1
|
Weidmann AG, Barton JK. A monofunctional platinum complex coordinated to a rhodium metalloinsertor selectively binds mismatched DNA in the minor groove. Inorg Chem 2015; 54:9626-36. [PMID: 26397309 DOI: 10.1021/acs.inorgchem.5b01722] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the synthesis and characterization of a bimetallic complex derived from a new family of potent and selective metalloinsertors containing an unusual Rh-O axial coordination. This complex incorporates a monofunctional platinum center containing only one labile site for coordination to DNA, rather than two, and coordinates DNA nonclassically through adduct formation in the minor groove. This conjugate displays bifunctional, interdependent binding of mismatched DNA via metalloinsertion at a mismatch as well as covalent platinum binding. DNA sequencing experiments revealed that the preferred site of platinum coordination is not the traditional N7-guanine site in the major groove, but rather N3-adenine in the minor groove. The complex also displays enhanced cytotoxicity in mismatch repair-deficient and mismatch repair-proficient human colorectal carcinoma cell lines compared to the chemotherapeutic cisplatin, and it triggers cell death via an apoptotic pathway, rather than the necrotic pathway induced by rhodium metalloinsertors.
Collapse
Affiliation(s)
- Alyson G Weidmann
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
2
|
Burcham PC, Raso A, Henry PJ. Airborne acrolein induces keratin-8 (Ser-73) hyperphosphorylation and intermediate filament ubiquitination in bronchiolar lung cell monolayers. Toxicology 2014; 319:44-52. [PMID: 24594012 DOI: 10.1016/j.tox.2014.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/24/2013] [Accepted: 02/13/2014] [Indexed: 01/12/2023]
Abstract
The combustion product acrolein is a key mediator of pulmonary edema in victims of smoke inhalation injury. Since studying acrolein toxicity in conventional in vitro systems is complicated by reactivity with nucleophilic culture media constituents, we explored an exposure system which delivers airborne acrolein directly to lung cell monolayers at the air-liquid interface. Calu-3 lung adenocarcinoma cells were maintained on membrane inserts such that the basal surface was bathed in nucleophile-free media while the upper surface remained in contact with acrolein-containing air. Cells were exposed to airborne acrolein for 30 min before they were allowed to recover in fresh media, with cell sampling at defined time points to allow evaluation of toxicity and protein damage. After prior exposure to acrolein, cell ATP levels remained close to controls for 4h but decreased in an exposure-dependent manner by 24h. A loss of transepithelial electrical resistance and increased permeability to fluorescein isothiocyanate-labeled dextran preceded ATP loss. Use of antibody arrays to monitor protein expression in exposed monolayers identified strong upregulation of phospho-keratin-8 (Ser(73)) as an early consequence of acrolein exposure. These changes were accompanied by chemical damage to keratin-8 and other intermediate filament family members, while acrolein exposure also resulted in controlled ubiquitination of high mass proteins within the intermediate filament extracts. These findings confirm the usefulness of systems allowing delivery of airborne smoke constituents to lung cell monolayers during studies of the molecular basis for acute smoke intoxication injury.
Collapse
Affiliation(s)
- Philip C Burcham
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia.
| | - Albert Raso
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Peter J Henry
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
3
|
Iyer P, Srinivasan A, Singh SK, Mascara GP, Zayitova S, Sidone B, Fouquerel E, Svilar D, Sobol RW, Bobola MS, Silber JR, Gold B. Synthesis and characterization of DNA minor groove binding alkylating agents. Chem Res Toxicol 2013; 26:156-68. [PMID: 23234400 PMCID: PMC3618862 DOI: 10.1021/tx300437x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization.
Collapse
Affiliation(s)
- Prema Iyer
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Ajay Srinivasan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sreelekha K. Singh
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Gerard P. Mascara
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sevara Zayitova
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Brian Sidone
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Elise Fouquerel
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15232
| | - David Svilar
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15232
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Robert W. Sobol
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA 15232
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Human Genetics, University of Pittsburgh 15213
| | - Michael S. Bobola
- Department of Neurological Surgery, University of Washington, Seattle, WA 98105
| | - John R. Silber
- Department of Neurological Surgery, University of Washington, Seattle, WA 98105
| | - Barry Gold
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
4
|
Affiliation(s)
- Anthony J Berdis
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| |
Collapse
|
5
|
Theoretical investigation of the decomposition mechanisms of N-(2-chloroethyl)-N-nitrosourea. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0380-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Gold B, Marky LM, Stone MP, Williams LD. A review of the role of the sequence-dependent electrostatic landscape in DNA alkylation patterns. Chem Res Toxicol 2007; 19:1402-14. [PMID: 17112226 PMCID: PMC2532758 DOI: 10.1021/tx060127n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alkylating agents, including environmental and endogenous carcinogens and DNA targeting antineoplastic agents, that adduct DNA via intermediates with significant cationic charge show a sequence selectively in their covalent bonding to nucleobases. The resulting patterns of alkylation eventually contribute to the agent-dependent distributions and types of mutations. The origin of the regioselective modification of DNA by electrophiles has been attributed to steric and/or electronic factors, but attempts to mechanistically model and predict alkylation patterns have had limited success. In this review, we present data consistent with the role of the intrinsic sequence-dependent electrostatic landscape (SDEL) in DNA that modulates the equilibrium binding of cations and the bonding of reactive charged alkylating agents to atoms that line the floor of the major groove of DNA.
Collapse
Affiliation(s)
- Barry Gold
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | |
Collapse
|
7
|
Tarun M, Rusling JF. Quantitative Measurement of DNA Adducts Using Neutral Hydrolysis and LC−MS. Validation of Genotoxicity Sensors. Anal Chem 2005; 77:2056-62. [PMID: 15801738 DOI: 10.1021/ac048283r] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neutral hydrolysis and LC-MS/MS analysis of 6-nm-thick DNA-polyion films used in voltammetric genotoxicity screening sensors showed that concentrations of N7-guanine DNA adducts with methyl methanesulfonate and styrene oxide increased with incubation time with the same trends as found for sensor response. Results show that the genotoxicity sensors can be used to estimate relative DNA damage rates for chemical toxicity screening. Neutral thermal hydrolysis provided a relatively clean sample matrix allowing quantitative estimates of nucleobase adducts after several minutes of incubation with damage agents. In addition, an approximate standardization procedure for neutral thermal hydrolysis was developed and validated that avoids need for a pure standard and should be useful in cases where nucleobase adduct standards are unavailable or where their identities are unknown.
Collapse
Affiliation(s)
- Maricar Tarun
- Department of Chemistry, 55 North Eagleville Road, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | |
Collapse
|
8
|
Yang J, Wang B, Rusling JF. Genotoxicity sensor response correlated with DNA nucleobase damage rates measured by LC-MS. MOLECULAR BIOSYSTEMS 2005; 1:251-9. [PMID: 16880989 DOI: 10.1039/b506111c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Responses from "reagentless" DNA-based electrochemical toxicity sensors to DNA alkylating agents styrene oxide (SO), diepoxybutane (DEB), and methyl methanesulfonate (MMS) were compared to formation rates of total alkylated nucleobases in DNA measured by LC-UV-MS. Sensors utilized a catalytic metallopolymer in DNA films previously exposed to the damage agents. To achieve adequate sensitivity, LC-UV-MS analyses were done on DNA in solution reacted with the damage agents, and subsequently hydrolyzed to nucleosides with enzymes. Sensor response correlated well with nucleobase-adduct formation rates obtained by the molecule-specific analyses. Results confirm that the metallopolymer-DNA film sensors can be used to estimate relative DNA damage rates from nucleobase adduct-forming chemicals. Results from both methods correlated well with animal genotoxicity as estimated by TDL(o) values, the lowest dose producing carcinogenicity, in mice and rats. These sensors should be useful for rapid, inexpensive screening of moderately and severely genotoxic new chemicals.
Collapse
Affiliation(s)
- Jing Yang
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA
| | | | | |
Collapse
|
9
|
Kelly JD, Inga A, Chen FX, Dande P, Shah D, Monti P, Aprile A, Burns PA, Scott G, Abbondandolo A, Gold B, Fronza G. Relationship between DNA methylation and mutational patterns induced by a sequence selective minor groove methylating agent. J Biol Chem 1999; 274:18327-34. [PMID: 10373436 DOI: 10.1074/jbc.274.26.18327] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Me-lex, a methyl sulfonate ester appended to a neutral N-methylpyrrolecarboxamide-based dipeptide, was synthesized to preferentially generate N3-methyladenine (3-MeA) adducts which are expected to be cytotoxic rather than mutagenic DNA lesions. In the present study, the sequence specificity for DNA alkylation by Me-lex was determined in the p53 cDNA through the conversion of the adducted sites into single strand breaks and sequencing gel analysis. In order to establish the mutagenic and lethal properties of Me-lex lesions, a yeast expression vector harboring the human wild-type p53 cDNA was treated in vitro with Me-lex, and transfected into a yeast strain containing the ADE2 gene regulated by a p53-responsive promoter. The results showed that: 1) more than 99% of the lesions induced by Me-lex are 3-MeA; 2) the co-addition of distamycin quantitatively inhibited methylation at all minor groove sites; 3) Me-lex selectively methylated A's that are in, or immediately adjacent to, the lex equilibrium binding sites; 4) all but 6 of the 33 independent mutations were base pair substitutions, the majority of which (17/33; 52%) were AT-targeted; 5) AT --> TA transversions were the predominant mutations observed (13/33; 39%); 6) 13 out of 33 (39%) independent mutations involved a single lex-binding site encompassing positions A600-602 and 9 occurred at position 602 which is a real Me-lex mutation hotspot (n = 9, p < 10(-6), Poisson's normal distribution). A hypothetical model for the interpretation of mutational events at this site is proposed. The present work is the first report on mutational properties of Me-lex. Our results suggest that 3-MeA is not only a cytotoxic but also a premutagenic lesion which exerts this unexpected property in a strict sequence-dependent manner.
Collapse
Affiliation(s)
- J D Kelly
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 69198-6805, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|