1
|
Su Y, Song G, Shen Y, Li X, Ren H. Mechanisms and energetics for hydrogen abstraction of thymine photosensitized by benzophenone from theoretical principles. Phys Chem Chem Phys 2023; 25:6467-6472. [PMID: 36779968 DOI: 10.1039/d2cp05481g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The significant role of hydrogen abstraction in chemistry and biology has inspired many theoretical works to link its practical phenomena and mechanistic properties. Here, the photophysical processes and hydrogen abstraction mechanisms of benzophenone (BZP) photosensitized thymine damage were systematically investigated from theoretical principles. It was found that the BZP photosensitizer upon UV irradiation undergoes vertical excitation, internal conversion, vibrational relaxation and intersystem crossing into a triplet excited state. Then the triplet BZP damages thymine by a hydrogen abstraction process. However, the reverse reaction easily occurs due to the lower reaction energy, which causes a low yield of hydrogen abstraction products. We hope this comprehensive work can provide a deeper understanding of photosensitive DNA damage from hydrogen abstraction.
Collapse
Affiliation(s)
- Yingli Su
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Guanlin Song
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yan Shen
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xiangyuan Li
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Haisheng Ren
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Kaur P, Purewal SS, Sandhu KS, Kaur M. DNA damage protection: an excellent application of bioactive compounds. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0237-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
3
|
Pan CH, Jeng HA, Lai CH. Biomarkers of oxidative stress in electroplating workers exposed to hexavalent chromium. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:76-83. [PMID: 28120834 DOI: 10.1038/jes.2016.85] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
This study evaluates levels of biomarkers of oxidative DNA damage and lipid peroxidation in 105 male workers at 16 electroplating companies who had been exposed to hexavalent chromium (Cr(VI)). The study participants were 230 non-smoking male workers, comprising 105 electroplating workers who had been exposed to chromium and 125 control subjects who performed office tasks. Personal air samples, spot urine samples, hair samples, fingernail samples and questionnaires were used to quantify exposure to Cr(VI), oxidative DNA damage, lipid peroxidation, and environmental pollutants. Both the geometric mean personal concentrations of Cr(VI) of the Cr-exposed workers and the total Cr concentrations in the air to which they were exposed significantly exceeded those for the control subjects. The geometric mean concentrations of Cr in urine, hair and fingernails, and the urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and malondialdehyde (MDA) levels in the Cr(VI) exposed workers exceeded those in the control subjects. Daily cumulative Cr(VI) exposure and urinary Cr were significantly correlated with urinary 8-OHdG levels following adjustments for covariates. A ten-fold increase in urinary Cr level was associated with a 1.73-fold increase in urinary 8-OHdG level. Daily cumulative Cr(VI) exposure and urinary Cr level were significantly correlated with urinary MDA level following adjustments for covariates. A ten-fold increase in urinary Cr was associated with a 1.45-fold increase in urinary MDA. Exposure to Cr(VI) increased oxidative DNA injury and the oxidative deterioration of lipids in electroplating workers.
Collapse
Affiliation(s)
- Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Hueiwang Anna Jeng
- School of Community and Environmental Health, College of Health Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Flaender M, Costa G, Nonglaton G, Saint-Pierre C, Gasparutto D. A DNA array based on clickable lesion-containing hairpin probes for multiplexed detection of base excision repair activities. Analyst 2016; 141:6208-6216. [DOI: 10.1039/c6an01165a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An electrophoresis-free fluorescent functional assay has been developed to measure DNA repair activities in a miniaturized and parallelized manner.
Collapse
Affiliation(s)
- Mélanie Flaender
- Université Grenoble Alpes
- INAC – SyMMES/CEA
- F-38000 Grenoble
- France
| | - Guillaume Costa
- Université Grenoble Alpes
- LETI/DTBS-SBSC/CEA
- F-38000 Grenoble
- France
| | | | | | | |
Collapse
|
5
|
Nguyen TX, Grampp G, Yurkovskaya A, Lukzen N. Kinetics of the oxidation of thymine and thymidine by triplet 2,2'-dipyridyl in aqueous solutions at different pH values. J Phys Chem A 2013; 117:7655-60. [PMID: 23906227 PMCID: PMC3751068 DOI: 10.1021/jp4022882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/21/2013] [Indexed: 01/20/2023]
Abstract
The photo-oxidation of the nucleobase, thymine (Thy), and nucleoside, thymidine (dThy), by dipyridyl (DP) has been investigated in aqueous solution using time-resolved laser flash photolysis. The pH dependence of the oxidation rate constants is measured within a large pH scale. As a consequence, the chemical reactivity of the reactants existing in solution at a certain range of pH is predicted. Bimolecular rate constants of the quenching reactions between triplet dipyridyl and thymine and thymidine are, respectively, kq = 2.4 × 10(7) M(-1) s(-1) (pH < 5.8) and kq = 1.0 × 10(7) M(-1) s(-1) (5.8 < pH < 9.8). Cyclic voltammetry was used to measure the potentials of thymine oxidation and dipyridyl reduction in water at pH < 7. Both results give hints for a proton coupled electron-transfer (PCET) reaction from thymine to triplet dipyridyl.
Collapse
Affiliation(s)
- Truong X. Nguyen
- Institute of Physical and Theoretical
Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Günter Grampp
- Institute of Physical and Theoretical
Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Alexandra
V. Yurkovskaya
- International Tomography
Center, Institutskaya 3a, 630090 Novosibirsk, Russia
- Novosibirsk State
University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Nikita Lukzen
- International Tomography
Center, Institutskaya 3a, 630090 Novosibirsk, Russia
- Novosibirsk State
University, Pirogova 2, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Cuquerella MC, Lhiaubet-Vallet V, Cadet J, Miranda MA. Benzophenone photosensitized DNA damage. Acc Chem Res 2012; 45:1558-70. [PMID: 22698517 DOI: 10.1021/ar300054e] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the carcinogenic potential of ultraviolet radiation is well-known, UV light may interact with DNA by direct absorption or through photosensitization by endogenous or exogenous chromophores. These chromophores can extend the "active" fraction of the solar spectrum to the UVA region and beyond, which means that photosensitizers increase the probability of developing skin cancer upon exposure to sunlight. Therefore researchers would like to understand the mechanisms involved in photosensitized DNA damage both to anticipate possible photobiological risks and to design tailor-made photoprotection strategies. In this context, photosensitized DNA damage can occur through a variety of processes including electron transfer, hydrogen abstraction, triplet-triplet energy transfer, or generation of reactive oxygen species. In this Account, we have chosen benzophenone (BP) as a classical and paradigmatic chromophore to illustrate the different lesions that photosensitization may prompt in nucleosides, in oligonucleotides, or in DNA. Thus, we discuss in detail the accumulated mechanistic evidence of the BP-photosensitized reactions of DNA or its building blocks obtained by our group and others. We also include ketoprofen (KP), a BP-derivative that possesses a chiral center, to highlight the stereodifferentiation in the key photochemical events, revealed through the dynamics of the reactive triplet excited state ((3)KP*). Our results show that irradiation of the BP chromophore in the presence of DNA or its components leads to nucleobase oxidations, cyclobutane pyrimidine dimer formation, single strand breaks, DNA-protein cross-links, or abasic sites. We attribute the manifold photoreactivity of BP to its well established photophysical properties: (i) it absorbs UV light, up to 360 nm; (ii) its intersystem crossing quantum yield (ϕ(ISC)) is almost 1; (iii) the energy of its nπ* lowest triplet excited state (E(T)) is ca. 290 kJ mol(-1); (iv) it produces singlet oxygen ((1)O(2)) with a quantum yield (ϕ(Δ)) of ca. 0.3. For electron transfer and singlet oxygen reactions, we focused on guanine, the nucleobase with the lowest oxidation potential. Among the possible oxidative processes, electron transfer predominates. Conversely, triplet-triplet energy transfer occurs mainly from (3)BP* to thymine, the base with the lowest lying triplet state in DNA. This process results in the formation of cyclobutane pyrimidine dimers, but it also competes with the Paternò-Büchi reaction in nucleobases or nucleosides, giving rise to oxetanes as a result of crossed cycloadditions. Interestingly, we have found significant stereodifferentiation in the quenching of the KP triplet excited state by both 2'-deoxyguanosine and thymidine. Based on these results, this chromophore shows potential as a (chiral) probe for the investigation of electron and triplet energy transport in DNA.
Collapse
Affiliation(s)
- M. Consuelo Cuquerella
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Virginie Lhiaubet-Vallet
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Jean Cadet
- Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
| | - Miguel A. Miranda
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politécnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
7
|
Yun BH, Geacintov NE, Shafirovich V. Generation of guanine-thymidine cross-links in DNA by peroxynitrite/carbon dioxide. Chem Res Toxicol 2011; 24:1144-52. [PMID: 21513308 DOI: 10.1021/tx200139c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrosoperoxycarbonate derived from the combination of carbon dioxide and peroxynitrite is an important chemical mediator of inflammation. In aqueous solutions, it rapidly decomposes to the reactive species CO(3)(•-) and (•)NO(2) radicals that are known to initiate the selective oxidation and nitration of guanine in DNA. We have previously demonstrated that the reactions of carbonate radical anions with guanine in 2'-deoxyoligoribonucleotides generate a previously unknown intrastrand cross-linked guanine-thymine product G*-T* with a covalent bond between the C8 (G*) and the thymine N3 (T*) atoms (Crean Nucleic Acids Res. 2008, 36, 742-755). In this work, we demonstrate that G*-T* cross-linked products are also formed when peroxynitrite (0.1 mM) reacts with native DNA in aqueous solutions (pH 7.5-7.7) containing 25 mM carbon dioxide/bicarbonate, in addition to the well-known nitration/oxidation products of guanine such as 8-nitroguanine (8-nitro-G), 5-guanidino-4-nitroimidazole (NIm), 8-oxo-7,8-dehydroguanine (8-oxo-G), and spiroiminodihydantoin (Sp). The yields of these products, after enzymatic digestion with P1 nuclease and alkaline phosphatase to the nucleotide level and reversed phase HPLC separation, were compared with those obtained with the uniformly, isotopically labeled (15)N,(13)C-labeled 2'-deoxy oligoribonucleotides 5'-dGpT and 5'-dGpCpT. The d(G*pT*) and d(G*-T*) cross-linked products derived from the di- and trioligonucleotides, respectively, were used as standards for identifying the analogous lesions in calf thymus DNA by isotope dilution LC-MS/MS methods in the selected reaction monitoring mode. The NIm and 8-nitro-G are the major products formed (∼0.05% each), and lesser amounts of 8-oxo-G (∼0.02%) and d(G*pT*) and d(G*-T*) enzymatic digestion products (∼0.002% each) were found. It is shown that the formation of d(G*pT*) enzyme digestion product can arise only from intrastrand cross-links, whereas d(G*-T*) can arise from both interstrand and intrastrand cross-linked products.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Division of Environmental Health Sciences, Wadsworth Center, NYS Department of Health, Empire State Plaza, P.O. Box 509, Albany, New York 12201-0509, USA
| | | | | |
Collapse
|
8
|
Münzel M, Szeibert C, Glas AF, Globisch D, Carell T. Discovery and synthesis of new UV-induced intrastrand C(4-8)G and G(8-4)C photolesions. J Am Chem Soc 2011; 133:5186-9. [PMID: 21425860 DOI: 10.1021/ja111304f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UV irradiation of cellular DNA leads to the formation of a number of defined mutagenic DNA lesions. Here we report the discovery of new intrastrand C(4-8)G and G(8-4)C cross-link lesions in which the C(4) amino group of the cytosine base is covalently linked to the C(8) position of an adjacent dG base. The structure of the novel lesions was clarified by HPLC-MS/MS data for UV-irradiated DNA in combination with chemical synthesis and direct comparison of the synthetic material with irradiated DNA. We also report the ability to generate the lesions directly in DNA with the help of a photoactive precursor that was site-specifically incorporated into DNA. This should enable detailed chemical and biochemical investigations of these lesions.
Collapse
Affiliation(s)
- Martin Münzel
- Center for Integrated Protein Science (CIPS(M)) at the Department of Chemistry, Ludwig-Maximilians-University Munich , Butenandtstrasse 5-13, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
9
|
Crean C, Lee YA, Yun BH, Geacintov NE, Shafirovich V. Oxidation of guanine by carbonate radicals derived from photolysis of carbonatotetramminecobalt(III) complexes and the pH dependence of intrastrand DNA cross-links mediated by guanine radical reactions. Chembiochem 2008; 9:1985-91. [PMID: 18655084 DOI: 10.1002/cbic.200800105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The carbonate radical anion CO(3)(*-) is a decomposition product of nitrosoperoxycarbonate derived from the combination of carbon dioxide and peroxynitrite, an important biological byproduct of the inflammatory response. The selective oxidation of guanine in DNA by CO(3)(*-) radicals is known to yield spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh) products, and also a novel intrastrand cross-linked product: 5'-d(CCATCG*CT*ACC), featuring a linkage between guanine C8 (G*) and thymine N3 (T*) atoms in the oligonucleotide (Crean et al., Nucleic Acids Res. 2008, 36, 742-755). Involvement of the T-N3 (pK(a) of N3-H is 9.67) suggests that the formation of 5'-d(CCATCG*CT*ACC) might be pH-dependent. This hypothesis was tested by generating CO(3)(*-) radicals through the photodissociation of carbonatotetramminecobalt(III) complexes by steady-state UV irradiation, which allowed for studies of product yields in the pH 5.0-10.0 range. The yield of 5'-d(CCATCG*CT*ACC) at pH 10.0 is approximately 45 times greater than at pH 5.0; this is consistent with the proposed mechanism, which requires N3(H) thymine proton dissociation followed by nucleophilic addition to the C8 guanine radical.
Collapse
Affiliation(s)
- Conor Crean
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA
| | | | | | | | | |
Collapse
|
10
|
Crean C, Uvaydov Y, Geacintov NE, Shafirovich V. Oxidation of single-stranded oligonucleotides by carbonate radical anions: generating intrastrand cross-links between guanine and thymine bases separated by cytosines. Nucleic Acids Res 2007; 36:742-55. [PMID: 18084033 PMCID: PMC2241916 DOI: 10.1093/nar/gkm1092] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The carbonate radical anion is a biologically important one-electron oxidant that can directly abstract an electron from guanine, the most easily oxidizable DNA base. Oxidation of the 5'-d(CCTACGCTACC) sequence by photochemically generated CO3*- radicals in low steady-state concentrations relevant to biological processes results in the formation of spiroiminodihydantoin diastereomers and a previously unknown lesion. The latter was excised from the oxidized oligonucleotides by enzymatic digestion with nuclease P1 and alkaline phosphatase and identified by LC-MS/MS as an unusual intrastrand cross-link between guanine and thymine. In order to further characterize the structure of this lesion, 5'-d(GpCpT) was exposed to CO3*- radicals, and the cyclic nature of the 5'-d(G*pCpT*) cross-link in which the guanine C8-atom is bound to the thymine N3-atom was confirmed by LC-MS/MS, 1D and 2D NMR studies. The effect of bridging C bases on the cross-link formation was studied in the series of 5'-d(GpC(n)pT) and 5'-d(TpC(n)pG) sequences with n = 0, 1, 2 and 3. Formation of the G*-T* cross-links is most efficient in the case of 5'-d(GpCpT). Cross-link formation (n = 0) was also observed in double-stranded DNA molecules derived from the self-complementary 5'-d(TTACGTACGTAA) sequence following exposure to CO3*- radicals and enzymatic excision of the 5'-d(G*pT*) product.
Collapse
Affiliation(s)
- Conor Crean
- Chemistry Department and Radiation and Solid State Laboratory, 31 Washington Place, New York University, New York, NY 10003-5180, USA
| | | | | | | |
Collapse
|
11
|
Hazra TK, Das A, Das S, Choudhury S, Kow YW, Roy R. Oxidative DNA damage repair in mammalian cells: a new perspective. DNA Repair (Amst) 2006; 6:470-80. [PMID: 17116430 PMCID: PMC2702509 DOI: 10.1016/j.dnarep.2006.10.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxidatively induced DNA lesions have been implicated in the etiology of many diseases (including cancer) and in aging. Repair of oxidatively damaged bases in all organisms occurs primarily via the DNA base excision repair (BER) pathway, initiated with their excision by DNA glycosylases. Only two mammalian DNA glycosylases, OGG1 and NTH1 of E. coli Nth family, were previously characterized, which excise majority of the oxidatively damaged base lesions. We recently discovered and characterized two human orthologs of E. coli Nei, the prototype of the second family of oxidized base-specific glycosylases and named them NEIL (Nei-like)-1 and 2. NEILs are distinct from NTH1 and OGG1 in structural features and reaction mechanism but act on many of the same substrates. Nth-type DNA glycosylases after base excision, cleave the DNA strand at the resulting AP-site to produce a 3'-alphabeta unsaturated aldehyde whereas Nei-type enzymes produce 3'-phosphate terminus. E. coli APEs efficiently remove both types of termini in addition to cleaving AP sites to generate 3'-OH, the primer terminus for subsequent DNA repair synthesis. In contrast, the mammalian APE, APE1, which has an essential role in NTH1/OGG1-initiated BER, has negligible 3'-phosphatase activity and is dispensable for NEIL-initiated BER. Polynucleotide kinase (PNK), present in mammalian cells but not in E. coli, removes the 3' phosphate, and is involved in NEIL-initiated BER. NEILs show a unique preference for excising lesions from a DNA bubble, while most DNA glycosylases, including OGG1 and NTH1, are active only with duplex DNA. The dichotomy in the preference of NEILs and NTH1/OGG1 for bubble versus duplex DNA substrates suggests that NEILs function preferentially in repair of base lesions during replication and/or transcription and hence play a unique role in maintaining the functional integrity of mammalian genomes.
Collapse
Affiliation(s)
- Tapas K Hazra
- Sealy Center for Molecular Science and Department of Biochemistry and Molecular Biology, 6.136 Medical Research Building, Route 1079, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Gimisis T, Cismaş C. Isolation, Characterization, and Independent Synthesis of Guanine Oxidation Products. European J Org Chem 2006. [DOI: 10.1002/ejoc.200500581] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thanasis Gimisis
- Department of Chemistry, University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Crina Cismaş
- Department of Chemistry, University of Athens, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
13
|
Ali MM, Hazra TK, Hong D, Kow YW. Action of human endonucleases III and VIII upon DNA-containing tandem dihydrouracil. DNA Repair (Amst) 2005; 4:679-86. [PMID: 15907775 DOI: 10.1016/j.dnarep.2005.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/01/2005] [Accepted: 03/02/2005] [Indexed: 02/08/2023]
Abstract
We have shown previously that endonuclease III from Escherichia coli, its yeast homolog Ntg1p and E. coli endonuclease VIII recognize single dihydrouracil (DHU) lesions efficiently. However, these enzymes have limited capacities for completely removing DHU, when the lesion is present on duplex DNA as a tandem lesion. A duplex 30-mer (duplex1920) containing tandem DHU lesions at positions 19 and 20 from the 5' terminus was used as a substrate for human endonuclease III (hNTH) and endonuclease VIII (NEIL1). Two cleavage products, 18beta and 19beta were formed, when duplex1920 was treated with hNTH. The 18beta corresponded to the expected beta-elimination product generated from duplex1920, when the 5'-DHU of the tandem DHU was processed by hNTH. Similarly, 19beta is the beta-elimination product generated, when the 3'-DHU of the tandem DHU was processed by hNTH; 19beta thus still contained a DHU lesion at the 3' terminus. When these hNTH reaction products were further treated with human APE1, a single new product that corresponded to an 18mer was observed. These data suggested that human APE1 can help to process the 3' terminals following the action of hNTH on DHU lesions. Similarly, when duplex1920 was treated with NEIL1, two cleavage products, 18p and 19p were observed. The 18p and 19p corresponded to the expected beta,delta-elimination products derived from NEIL1 induced cleavage at the 5'-DHU and 3'-DHU of the tandem DHU, respectively. The 3'-phosphoryl group present in 18p can be readily removed by T4 polynucleotide kinase (PNK) to yield an 18mer that is suitable for repair synthesis. However, 19p required the participation of both PNK and APE1 to generate the 18mer. Together, we suggest that the processing of DNA-containing tandem DHU lesions, initiated by hNTH and NEIL1 can be channeled into two sub-pathways, the PNK-independent, APE1-dependent and the PNK, APE1-dependent pathways, respectively.
Collapse
Affiliation(s)
- Mohsin M Ali
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
14
|
Cadet J, Douki T, Gasparutto D, Ravanat JL. Radiation-induced damage to cellular DNA: measurement and biological role. Radiat Phys Chem Oxf Engl 1993 2005. [DOI: 10.1016/j.radphyschem.2003.12.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Zhang Q, Wang Y. Independent generation of 5-(2'-deoxycytidinyl)methyl radical and the formation of a novel cross-link lesion between 5-methylcytosine and guanine. J Am Chem Soc 2003; 125:12795-802. [PMID: 14558827 DOI: 10.1021/ja034866r] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species (ROS) can damage DNA. Although a number of single nucleobase lesions induced by ROS have been structurally characterized, only a few intrastrand cross-link lesions have been identified and characterized, and all of them involve adjacent thymine and guanine or adenine. In mammalian cells, the cytosines at CpG sites are methylated. On the basis of the similar reactivity of 5-methylcytosine and thymine toward hydroxyl radical and the similar orientation of adjacent thymine guanine (TG) and 5-methylcytosine guanine (mCG) in B-DNA, we predict that the cross-link lesion, which was identified in TG and has a covalent bond formed between the 5-methyl carbon atom of T and the C8 carbon atom of G, should also form at mCG site. Here, we report for the first time the independent generation of 5-(2'-deoxycytidinyl)methyl radical, and our results demonstrate that this radical can give rise to the predicted novel intrastrand cross-link lesion in dinucleoside monophosphates d(mCG) and d(GmC). Furthermore, we show that the cross-link lesion can also form in d(mCG) from gamma irradiation under anaerobic conditions.
Collapse
Affiliation(s)
- Qibin Zhang
- Department of Chemistry-027, University of California at Riverside, Riverside, California 92521-0403, USA
| | | |
Collapse
|
16
|
Liu Z, Gao Y, Wang Y. Identification and characterization of a novel cross-link lesion in d(CpC) upon 365-nm irradiation in the presence of 2-methyl-1,4-naphthoquinone. Nucleic Acids Res 2003; 31:5413-24. [PMID: 12954778 PMCID: PMC203320 DOI: 10.1093/nar/gkg736] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We report the isolation and characterization for the first time of a cross-link lesion between two adjacent cytosines from the 2-methyl-1,4-naphthoquinone (menadione)-sensitized 365-nm irradiation of d(CpC). Electrospray ionization mass spectrometry (ESI-MS), tandem MS and (1)H NMR results indicate that the cross-link occurs between the C5 carbon atom of one cytosine and the N(4) nitrogen atom of the other cytosine. Furthermore, we synthesized d(CpC) with a (15)N being incorporated on the amino group of either of the two cytosines. We then irradiated the two (15)N-labeled dinucleoside monophosphates, isolated the cross-link products and characterized them by MS and multi-stage tandem MS. The latter results established unambiguously that the N(4) nitrogen atom of the 3'-nucleobase is involved in the covalent bond formation between the two cytosines. This, in combination with two-dimensional nuclear Overhauser effect spectroscopy (NOESY) results, demonstrates that the cross-link arises from the formation of a covalent bond between the C5 carbon atom of the 5' cytosine and the N(4) nitrogen atom of the 3' cytosine. We also show that the solution pH has a significant effect on the formation of the cross-link lesion, which supports that the deprotonation at the exocyclic amino group of cytosine cation radical is essential for the formation of the cross-link lesion.
Collapse
Affiliation(s)
- Zhenjiu Liu
- Department of Chemistry-027, University of California at Riverside, Riverside, CA 92521-0403, USA
| | | | | |
Collapse
|
17
|
Ramírez-Arizmendi LE, Heidbrink JL, Guler LP, Kenttämaa HI. Reactivity of substituted charged phenyl radicals toward components of nucleic acids. J Am Chem Soc 2003; 125:2272-81. [PMID: 12590557 DOI: 10.1021/ja020632g] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions of differently substituted phenyl radicals with components of nucleic acids have been investigated in the gas phase. A positively charged group located meta with respect to the radical site was employed to allow manipulation of the radicals in a Fourier-transform ion cyclotron resonance mass spectrometer. All of these electrophilic radicals react with sugars via exclusive hydrogen atom abstraction, with adenine and uracil almost exclusively via addition (likely at the C8 and C5 carbons, respectively), and with the nucleoside thymidine by hydrogen atom abstraction and addition at C5 in the base moiety (followed by elimination of (*)CH(3)). These findings parallel the reactivity of the phenyl radical with components of nucleic acids in solution, except that the selectivity for addition is different. Like HO(*), the electrophilic charged phenyl radicals appear to favor addition to the C5-end of the C5-C6 double bond of thymine and thymidine, whereas the phenyl radical preferentially adds to C6. The charged phenyl radicals do not predominantly add to thymine, as the neutral phenyl radical and HO(*), but mainly react by hydrogen atom abstraction from the methyl group (some addition to C5 in the base followed by loss of (*)CH(3) also occurs). Adenine appears to be the preferred target among the nucleobases, while uracil is the least favored. A systematic increase in the electrophilicity of the radicals by modification of the radicals' structures was found to facilitate all reactions, but the addition even more than hydrogen atom abstraction. Therefore, the least reactive radicals are most selective toward hydrogen atom abstraction, while the most reactive radicals also efficiently add to the base. Traditional enthalpy arguments do not rationalize the rate variations. Instead, the rates reflect the radicals' electron affinities used as a measure for their ability to polarize the transition state of each reaction.
Collapse
Affiliation(s)
- Luis E Ramírez-Arizmendi
- Contribution from the Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA
| | | | | | | |
Collapse
|
18
|
Wang Y, Liu Z. Mechanisms for the formation of major oxidation products of adenine upon 365-nm irradiation with 2-methyl-1,4-naphthoquinone as a sensitizer. J Org Chem 2002; 67:8507-12. [PMID: 12444632 DOI: 10.1021/jo0264170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently we reported the isolation and characterization of N6-formyl- and N6-acetyladenine from 365-nm irradiation of dinucleoside monophosphates d(ApA), d(ApC), and d(CpA) in the presence of 2-methyl-1,4-naphthoquinone (menadione) (Wang et al. Biochem. Biophys. Res. Commun. 2002, 291, 1252-7). In this article we investigated the mechanisms for the formation of the two major products by carrying out photoirradiation with isotopically labeled menadione and 2,3-dimethyl-1,4-naphthoquinone. HPLC and electrospray ionization (ESI)-mass spectrometry (MS) and tandem MS studies of the products unambiguously established that the carbonyl group in the products arises from the photosensitizer: The N6-formyl group comes from oxidation of the methyl group and the N6-acetyl group stems from the methyl group and the adjacent ring carbon in menadione. From above results, we proposed mechanisms for the formation of the two products.
Collapse
Affiliation(s)
- Yinsheng Wang
- Department of Chemistry-027, University of California at Riverside, Riverside, California 92521-0403, USA
| | | |
Collapse
|
19
|
Wang Y, Liu Z, Dixon C. Major adenine products from 2-methyl-1,4-naphthoquinone-sensitized photoirradiation at 365 nm. Biochem Biophys Res Commun 2002; 291:1252-7. [PMID: 11883952 DOI: 10.1006/bbrc.2002.6585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this article we report the isolation and characterization of major products of adenine in dinucleoside monophosphates upon 2-methyl-1,4-naphthoquinone (menadione)-sensitized UVA irradiation. Our results show that the major products form via the coupling between the menadione moiety and the exocyclic amino group of adenine. Similar reactions were not observed for cytosine. To our knowledge, this is the first report about the direct reaction between a DNA base and a photosensitizer under 365-nm ultraviolet light irradiation. Our results are consistent with previous observation showing that N(6) radical formed on adenine upon UVA irradiation.
Collapse
Affiliation(s)
- Yinsheng Wang
- Department of Chemistry, 027, University of California at Riverside, Riverside, CA 92521-0403, USA.
| | | | | |
Collapse
|
20
|
Weimann A, Belling D, Poulsen HE. Quantification of 8-oxo-guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography-electrospray tandem mass spectrometry. Nucleic Acids Res 2002; 30:E7. [PMID: 11788733 PMCID: PMC99846 DOI: 10.1093/nar/30.2.e7] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2001] [Revised: 11/09/2001] [Accepted: 11/09/2001] [Indexed: 11/14/2022] Open
Abstract
Oxidative DNA damage, linked pathogenically to a variety of diseases such as cancer and ageing, can be investigated by measuring specific DNA repair products in urine. Within the last decade, since it was established that such products were excreted into urine, progress in their analysis in urine has been limited. Guanine is the DNA base most prone to oxidation. We present a method for determination of the urinary 8-hydroxylated species of guanine, based on direct injection of urine onto a high-performance liquid chromatography (HPLC)-tandem mass spectrometry system. The analysis covers the 8-hydroxylated base, ribonucleoside and deoxynucleoside, and the corresponding non-oxidised species. Without pre-treatment of urine the detection limits for the nucleobases are approximately 2 nM (50 fmol injected) and for the nucleosides approximately 0.5 nM (12.5 fmol injected). Previously, liquid chromatography of the nucleobases has been problematic but is made possible by low-temperature reverse-phase C18 chromatography, a method that increases retention on the column. In the case of the nucleosides, retention was almost total and provides a means for on-column concentration of larger urine samples and controlled high peak gradient elution. The total excretion of 8-hydroxylated guanine species was 212 nmol/24 h. The oxidised base accounted for 64%, the ribonucleoside for 23% and the deoxynucleoside for 13%, indicating substantial oxidation of RNA in humans. In rat urine, excretion of the oxidised base was more dominant, the percentages of the oxidised base, ribonucleoside and deoxynucleosides being 89, 8 and 3%. This finding is at odds with previous reports using immunoaffinity pre-purification and HPLC-electrochemical detection analysis. The developed method now makes it possible to measure oxidative nucleic acid stress to both RNA and DNA in epidemiological and intervention settings, and our findings indicate a substantial RNA oxidation in addition to DNA oxidation. The small volume needed also makes the method applicable to small experimental animals.
Collapse
Affiliation(s)
- Allan Weimann
- Department of Clinical Pharmacology Q7642, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen N, Denmark
| | | | | |
Collapse
|
21
|
Abstract
This review surveys the work that has been done on free radical-induced DNA double lesions. Double lesions consist of two modifications of the DNA in close proximity. Double lesions can be generated by a single free radical-initiating event and the mechanism of formation often involves the participation of guanine. The identification of double lesions in oligomer and polymer DNA is reviewed and possible mechanisms of formation are outlined. The potential biological significance of double lesions is discussed. Double lesions induced by UV light are outside the scope of this review.
Collapse
Affiliation(s)
- H C Box
- Department of Molecular and Cellular Biophysics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | | | |
Collapse
|
22
|
Ravanat JL, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2001; 63:88-102. [PMID: 11684456 DOI: 10.1016/s1011-1344(01)00206-8] [Citation(s) in RCA: 604] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this survey, emphasis was placed on the main photoreactions of nucleic acid components, involving both direct and indirect effects. The main UVB- and UVA-induced DNA photoproducts, together with the mechanisms of their formation, are described. Information on the photoproduct distribution within cellular DNA is also provided, taking into account the limitations of the different analytical methods applied to monitor the formation of the DNA damage. Thus, the formation of the main DNA dimeric pyrimidine lesions produced by direct absorption of UVB photons was assessed using a powerful HPLC-tandem mass spectrometry assay. In addition, it was found that UVA photooxidation damage mostly involves the guanine residues of cellular DNA as the result of singlet oxygen generation by still unknown endogenous photosensitizers.
Collapse
Affiliation(s)
- J L Ravanat
- Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR 5046, Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France
| | | | | |
Collapse
|
23
|
Bellon S, Gasparutto D, Romieu A, Cadet J. 5-(phenylthiomethyl)-2'-deoxyuridine as an efficient photoreactive precursor to generate single and multiple lesions within DNA fragments. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:967-71. [PMID: 11563156 DOI: 10.1081/ncn-100002470] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
5-(Phenylthiomethyl)-2'-deoxyuridine was successfully incorporated into DNA oligomers by automated DNA synthesis using phosphoramidite chemistry. UV exposure of the latter thionucleoside containing oligonucleotides under anaerobic and aerobic conditions gives rise to specific base lesions. The photoproducts have been isolated and further characterized on the basis of NMR and mass spectrometric analyses.
Collapse
Affiliation(s)
- S Bellon
- Laboratoire des Lésions des Acides Nucléiques Service de Chimie Inorganique et Biologique, UMR 5046, Département de Recherche Fondamentale sur la Matière Condensée, CEA-Grenoble F-38054 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
24
|
Venkhataraman R, Donald CD, Roy R, You HJ, Doetsch PW, Kow YW. Enzymatic processing of DNA containing tandem dihydrouracil by endonucleases III and VIII. Nucleic Acids Res 2001; 29:407-14. [PMID: 11139610 PMCID: PMC29670 DOI: 10.1093/nar/29.2.407] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2000] [Revised: 11/16/2000] [Accepted: 11/16/2000] [Indexed: 11/13/2022] Open
Abstract
Endonuclease III from Escherichia coli, yeast (yNtg1p and yNtg2p) and human and E.coli endonuclease VIII have a wide substrate specificity, and recognize oxidation products of both thymine and cytosine. DNA containing single dihydrouracil (DHU) and tandem DHU lesions were used as substrates for these repair enzymes. It was found that yNtg1p prefers DHU/G and exhibits much weaker enzymatic activity towards DNA containing a DHU/A pair. However, yNtg2p, E. coli and human endonuclease III and E.coli endonuclease VIII activities were much less sensitive to the base opposite the lesion. Although these enzymes efficiently recognize single DHU lesions, they have limited capacity for completely removing this damaged base when DHU is present on duplex DNA as a tandem pair. Both E.coli endonuclease III and yeast yNtg1p are able to remove only one DHU in DNA containing tandem lesions, leaving behind a single DHU at either the 3'- or 5'-terminus of the cleaved fragment. On the other hand, yeast yNtg2p can remove DHU remaining on the 5'-terminus of the 3' cleaved fragment, but is unable to remove DHU remaining on the 3'-terminus of the cleaved 5' fragment. In contrast, both human endonuclease III and E.coli endonuclease VIII can remove DHU remaining on the 3'-terminus of a cleaved 5' fragment, but are unable to remove DHU remaining on the 5'-terminus of a cleaved 3' fragment. Tandem lesions are known to be generated by ionizing radiation and agents that generate reactive oxygen species. The fact that these repair glycosylases have only a limited ability to remove the DHU remaining at the terminus suggests that participation of other repair enzymes is required for the complete removal of tandem lesions before repair synthesis can be efficiently performed by DNA polymerase.
Collapse
Affiliation(s)
- R Venkhataraman
- Department of Radiation Oncology and Department of Biochemistry, Emory University School of Medicine, 145 Edgewood Avenue, Atlanta, GA 30335, USA
| | | | | | | | | | | |
Collapse
|
25
|
UV damage to nucleic acid components. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1568-461x(01)80045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
26
|
Anderson AS, Hwang JT, Greenberg MM. Independent generation and reactivity of 2-deoxy-5-methyleneuridin-5-yl, a significant reactive intermediate produced from thymidine as a result of oxidative stress. J Org Chem 2000; 65:4648-54. [PMID: 10959870 DOI: 10.1021/jo000271s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2'-Deoxy-5-methyleneuridin-5-yl (1) is produced in a variety of DNA damage processes and is believed to result in the formation of lesions that are mutagenic and refractory to enzymatic repair. 2'-Deoxy-5-methyleneuridin-5-yl (1) was independently generated under anaerobic conditions via Norrish Type I photocleavage during Pyrex filtered photolysis of the benzyl ketone 7. The radical (1) exhibits behavior consistent with that of a resonance-stabilized radical. The KIE for hydrogen atom transfer from t-BuSH was found to be 7.3 +/- 1.7. Competition studies between radical recombination and hydrogen atom donors (2,5-dimethyltetrahydrofuran, kTrap = 46.1 +/- 15.4 M(-1) s(-1); propan-2-ol, kTrap = 13.6 +/- 3.5 M(-1) s(-1)) chosen to mimic the carbohydrate components of 2'-deoxyribonucleotides suggest that 2'-deoxy-5-methyleneuridin-5-yl (1) may be able to transfer damage from the nucleobase to the deoxyribose of an adjacent nucleotide in DNA under hypoxic conditions.
Collapse
Affiliation(s)
- A S Anderson
- Department of Chemistry, Colorado State University Fort Collins, 80523, USA
| | | | | |
Collapse
|
27
|
Gentil A, Le Page F, Cadet J, Sarasin A. Mutation spectra induced by replication of two vicinal oxidative DNA lesions in mammalian cells. Mutat Res 2000; 452:51-6. [PMID: 10894890 DOI: 10.1016/s0027-5107(00)00034-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ionizing radiations often induce multiple and clustered DNA lesions at the site of DNA interaction. As a model, we have studied the toxicity and the mutagenicity of two adjacent oxidative bases as clustered DNA lesions in mammalian cells using shuttle vectors. The chosen oxidative lesions were 8-oxo-7,8-dihydroguanine, the formylamine residue resulting from the oxidation of a pyrimidine base and the tandem lesion 8-oxo-7,8-dihydroguanine/formylamine where both modifications are located at a vicinal position. A single-stranded DNA shuttle vector carrying a unique DNA lesion was constructed, transfected into simian COS7 cells and mutations induced after replication in mammalian cells were screened in bacteria. 8-oxo-7,8-dihydroguanine, as expected, does not affect greatly survival (70% bypass) whereas formylamine and the tandem lesions are blocking alterations, DNA polymerase bypass being of 45% and 17%, respectively. Base insertion opposite the lesion was studied. Under our experimental conditions, replication of 8-oxo-7, 8-dihydroguanine finally gives rise to guanine:cytosine pairing, rendering this lesion only slightly mutagenic. This is not the case for the formylamine that codes preferentially for adenine (71%). In addition, one-base deletions were observed targeted to the site to the lesion. Cytosine and thymine were inserted opposite the lesion with similar but low frequencies. Thus, coding properties of the formylamine render this residue very mutagenic when coming from the oxidative alteration of a cytosine. The coding properties of the tandem damage are a combination of the contribution of the two isolated lesions with a very high percentage of adenine insertion (94%) opposite the formylamine residue of the tandem lesion. The toxicity as well as the mutation spectrum of the tandem lesion allow us to speculate about the molecular mechanism with which the DNA polymerase replicates these two lesions.
Collapse
Affiliation(s)
- A Gentil
- Laboratoire de Génétique Moléculaire, Villejuif, France
| | | | | | | |
Collapse
|
28
|
Bourdat AG, Douki T, Frelon S, Gasparutto D, Cadet J. Tandem Base Lesions Are Generated by Hydroxyl Radical within Isolated DNA in Aerated Aqueous Solution. J Am Chem Soc 2000. [DOI: 10.1021/ja994282i] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Romieu A, Bellon S, Gasparutto D, Cadet J. Synthesis and UV photolysis of oligodeoxynucleotides that contain 5-(phenylthiomethyl)-2'-deoxyuridine: a specific photolabile precursor of 5-(2'-deoxyuridilyl)methyl radical. Org Lett 2000; 2:1085-8. [PMID: 10804560 DOI: 10.1021/ol005643y] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[formula: see text] The title exocyclic radical (2) is generated via photochemical cleavage of 5-(phenylthiomethyl)-2'-deoxyuridine (8). The latter thionucleoside (8) was successfully incorporated into DNA oligomers by automated DNA synthesis using phosphoramidite chemistry. UV exposure of 8 containing oligonucleotides under (an)aerobic conditions gives rise to specific base lesions. The photoproducts have been isolated and further characterized on the basis of detailed NMR and mass spectrometric analyses.
Collapse
Affiliation(s)
- A Romieu
- Département de Recherche Fondamentale sur la Matière Condensée, CEA-Grenoble, France
| | | | | | | |
Collapse
|
30
|
Cadet J, Delatour T, Douki T, Gasparutto D, Pouget JP, Ravanat JL, Sauvaigo S. Hydroxyl radicals and DNA base damage. Mutat Res 1999; 424:9-21. [PMID: 10064846 DOI: 10.1016/s0027-5107(99)00004-4] [Citation(s) in RCA: 483] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Modified purine and pyrimidine bases constitute one of the major classes of hydroxyl-radical-mediated DNA damage together with oligonucleotide strand breaks, DNA-protein cross-links and abasic sites. A comprehensive survey of the main available data on both structural and mechanistic aspects of.OH-induced decomposition pathways of both purine and pyrimidine bases of isolated DNA and model compounds is presented. In this respect, detailed information is provided on both thymine and guanine whereas data are not as complete for adenine and cytosine. The second part of the overview is dedicated to the formation of.OH-induced base lesions within cellular DNA and in vivo situations. Before addressing this major point, the main available methods aimed at singling out.OH-mediated base modifications are critically reviewed. Unfortunately, it is clear that the bulk of the chemical and biochemical assays with the exception of the high performance liquid chromatographic-electrochemical detection (HPLC/ECD) method have suffered from major drawbacks. This explains why there are only a few available accurate data concerning both the qualitative and quantitative aspects of the.OH-induced formation of base damage within cellular DNA. Therefore, major efforts should be devoted to the reassessment of the level of oxidative base damage in cellular DNA using appropriate assays including suitable conditions of DNA extraction.
Collapse
Affiliation(s)
- J Cadet
- Département de Recherche Fondamentale sur la Matière Condensée, SCIB/Laboratoire 'Lésions des Acides Nucléiques', CEA/Grenoble, F-38054, Grenoble Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|