed in a single assay. The assay that monitors in vitro conversion of DIT to T4 was developed to study the coupling of tyrosine rings. Enzyme kinetics studies revealed distinct characteristics of multiple reactions catalyzed by TPO. Further, the known TPO inhibitors were used to assess their potency towards individual TPO substrates and reactions. The resultant half maximum inhibitory concentration (IC50) values highlighted differential targeting of TPO catalyzed reactions by the same inhibitor. Overall results underscore the need to develop more nuanced approaches that account for distinct multiple catalytic activities of TPO.
Collapse
Affiliation(s)
- Abhishek Tater
- Jai Research Foundation, N. H. 48, Near Daman-Ganga bridge, Valvada 396105, India
| | - Aditi Gupta
- Jai Research Foundation, N. H. 48, Near Daman-Ganga bridge, Valvada 396105, India
| | - Gopal Upadhyay
- Jai Research Foundation, N. H. 48, Near Daman-Ganga bridge, Valvada 396105, India
| | - Abhay Deshpande
- Jai Research Foundation, N. H. 48, Near Daman-Ganga bridge, Valvada 396105, India
| | - Rahul Date
- Jai Research Foundation, N. H. 48, Near Daman-Ganga bridge, Valvada 396105, India
| | - Irfan Y Tamboli
- Jai Research Foundation, N. H. 48, Near Daman-Ganga bridge, Valvada 396105, India
| |
Collapse
|
25
|
da Silva FC, de Souza AH, Bassoli BK, Prates GA, Daudt C, Meneguetti DUDO, Corrêa ÁP, de Oliveira IB, Schons SDV, Fialho MFP, Correa DS, Picada JN, Ferraz ADBF. Myrciaria dubia Juice (camu-camu) Exhibits Analgesic and Antiedematogenic Activities in Mice. J Med Food 2020; 24:626-634. [PMID: 33337272 DOI: 10.1089/jmf.2020.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Myrciaria dubia (Myrtaceae) fruit is traditionally used to treat malnutrition due to its high levels of vitamin C and phenolic compounds. Because of its composition, this plant is very promising in the research of novel natural treatment for pain disorders. This study analyzed the phytochemical profile of M. dubia juice and assessed its antinociceptive and antiedematogenic potential. The phytochemical profile was determined through high-performance liquid chromatography (HPLC), the oral antinociceptive effect of M. dubia 50% juice (Md50) was evaluated by formalin, hot plate and Complete Freund's Adjuvant tests and the antiedematogenic activity by paw edema. HPLC revealed the presence of ascorbic acid, rutin, and ellagic acid as major compounds. Md50 showed an antinociceptive effect in the acute and chronic phases of the formalin test. In the hot plate test, Md50 also induced an antinociceptive effect of 0.5 up to 6 h, showing antinociceptive and antiedematogenic potential without changing the spontaneous locomotion of animals. All protocols were submitted and approved by the Ethics Committee for use of Animals of the Lutheran University of Brazil (protocol No. 2013-30P).
Collapse
Affiliation(s)
- Francisco Carlos da Silva
- Department of Biological Sciences, São Lucas Ji-Paraná University Center (UniSL), Ji-Paraná, Brazil.,Department of Post-Graduation Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Alessandra Hübner de Souza
- Department of Post-Graduation Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | | | - Gleiciane Alves Prates
- Department of Biological Sciences, São Lucas Ji-Paraná University Center (UniSL), Ji-Paraná, Brazil
| | - Cíntia Daudt
- Center of Natural and Biological Sciences, Federal University of Acre (UFAC), Rio Branco, Brazil
| | - Dionatas Ulises de Oliveira Meneguetti
- Laboratory of Physiopharmacology, Post-Graduation Program in Sciences of Health of Western Amazonia, Federal University of Acre (UFAC), Rio Branco, Brazil
| | | | | | - Sandro de Vargas Schons
- Department of Post-Graduation Program in Environmental Sciences, Federal University of Rondônia (UNIR), Rolim de Moura, Brazil
| | - Maria Fernanda Pessano Fialho
- Department of Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Dione Silva Correa
- Department of Post-Graduation Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Jaqueline Nascimento Picada
- Department of Post-Graduation Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Alexandre de Barros Falcão Ferraz
- Department of Post-Graduation Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| |
Collapse
|
26
|
Hertzler SR, Lieblein-Boff JC, Weiler M, Allgeier C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020; 12:E3704. [PMID: 33266120 PMCID: PMC7760812 DOI: 10.3390/nu12123704] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Consumer demand for plant protein-based products is high and expected to grow considerably in the next decade. Factors contributing to the rise in popularity of plant proteins include: (1) potential health benefits associated with increased intake of plant-based diets; (2) consumer concerns regarding adverse health effects of consuming diets high in animal protein (e.g., increased saturated fat); (3) increased consumer recognition of the need to improve the environmental sustainability of food production; (4) ethical issues regarding the treatment of animals; and (5) general consumer view of protein as a "positive" nutrient (more is better). While there are health and physical function benefits of diets higher in plant-based protein, the nutritional quality of plant proteins may be inferior in some respects relative to animal proteins. This review highlights the nutritional quality of plant proteins and strategies for wisely using them to meet amino acid requirements. In addition, a summary of studies evaluating the potential benefits of plant proteins for both health and physical function is provided. Finally, potential safety issues associated with increased intake of plant proteins are addressed.
Collapse
Affiliation(s)
- Steven R. Hertzler
- Scientific and Medical Affairs, Abbott Nutrition, 2900 Easton Square Place, Columbus, OH 43219, USA; (J.C.L.-B.); (M.W.); (C.A.)
| | | | | | | |
Collapse
|
27
|
Li M, Hassan FU, Tang Z, Peng L, Liang X, Li L, Peng K, Xie F, Yang C. Mulberry Leaf Flavonoids Improve Milk Production, Antioxidant, and Metabolic Status of Water Buffaloes. Front Vet Sci 2020; 7:599. [PMID: 33102551 PMCID: PMC7500204 DOI: 10.3389/fvets.2020.00599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
This study was aimed to evaluate the effect of mulberry leaf flavonoids (MLF) on oxidative stress, metabolic hormones, and milk production in Murrah buffaloes. Forty multiparous Murrah buffaloes (4 ± 1 lactations) with similar body weight (average 600 ± 50 Kg) and stage of lactation (90 ± 20 d) were randomly selected for this trial. Four treatment groups (10 buffaloes per group) with different doses of MLF included; control (0 g/d), MLF15 (15 g/d), MLF30 (30 g/d), and MLF45 (45 g/d). Buffaloes were fed with total mix ration consisting of grass (Pennisetum purpureum schum), brewery's grain and concentrate mixture for 5 weeks. Meteorological data including ambient temperature and relative humidity were recorded using the online dust monitoring system to calculate temperature-humidity index (THI). After 1 week of the adaptation, milk yield was recorded daily while physiological parameters (respiratory rate, rectal, and body surface temperature), and milk composition were measured weekly. At the end of the trial, blood samples were collected to analyze serum metabolic hormones including estradiol (E2), growth hormone (GH), prolactin (PRL), Tri-iodothyronine (T3), and Thyroxine (T4). Moreover, serum heat shock proteins (HSP), antioxidants enzymes including malondialdehyde (MDA), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and blood biochemical indices were also analyzed. Results revealed a decrease (P = 0.012) in serum MDA level while increasing (P < 0.01) the HSP and serum GHS-Px contents in supplemented buffaloes. Treatment showed a linear and quadratic decrease (p = 0.001) in the serum T-AOC while reducing CAT contents linearly (p = 0.012) as compared to the control. However, no effect of treatment on serum SOD content was observed. Treatment resulted a linear increase (p = 0.001) in serum GH and PRL hormones while increasing serum E2 levels linearly (P < 0.001) and quadratically (P = 0.025). Treatment increased (p = 0.038) the daily milk yield as compared to the control. However, increase (P < 0.05) in serum T3 and T4 contents, fat corrected milk (4%) and milk protein (%) was observed only in MLF45. Moreover, we observed no change in serum biochemical indices except insulin which linearly increased (p = 0.002) in MLF45. Our findings indicated that MLF at 45 g per day is an appropriate level to enhance milk performance and alleviate heat stress in buffaloes.
Collapse
Affiliation(s)
- Mengwei Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Faiz-Ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zhenhua Tang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Lijuan Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xin Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Lili Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Kaiping Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Fang Xie
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
28
|
Zohreh B, Masoumeh V, Fakhraddin N, Omrani GHR. Apigenin-mediated Alterations in Viability and Senescence of SW480 Colorectal Cancer Cells Persist in The Presence of L-thyroxine. Anticancer Agents Med Chem 2020; 19:1535-1542. [PMID: 31272364 DOI: 10.2174/1871520619666190704102708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Deregulation of Thyroid Hormones (THs) system in Colorectal Cancer (CRC) suggests that these hormones may play roles in CRC pathogenesis. Flavonoids are polyphenolic compounds, which possess potent antitumor activities and interfere, albeit some of them, with all aspects of THs physiology. Whether the antitumor actions of flavonoids are affected by THs is unknown. Therefore, we investigated the effects of apigenin (Api), a well-known flavone, on some tumorigenic properties of SW480 CRC cells in the presence and absence of L-thyroxine (T4). METHODS Cell viability was assessed by MTT assay. Flow cytometry and DNA electrophoresis were used to evaluate cell death. Cell senescence was examined by in situ detection of β-galactosidase activity. Protein expression was assessed by antibody array technique. RESULTS While T4 had minimal effects, Api reduced cell growth and senescence by induction of apoptosis. Expression of anti-apoptotic and pro-apoptotic proteins were differentially affected by Api and T4. Survivin, HSP60 and HTRA were the most expressed proteins by the cells. Almost all Api-induced effects persisted in the presence of T4. CONCLUSION These data suggest that Api may inhibit CRC cell growth and progression through induction of apoptosis rather than cell necrosis or senescence. In addition, they suggest that T4 has minimal effects on CRC cell growth, and is not able to antagonize the anti-growth effects of Api. Regardless of the treatments, cells expressed high levels of survivin, HSP60 and HTRA, indicating that these proteins may play central roles in SW480 CRC cell immortality.
Collapse
Affiliation(s)
- Bagheri Zohreh
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Varedi Masoumeh
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Gholam H R Omrani
- Endocrine and Metabolism Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Paunkov A, Chartoumpekis DV, Ziros PG, Chondrogianni N, Kensler TW, Sykiotis GP. Impact of Antioxidant Natural Compounds on the Thyroid Gland and Implication of the Keap1/Nrf2 Signaling Pathway. Curr Pharm Des 2020; 25:1828-1846. [PMID: 31267862 DOI: 10.2174/1381612825666190701165821] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Natural compounds with potential antioxidant properties have been used in the form of food supplements or extracts with the intent to prevent or treat various diseases. Many of these compounds can activate the cytoprotective Nrf2 pathway. Besides, some of them are known to impact the thyroid gland, often with potential side-effects, but in other instances, with potential utility in the treatment of thyroid disorders. OBJECTIVE In view of recent data regarding the multiple roles of Nrf2 in the thyroid, this review summarizes the current bibliography on natural compounds that can have an effect on thyroid gland physiology and pathophysiology, and it discusses the potential implication of the Nrf2 system in the respective mechanisms. METHODS & RESULTS Literature searches for articles from 1950 to 2018 were performed in PubMed and Google Scholar using relevant keywords about phytochemicals, Nrf2 and thyroid. Natural substances were categorized into phenolic compounds, sulfur-containing compounds, quinones, terpenoids, or under the general category of plant extracts. For individual compounds in each category, respective data were summarized, as derived from in vitro (cell lines), preclinical (animal models) and clinical studies. The main emerging themes were as follows: phenolic compounds often showed potential to affect the production of thyroid hormones; sulfur-containing compounds impacted the pathogenesis of goiter and the proliferation of thyroid cancer cells; while quinones and terpenoids modified Nrf2 signaling in thyroid cell lines. CONCLUSION Natural compounds that modify the activity of the Nrf2 pathway should be evaluated carefully, not only for their potential to be used as therapeutic agents for thyroid disorders, but also for their thyroidal safety when used for the prevention and treatment of non-thyroidal diseases.
Collapse
Affiliation(s)
- Ana Paunkov
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| | - Dionysios V Chartoumpekis
- Department of Internal Medicine, Endocrinology Unit, Patras University Medical School, Patras, Greece
| | - Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Thomas W Kensler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Abstract
Thyroid disease is common in the general population, especially in women, and also may be prevalent among athletes. Autoimmune disorders are the most common cause of thyroid disorders in countries with iodine-fortification programs; however, thyroid dysfunction can be brought on by nutritional factors, including insufficient energy intake and iodine, selenium, iron, and vitamin D deficiency. Additionally, strenuous exercise may be associated with transient alterations in thyroid hormones. While the development of thyroid related disorders has the potential to impact health and peak performance, typical clinical manifestations are highly variable, lack specificity, and are frequently confused with other health problems. The assessment process should focus on anthropometric changes, biochemical tests (thyroid panel), personal and family history, examination for appropriate signs and symptoms, and diet and environmental assessment that includes adequacy of energy, iodine, iron, selenium, and vitamin D intake/status along with excess stress and exposure to environmental contaminants and dietary goitrogens.
Collapse
|
31
|
Villas Boas GR, Rodrigues Lemos JM, de Oliveira MW, dos Santos RC, Stefanello da Silveira AP, Barbieri Bacha F, Ito CNA, Bortolotte Cornelius E, Brioli Lima F, Sachilarid Rodrigues AM, Belmal Costa N, Francisco Bittencourt F, Freitas de Lima F, Meirelles Paes M, Gubert P, Oesterreich SA. Aqueous extract from Mangifera indica Linn. (Anacardiaceae) leaves exerts long-term hypoglycemic effect, increases insulin sensitivity and plasma insulin levels on diabetic Wistar rats. PLoS One 2020; 15:e0227105. [PMID: 31914140 PMCID: PMC6948748 DOI: 10.1371/journal.pone.0227105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetes mellitus is one of the most common todays public health problems. According to a survey by the World Health Organization, this metabolic disorder has reached global epidemic proportions, with a worldwide prevalence of 8.5% in the adult population. OBJECTIVES The present study aimed to investigate the hypoglycemic effect of aqueous extract of Mangifera indica (EAMI) leaves in streptozotocin-induced diabetic rats. METHODS Sixty male rats were divided into 2 groups: Normoglycemic and Diabetic. Each group was subdivided into negative control, glibenclamide 3 or 10 mg/kg, EAMI 125, 250, 500, and 1000 mg/kg. Intraperitoneal injection of streptozotocin 100 mg/kg was used to DM induction. The hypoglycemic response was assessed acutely after two and four weeks of treatment. After a 6-hour fasting period, the fasting blood glucose of animals was verified, and 2.5 g/kg glucose solution was orally administered. The insulin tolerance test and plasma insulin levels assessment were performed in the morning after fasting of 12 to 14 hours. RESULTS AND CONCLUSION The chemical analysis of EAMI showed high levels of phenolic compounds. There was no significant difference in fasting blood glucose between normoglycemic and diabetic groups, and that EAMI did not have an acute effect on diabetes. After two and four weeks of treatment, the extract significantly reduced blood glucose levels, exceeding glibenclamide effects. EAMI was effective in maintaining the long-term hypoglycemic effect, as well as, significantly increased the sensitivity of diabetic animals to insulin and the plasma insulin level.
Collapse
Affiliation(s)
- Gustavo Roberto Villas Boas
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | | | | | | | | | - Flávia Barbieri Bacha
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Caren Naomi Aguero Ito
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | | | - Fernanda Brioli Lima
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | | | - Nathália Belmal Costa
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | | | - Fernando Freitas de Lima
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Marina Meirelles Paes
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Priscila Gubert
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
- Department of Biochemistry, Laboratory of Imunopathology Keizo Asami, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
32
|
Sadeghalvad M, Mohammadi-Motlagh HR, Karaji AG, Mostafaie A. In vivo anti-inflammatory efficacy of the combined Bowman-Birk trypsin inhibitor and genistein isoflavone, two biological compounds from soybean. J Biochem Mol Toxicol 2019; 33:e22406. [PMID: 31593353 DOI: 10.1002/jbt.22406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/08/2019] [Accepted: 09/20/2019] [Indexed: 01/31/2023]
Abstract
Soybean Bowman-Birk protease inhibitor (BBI) and genistein, two biological compounds from soybean, are well-known for their anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was designing a BBI-genistein conjugate and then investigating its protective effect on lipopolysaccharide (LPS)-induced inflammation in BALB/c mice, compared with the effects of combination of BBI and genistein. BBI was purified from soybean and the BBI-genistein conjugate was synthesized. The BALB/c mice were intraperitoneally treated 2 hours before LPS induction. Our results showed that treatment with the combination of BBI and genistein greatly led to more reduced serum levels of tumor necrosis factor (TNF)-α and interferon (IFN)-γ compared with the treatments of BBI alone, the BBI-genistein conjugate, and genistein alone, respectively. Moreover, the expression of TNF-α and IFN-γ in the splenocytes was significantly downregulated along with improving host survival against the LPS-induced lethal endotoxemia in the same way. Our data support a new combined therapy using BBI and genistein, as natural anti-inflammatory agents, to develop a new drug for inflammatory diseases.
Collapse
Affiliation(s)
- Mona Sadeghalvad
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Mostafaie
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
33
|
Towards grouping concepts based on new approach methodologies in chemical hazard assessment: the read-across approach of the EU-ToxRisk project. Arch Toxicol 2019; 93:3643-3667. [DOI: 10.1007/s00204-019-02591-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
|
34
|
Habza-Kowalska E, Gawlik-Dziki U, Dziki D. Mechanism of Action and Interactions between Thyroid Peroxidase and Lipoxygenase Inhibitors Derived from Plant Sources. Biomolecules 2019; 9:biom9110663. [PMID: 31671724 PMCID: PMC6920844 DOI: 10.3390/biom9110663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022] Open
Abstract
This study focused on the effect of kaempferol, catechin, apigenin, sinapinic acid, and extracts from plants (i.e., parsley, cumin, mustard, green tea, and green coffee) on thyroid peroxidase (TPO) and lipoxygenase (LOX) activity, antiradical potential, as well as the result of interactions among them. Catechin, sinapinic acid, and kaempferol acted as a competitive TPO inhibitors, while apigenin demonstrated an uncompetitive mode of inhibitory action. Ethanol extracts from all plants acted as competitive TPO inhibitors, while, after in vitro digestion, TPO activation was found especially in the case of mustard (24%) and cumin (19.85%). Most importantly, TPO activators acted synergistically. The TPO effectors acted as LOX inhibitors. The most effective were potentially bioaccessible compounds from green tea and green coffee (IC50 = 29.73 mg DW/mL and 30.43 mg DW/mL, respectively). The highest free radical scavenging ability was determined for catechin and sinapinic acid (IC50 = 78.37 µg/mL and 84.33 µg/mL, respectively) and potentially bioaccessible compounds from mustard (0.42 mg DW/mL) and green coffee (0.87 mg DW/mL). Green coffee, green tea, cumin, and mustard contain potentially bioaccessible TPO activators that also act as effective LOX inhibitors, which indicate their potentially health-promoting effects for people suffering from Hashimoto's disease.
Collapse
Affiliation(s)
- Ewa Habza-Kowalska
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland.
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland.
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences, Głęboka 31, 20-612 Lublin, Poland.
| |
Collapse
|
35
|
Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:95001. [PMID: 31487205 PMCID: PMC6791490 DOI: 10.1289/ehp5297] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.
Collapse
Affiliation(s)
- Pamela D Noyes
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Patience Browne
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Jonathan T Haselman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Mary E Gilbert
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Stan Barone
- Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tammy E Stoker
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Joseph E Tietge
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| |
Collapse
|
36
|
Shedeed HA, Farrag B, Elwakeel EA, El-Hamid ISA, El-Rayes MAH. Propolis supplementation improved productivity, oxidative status, and immune response of Barki ewes and lambs. Vet World 2019; 12:834-843. [PMID: 31440002 PMCID: PMC6661492 DOI: 10.14202/vetworld.2019.834-843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/02/2019] [Indexed: 01/05/2023] Open
Abstract
Aim: The present study was conducted to study the effect of propolis administration on bio-hematological parameters, antioxidant enzyme activities, and productivity of Barki ewes during late pregnancy and lactation under the arid conditions. Materials and Methods: Twenty-five pregnant Barki ewes were fed the basal diet (n=12, control) and the basal diet plus propolis (5 g/kg diet, n=13) for 1 month before parturition and continued 2 months after parturition. Milk yield and milk composition, hematological constituents, antioxidant enzyme activities, thyroid hormones, and lambs birth and weaning weights, and antioxidants were determined. Results: Significant (p<0.05) increase in white blood cells in the propolis group compared to control was observed. Mean corpuscular hemoglobin (Hb) (MCH) and corpuscular Hb (MCH concentration %) were decreased (p<0.05) in propolis compared to control group. Milk yield was increased (p<0.05) in the propolis group compared with control and continued to increase with the advancement of lactation. Milk fat and milk total solids increased (p<0.05) in the propolis group than the control. Plasma immunoglobulin A (IgA) was increased (p<0.05) in propolis compared to control with no effect in IgM and IgG. Superoxide dismutase, hydrogen peroxide (HP), and nitric oxide were decreased (p<0.01) in the propolis group compared to control. Weaning weight for lambs born to ewes fed propolis was increased (p<0.05) at week 8 after birth compared with control lambs. Malondialdehyde and HP activities were decreased (p<0.01) in lambs born to propolis ewes compared to control. Conclusion: Crude Chinese propolis (5 g/d) supplementation improved milk yield, milk composition, and the antioxidant enzymes in Barki ewes and immune functions, growth performance and antioxidant status in their lambs under arid conditions.
Collapse
Affiliation(s)
- Hesham Attia Shedeed
- Animal and Poultry Production Division, Desert Research Center, Ministry of Agriculture and Land Reclamation, Egypt
| | - Bahaa Farrag
- Animal and Poultry Production Division, Desert Research Center, Ministry of Agriculture and Land Reclamation, Egypt
| | - Eman Ali Elwakeel
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Ibrahim Samir Abd El-Hamid
- Animal and Poultry Production Division, Desert Research Center, Ministry of Agriculture and Land Reclamation, Egypt
| | | |
Collapse
|
37
|
Habza-Kowalska E, Kaczor AA, Żuk J, Matosiuk D, Gawlik-Dziki U. Thyroid Peroxidase Activity is Inhibited by Phenolic Compounds-Impact of Interaction. Molecules 2019; 24:E2766. [PMID: 31366075 PMCID: PMC6696198 DOI: 10.3390/molecules24152766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to estimate the mode of thyroid peroxidase (TPO) inhibition by polyphenols: Chlorogenic acid, rosmarinic acid, quercetin, and rutin. All the tested polyphenols inhibited TPO; the IC50 values ranged from 0.004 mM to 1.44 mM (for rosmarinic acid and rutin, respectively). All these pure phytochemical substances exhibited different modes of TPO inhibition. Rutin and rosmarinic acid showed competitive, quercetin-uncompetitive and chlorogenic acid-noncompetitive inhibition effect on TPO. Homology modeling was used to gain insight into the 3D structure of TPO and molecular docking was applied to study the interactions of the inhibitors with their target at the molecular level. Moreover, the type and strength of mutual interactions between the inhibitors (expressed as the combination index, CI) were analyzed. Slight synergism, antagonism, and moderate antagonism were found in the case of the combined addition of the pure polyphenols. Rutin and quercetin as well as rutin and rosmarinic acid acted additively (CI = 0.096 and 1.06, respectively), while rutin and chlorogenic acid demonstrated slight synergism (CI = 0.88) and rosmarinic acid with quercetin and rosmarinic acid with chlorogenic acid showed moderate antagonism (CI = 1.45 and 1.25, respectively). The mixture of chlorogenic acid and quercetin demonstrated antagonism (CI = 1.79). All the polyphenols showed in vitro antiradical ability against 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), ABTS. The highest ability (expressed as IC50) was exhibited by rosmarinic acid (0.12 mM) and the lowest value was ascribed to quercetin (0.45 mM).
Collapse
Affiliation(s)
- Ewa Habza-Kowalska
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Justyna Żuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna Str. 8, 20-704 Lublin, Poland.
| |
Collapse
|
38
|
Price RJ, Burch R, Chatham LR, Higgins LG, Currie RA, Lake BG. An assay for screening xenobiotics for inhibition of rat thyroid gland peroxidase activity. Xenobiotica 2019; 50:318-322. [PMID: 31180273 DOI: 10.1080/00498254.2019.1629044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. A number of chemicals have been shown to produce disruption of the thyroid gland, resulting in reduced thyroid hormone synthesis, by a mechanism involving inhibition of thyroid peroxidase (TPO) activity (EC 1.11.1.8).2. An assay was developed for rat thyroid gland microsomal TPO activity, employing L-tyrosine as the physiological substrate, with analysis of the formation of the 3-iodo-L-tyrosine (3MIT) metabolite by ultra-performance liquid chromatography-mass spectrometry-mass spectrometry.3. Formation of 3MIT was linear with respect to both rat thyroid gland microsomal protein concentration and incubation time, whereas only small quantities of 3,5-diodo-L-tyrosine were formed.4. Studies were performed with nine known TPO inhibitors. The most potent inhibitors were 3-amino-1,2,4-triazole, ethylene thiourea, methimazole and 6-propyl-2-thiouracil which had IC50 values (i.e. concentration to produce a 50% inhibition of enzyme activity) of 0.059, 0.791, 1.07 and 1.96 μM, respectively, whereas the least potent inhibitor was sodium perchlorate which had an IC50 value of 13,800 µM.5. For five inhibitors, where literature data were available, the observed IC50 values obtained in this study employing rat thyroid gland microsomes and L-tyrosine as substrate were similar to those previously reported using the spectrophotometric guaiacol oxidation assay.
Collapse
Affiliation(s)
- Roger J Price
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Rachel Burch
- Research Support and Development Office, Brunel University, Uxbridge, UK
| | - Lynsey R Chatham
- Concept Life Sciences (formerly CXR Biosciences Ltd.), Dundee, UK
| | - Larry G Higgins
- Concept Life Sciences (formerly CXR Biosciences Ltd.), Dundee, UK
| | - Richard A Currie
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, UK
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
39
|
Maciel MD, Inocêncio LCL, Rechsteiner MS, Jorge BC, Balin PDS, Kassuya RM, Heredia-Vieira SC, Cardoso CAL, Vieira MDC, Kassuya CAL, Arena AC. Effects of exposure to ethanolic extract from Achyrocline satureioides (Lam.) D.C. flowers on reproductive and developmental parameters in Wistar rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:321-330. [PMID: 30940006 DOI: 10.1080/15287394.2019.1593904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Achyrocline satureioides (LAM) D.C. is a species plant used in folk medicine with several medicinal properties; however, few studies have focused on its potential adverse effects. The aim of this study was to examine the effects of ethanolic extract of A. satureioides flowers administered during pre-mating, mating, pregnancy and postpartum period on reproductive and developmental parameters in rats. Male and female rats received by gavage 0, 250, 500 or 750 mg/kg of extract. The animals were treated from pre-mating until 13 days post-partum. Phytochemical analysis revealed the presence of important flavonoids (quercetin, luteolin, caffeic acid, rutin, and ferulic acid). In females, biochemical, hematological or gestational parameters were not markedly altered by the extract. However, an increase in calcium and thyroid stimulating hormone (TSH) levels was found in treated-dams. Although TSH and T4 levels were not significantly altered in pups, there was a rise in body weight of pups whose mothers were treated with the extract. All males treated were able to successfully copulate with treated-females. However, rats exposed to 500 and 750 mg/kg of extract exhibited a significant decrease in daily testicular sperm production and delay in sperm transit time in the epididymis. The ethanolic extract of A. satureioides flowers produced adverse effects in the male reproductive system as evidenced by diminished sperm production and transport. In addition, the extract elevated TSH levels of exposed mothers which may consequently affect the development of pups but this requires further evaluation.
Collapse
Affiliation(s)
- Marcela Dias Maciel
- a School of Health Sciences , Federal University of Grande Dourados , Dourados , Mato Grosso do Sul State , Brazil
| | - Leonardo Cesar Lima Inocêncio
- b Department of Morphology , Institute of Biosciences of Botucatu, UNESP -São Paulo State University Estadual Paulista , Botucatu , São Paulo State , Brazil
| | - Mayra Schmidt Rechsteiner
- b Department of Morphology , Institute of Biosciences of Botucatu, UNESP -São Paulo State University Estadual Paulista , Botucatu , São Paulo State , Brazil
| | - Barbara Campos Jorge
- b Department of Morphology , Institute of Biosciences of Botucatu, UNESP -São Paulo State University Estadual Paulista , Botucatu , São Paulo State , Brazil
| | - Paola da Silva Balin
- b Department of Morphology , Institute of Biosciences of Botucatu, UNESP -São Paulo State University Estadual Paulista , Botucatu , São Paulo State , Brazil
| | - Roberto Mikio Kassuya
- a School of Health Sciences , Federal University of Grande Dourados , Dourados , Mato Grosso do Sul State , Brazil
| | | | - Claudia Andrea Lima Cardoso
- d Center of Studies on Natural Resources , Mato Grosso do Sul State University (UEMS) , Dourados , Mato Grosso do Sul State , Brazil
| | - Maria do Carmo Vieira
- a School of Health Sciences , Federal University of Grande Dourados , Dourados , Mato Grosso do Sul State , Brazil
| | | | - Arielle Cristina Arena
- b Department of Morphology , Institute of Biosciences of Botucatu, UNESP -São Paulo State University Estadual Paulista , Botucatu , São Paulo State , Brazil
| |
Collapse
|
40
|
Otun J, Sahebkar A, Östlundh L, Atkin SL, Sathyapalan T. Systematic Review and Meta-analysis on the Effect of Soy on Thyroid Function. Sci Rep 2019; 9:3964. [PMID: 30850697 PMCID: PMC6408586 DOI: 10.1038/s41598-019-40647-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
Soy foods have had an important dietary role in Asian countries for centuries, and in recent years they have become increasingly popular in Western countries as a result of their suggested health benefits. Nevertheless, there are some concerns that soy can have a negative effect on thyroid function and can alter the levels of thyroid hormones. The aim of this systematic review was to investigate the link between soy or soy product consumption and thyroid function via the measurement of thyroid hormone levels. A systematic review and meta-analysis was undertaken on all randomised controlled trials of studies including soy as an intervention and where free triiodothyronine (fT3), free thyroxine (fT4) and thyroid stimulating hormone (TSH) was measured. The search included PubMed, MEDLINE, EMBASE, Cochrane and sources for the grey literature. Quantitative data synthesis was performed using a random-effects model, with standardized mean difference (SMD) and 95% confidence interval as summary statistics. A total of 18 articles were suitable for review. The meta-analysis showed no significant changes in fT3 (WMD: 0.027 pmol/L, 95% CI: -0.052, 0.107, p = 0.499; I2: 55.58%), fT4 (WMD: -0.003 pmol/L, 95% CI: -0.018, 0.011, p = 0.656; I2: 87.58%) while an elevation in TSH levels was observed (WMD: 0.248 mIU/L, 95% CI: 0.001, 0.494, p = 0.049; I2: 80.31%) levels with soy supplementation. There was no evidence of publication bias. Soy supplementation has no effect on the thyroid hormones and only very modestly raises TSH levels, the clinical significance, if any, of the rise in TSH is unclear.
Collapse
Affiliation(s)
- Jemiliat Otun
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK.
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Linda Östlundh
- National Medical Library, College of Medicine and Health Sciences, UAE University, Al Ain, UAE
| | | | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| |
Collapse
|
41
|
Mondal C, Chandra AK. Goitrogenic/antithyroidal potential of moringa leaves (Moringa oleifera) and spinach (Spinacia oleracea) of Indian origin on thyroid status in male albino rats. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000218005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Zhang C, Lv B, Yi C, Cui X, Sui S, Li X, Qi M, Hao C, Han B, Liu Z. Genistein inhibits human papillary thyroid cancer cell detachment, invasion and metastasis. J Cancer 2019; 10:737-748. [PMID: 30719173 PMCID: PMC6360420 DOI: 10.7150/jca.28111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/08/2018] [Indexed: 12/19/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most commonly diagnosed endocrine cancer, and those with BRAFV600E mutation have high recurrence rate and less favorable clinical behavior. Genistein having anti-carcinoma effects in various types of carcinomas as an estrogen analog, but the mechanism of Genistein in the progression of PTC remains unknown. Genistein significantly inhibits the proliferation and the invasion (P < 0.01), and the apoptosis (P < 0.001) of all tumor cell lines, which was probably due to the inducing of the arrest in G2/M phase of the cell cycle (P < 0.001). The anti-proliferation and apoptosis inducing effects are more obvious in BCPAP, IHH4 cell lines harboring BRAFV600E mutation. Genistein significantly decreased the invasion of PTC cell lines and partially reverses epithelial mesenchymal transition in PTC cell lines. Functional study indicated that small interfering RNA (siRNA) knockdown of β-catenin significantly reverses the effect of genistein on EMT at protein levels. In conclusion, for the first time, our study suggested that genistein has anticarcinoma effect for PTC patients in the range of 2.5 and 80 μg/ml in thyroid carcinoma cells, which was probably through cytoplasmic translocation of β-catenin. Further study will be needed to determine whether genistein could be used in clinical trial of high-risk PTC.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.,Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Bin Lv
- Department of General surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Cuihua Yi
- Department of Chemotherapy, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Xiujie Cui
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Shaofeng Sui
- Department of Occupational and Environmental Health Monitoring and Assessment, Shandong Center for Disease Control and Prevention, Jinan 250012, China
| | - Xueen Li
- Department of General surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Mei Qi
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Chunyan Hao
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.,Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Bo Han
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.,Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Zhiyan Liu
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.,Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| |
Collapse
|
43
|
Testa I, Salvatori C, Di Cara G, Latini A, Frati F, Troiani S, Principi N, Esposito S. Soy-Based Infant Formula: Are Phyto-Oestrogens Still in Doubt? Front Nutr 2018; 5:110. [PMID: 30533415 PMCID: PMC6265372 DOI: 10.3389/fnut.2018.00110] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022] Open
Abstract
Although Scientific Societies have stated that there are very few indications for the use of soy-based formula (SF) in infant nutrition, their utilization rates have been repeatedly found to be higher than expected. It is likely that a significant role in this regard is played by the belief that the use of SF during infancy can reduce the risk of the development of several diseases later in life. Although no definitive data that can substantiate these claims have been collected, many people perceive soy consumption to confer significant health benefits and might also use soy for infant nutrition. However, not all the problems regarding safety of SF in infants have been definitively solved. Among risks, the potentially toxic role of the phyto-oestrogens contained in SF is not definitively established. In vitro and animal studies have raised suspicions that SF could have potentially negative effects on sexual development and reproductive function, neurobehavioral development, immune function, and thyroid function. Several studies in humans have aimed to assess whether the results of animal studies can be applied to humans and whether SF can be used in infants following the official recommendations. The results are somewhat conflicting. The aim of this narrative review is to discuss what is presently known regarding the impact of phyto-oestrogens in SF on early and late child development. PubMed was used to search for the studies published from January 1980 to June 2017 using the keywords: “soy,” “soy formula,” “child,” “phytoestrogens.” Analysis of the literature showed that a global evaluation of the impact of modern SFs on human development seems to suggest that their use is not associated with relevant abnormalities. Only children with congenital hypothyroidism need adequate monitoring of thyroid function.
Collapse
Affiliation(s)
- Ilaria Testa
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Cristina Salvatori
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Giuseppe Di Cara
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Arianna Latini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Franco Frati
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Stefania Troiani
- Neonatology and Neonatal Intensive Care Unit, Azienda Ospedaliera Santa Maria della Misericordia, Perugia, Italy
| | - Nicola Principi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
44
|
Pistollato F, Masias M, Agudo P, Giampieri F, Battino M. Effects of phytochemicals on thyroid function and their possible role in thyroid disease. Ann N Y Acad Sci 2018; 1443:3-19. [DOI: 10.1111/nyas.13980] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Francesca Pistollato
- Center for Nutrition & Health, CITICANUniversidad Europea del Atlántico, Parque Científico y Tecnológico de Cantabria Santander Spain
| | - Manuel Masias
- Center for Nutrition & Health, CITICANUniversidad Europea del Atlántico, Parque Científico y Tecnológico de Cantabria Santander Spain
- Área de Nutrición y SaludUniversidad Internacional Iberoamericana (UNINI) Campeche Mexico
| | - Pablo Agudo
- Center for Nutrition & Health, CITICANUniversidad Europea del Atlántico, Parque Científico y Tecnológico de Cantabria Santander Spain
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez, BiochimicaUniversità Politecnica delle Marche Ancona Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez, BiochimicaUniversità Politecnica delle Marche Ancona Italy
| |
Collapse
|
45
|
Idiz C, Aysan E, Elmas L, Bahadori F, Idiz U. EFFECTIVENESS OF ANETHUM GRAVEOLENS L. ON ANTIOXIDANT STATUS, THYROID FUNCTION AND HISTOPATHOLOGY. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2018; 14:447-452. [PMID: 31149295 PMCID: PMC6516417 DOI: 10.4183/aeb.2018.447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CONTEXT Anethum graveolens L. is used in the treatment of numerous diseases. But there is limited data about the Anethum graveolens efficiency in thyroid tissue. OBJECTIVE The aim of this study is to assess the functional and histopathological changes in thyroid tissues from rats treated with Anethum graveolens L. extract. DESIGN This is an experimental animal study and duration of the study was 30 days. SUBJECTS AND METHODS Twenty-eight female Wistar Albino rats were divided into four equal groups. A gavage of Anethum graveolens L. extract at 0, 50, 150 and 300 mg/kg/day doses were given to the rats with 1 mL 0.9% NaCl, respectively, for 30 days. Blood was taken at day 0, 15 and 30. fT3, fT4, TSH values and antioxidant efficiency were observed. Also the thyroidectomy tissue was assessed histopathologically. RESULTS There is no difference observed in the fT3, fT4 and TSH values of groups 1, 2 and 3 at day 1, 15 and 30 (p>0.05); however, in group 4, TSH value decreased on days 15 and 30 when compared to day 1 and the other groups (p<0.05). Also the hypertrophy and thyroid follicular cell hyperplasia were significantly increased in group 4 (p<0.05). There is no difference in antioxidant efficiency in any of the groups (p>0.05). CONCLUSION Anethum graveolens L. extract is effective on both the function and the histology of thyroid tissue but it has no effect on antioxidant status.
Collapse
Affiliation(s)
- C. Idiz
- Istanbul University, Faculty of Medicine, Department of Internal Medicine, Istanbul, Turkey
| | - E. Aysan
- Bezmialem Vakif University, Faculty of Medicine, Department of General Surgery, Istanbul, Turkey
| | - L. Elmas
- Bezmialem Vakif University, Faculty of Medicine, Department of General Surgery, Istanbul, Turkey
| | - F. Bahadori
- Bezmialem Vakif University, Faculty of Medicine, Department of General Surgery, Istanbul, Turkey
| | - U.O. Idiz
- Sisli Etfal Training and Research Hospital, Department of General Surgery, Istanbul, Turkey
| |
Collapse
|
46
|
Lee J, Kim S, Park YJ, Moon HB, Choi K. Thyroid Hormone-Disrupting Potentials of Major Benzophenones in Two Cell Lines (GH3 and FRTL-5) and Embryo-Larval Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8858-8865. [PMID: 29995391 DOI: 10.1021/acs.est.8b01796] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Benzophenones (BPs) have been widely used in personal care products (PCPs) such as UV protectants. Sex endocrine-disrupting effects have been documented for some BPs, but, significant knowledge gaps are present for their thyroid-disrupting effects. To investigate the thyroid-disrupting potential of BPs, a rat pituitary (GH3) and thyroid follicle (FRTL-5) cell line were employed on six BPs, i.e., benzophenone (BP), benzophenone-1 (BP-1), benzophenone-2 (BP-2), benzophenone-3 (BP-3), benzophenone-4 (BP-4), and benzophenone-8 (BP-8). Subsequently, zebrafish ( Danio rerio) embryo exposure was conducted for three potent BPs that were identified based on the transcriptional changes observed in the cells. In GH3 cells, all BPs except BP-4 down-regulated the Tshβ, Trhr, and Trβ genes. In addition, some BPs significantly up-regulated the Nis and Tg genes while down-regulating the Tpo gene in FRTL-5 cells. In zebrafish embryo assay conducted for BP-1, BP-3, and BP-8, significant decreases in whole-body T4 and T3 level were observed at 6 day postfertilization (dpf). The up-regulation of the dio1 and ugt1ab genes in the fish suggests that decreased thyroid hormones are caused by changing metabolism of the hormones. Our results show that these frequently used BPs can alter thyroid hormone balances by influencing the central regulation and metabolism of the hormones.
Collapse
Affiliation(s)
- Jungeun Lee
- Department of Environmental Health Sciences, School of Public Health , Seoul National University , Seoul 08826 , Republic of Korea
| | - Sujin Kim
- Department of Environmental Health Sciences, School of Public Health , Seoul National University , Seoul 08826 , Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine , Seoul National University Hospital and Seoul National University College of Medicine , Seoul 03080 , Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology , Hanyang University , Ansan 15588 , Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health , Seoul National University , Seoul 08826 , Republic of Korea
- Institute of Health and Environment , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
47
|
Kim HI, Jeong YU, Kim JH, Park YJ. 3,5,6,7,8,3',4'-Heptamethoxyflavone, a Citrus Flavonoid, Inhibits Collagenase Activity and Induces Type I Procollagen Synthesis in HDFn Cells. Int J Mol Sci 2018; 19:E620. [PMID: 29470423 PMCID: PMC5855842 DOI: 10.3390/ijms19020620] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 01/26/2018] [Accepted: 02/21/2018] [Indexed: 11/16/2022] Open
Abstract
Citrus fruits contain various types of flavonoids with powerful anti-aging and photoprotective effects on the skin, and have thus been attracting attention as potential, efficacious skincare agents. Here, we aimed to investigate the chemical composition of Citrus unshiu and its protective effects on photoaging. We isolated and identified a bioactive compound, 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF), from C. unshiu peels using ethanol extraction and hexane fractionation. HMF inhibited collagenase activity and increased type I procollagen content in UV-induced human dermal fibroblast neonatal (HDFn) cells. HMF also suppressed the expression of matrix metalloproteinases 1 (MMP-1) and induced the expression of type I procollagen protein in UV-induced HDFn cells. Additionally, HMF inhibited ultraviolet B (UVB)-induced phosphorylation of the mitogen-activated protein kinases (MAPK) cascade signaling components-ERK, JNK, and c-Jun-which are involved in the induction of MMP-1 expression. Furthermore, HMF affected the TGF-β/Smad signaling pathway, which is involved in the regulation of type I procollagen expression. In particular, HMF induced Smad3 protein expression and suppressed Smad7 protein expression in UV-induced HDFn cells in a dose-dependent manner. These findings suggest a role for Citrusunshiu in the preparation of skincare products in future.
Collapse
Affiliation(s)
- Hong-Il Kim
- Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea.
| | - Yong-Un Jeong
- Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea.
| | - Jong-Hyeon Kim
- Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea.
| | - Young-Jin Park
- Department of Biomedical Chemistry, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea.
| |
Collapse
|
48
|
Mantovani A. Endocrine Disrupters and the Safety of Food Chains. Horm Res Paediatr 2018; 86:279-288. [PMID: 26535888 DOI: 10.1159/000441496] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 11/19/2022] Open
Abstract
Endocrine disrupters (ED) are a heterogeneous group of chemicals including persistent contaminants, pesticides, as well as compounds present in consumer products and natural substances. For most ED, the food chain is a current major exposure route for the general population. ED can enter the food chain through the living environment (e.g., feeds, fertilizers) of food-producing organisms, be directly employed in food production (e.g., pesticides) or be released from food contact materials (such as bisphenol A or phthalates); in addition, the endocrine disruption potential of some natural compounds in edible plants, including the so-called phytoestrogens, should not be overlooked. An exposure assessment has to consider the specific liability of food commodities to contamination with specific ED (e.g., polychlorinated and polybrominated chemicals in lipid-rich foods). The paper discusses the main toxicological research issues in order to support the risk assessment of ED in food chains, including: the potential for additive, 'cocktail' effects (as from multiple pesticide residues); the long-term effects on target body systems (e.g., reproductive, nervous) elicited by exposure during prenatal as well as postnatal life stage windows, and toxicant/nutrient interactions (e.g., thyroid-targeting ED and iodine status). Food safety systems should exploit the available knowledge to improve prevention of long-term risks along the whole food chain.
Collapse
Affiliation(s)
- Alberto Mantovani
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
49
|
In vitro effects of natural phytoestrogens on sodium/iodide symporter mediated thyroid iodide uptake by using a differentiated TSH-dependent cell line. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Sathyapalan T, Dawson AJ, Rigby AS, Thatcher NJ, Kilpatrick ES, Atkin SL. The Effect of Phytoestrogen on Thyroid in Subclinical Hypothyroidism: Randomized, Double Blind, Crossover Study. Front Endocrinol (Lausanne) 2018; 9:531. [PMID: 30254609 PMCID: PMC6141627 DOI: 10.3389/fendo.2018.00531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Objective: Soy phytoestrogens are suggested to impair thyroid function but the effects of pharmacological doses of soy phytoestrogens are unknown; therefore, this study was performed to determine the effect of high dose soy phytoestrogens (66 mg) on thyroid function in subclinical hypothyroidism. Design and setting: Randomized, double-blind, crossover study. Participants: Forty four patients with subclinical hypothyroidism. Intervention: Participants were randomly allocated to either 66 mg phytoestrogen with 30 g soy protein (active) or 0 mg phytoestrogen with 30 g soy protein (placebo) supplementation for 8 weeks, washed out for 8 weeks and then crossed over for another 8 week period. Main outcome measures: The primary outcome was progression to overt hypothyroidism with the secondary outcome measures were changes in thyroid function tests. Results: Two patients in this trial progressed into overt hypothyroidism after high dose phytoestrogen supplementation. TSH, free thyroxine and triiodothyronine did not differ between groups. Conclusion: A pharmacological dose of 66 mg of soy phytoestrogens did not increase the overt thyroid failure rate or alter thyroid function tests in patients with subclinical hypothyroidism.
Collapse
Affiliation(s)
- Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Alison J Dawson
- Bradford Teaching Hospital NHS Foundation Trust, Bradford, United Kingdom
| | - Alan S Rigby
- Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | - Eric S Kilpatrick
- Department of Clinical Chemistry, Sidra Medical and Research Center, Doha, Qatar
| | | |
Collapse
|