1
|
Kido J, Sugawara K, Sawada T, Matsumoto S, Nakamura K. Pathogenic variants of ornithine transcarbamylase deficiency: Nation-wide study in Japan and literature review. Front Genet 2022; 13:952467. [PMID: 36303552 PMCID: PMC9593096 DOI: 10.3389/fgene.2022.952467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Ornithine transcarbamylase deficiency (OTCD) is an X-linked disorder. Several male patients with OTCD suffer from severe hyperammonemic crisis in the neonatal period, whereas others develop late-onset manifestations, including hyperammonemic coma. Females with heterozygous pathogenic variants in the OTC gene may develop a variety of clinical manifestations, ranging from asymptomatic conditions to severe hyperammonemic attacks, owing to skewed lyonization. We reported the variants of CPS1, ASS, ASL and OTC detected in the patients with urea cycle disorders through a nation-wide survey in Japan. In this study, we updated the variant data of OTC in Japanese patients and acquired information regarding genetic variants of OTC from patients with OTCD through an extensive literature review. The 523 variants included 386 substitution (330 missense, 53 nonsense, and 3 silent), eight deletion, two duplication, one deletion-insertion, 55 frame shift, two extension, and 69 no category (1 regulatory and 68 splice site error) mutations. We observed a genotype-phenotype relation between the onset time (neonatal onset or late onset), the severity, and genetic mutation in male OTCD patients because the level of deactivation of OTC significantly depends on the pathogenic OTC variants. In conclusion, genetic information about OTC may help to predict long-term outcomes and determine specific treatment strategies, such as liver transplantation, in patients with OTCD.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaaki Sawada
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Mort M, Evani US, Krishnan VG, Kamati KK, Baenziger PH, Bagchi A, Peters BJ, Sathyesh R, Li B, Sun Y, Xue B, Shah NH, Kann MG, Cooper DN, Radivojac P, Mooney SD. In silico functional profiling of human disease-associated and polymorphic amino acid substitutions. Hum Mutat 2010; 31:335-46. [PMID: 20052762 DOI: 10.1002/humu.21192] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An important challenge in translational bioinformatics is to understand how genetic variation gives rise to molecular changes at the protein level that can precipitate both monogenic and complex disease. To this end, we compiled datasets of human disease-associated amino acid substitutions (AAS) in the contexts of inherited monogenic disease, complex disease, functional polymorphisms with no known disease association, and somatic mutations in cancer, and compared them with respect to predicted functional sites in proteins. Using the sequence homology-based tool SIFT to estimate the proportion of deleterious AAS in each dataset, only complex disease AAS were found to be indistinguishable from neutral polymorphic AAS. Investigation of monogenic disease AAS predicted to be nondeleterious by SIFT were characterized by a significant enrichment for inherited AAS within solvent accessible residues, regions of intrinsic protein disorder, and an association with the loss or gain of various posttranslational modifications. Sites of structural and/or functional interest were therefore surmised to constitute useful additional features with which to identify the molecular disruptions caused by deleterious AAS. A range of bioinformatic tools, designed to predict structural and functional sites in protein sequences, were then employed to demonstrate that intrinsic biases exist in terms of the distribution of different types of human AAS with respect to specific structural, functional and pathological features. Our Web tool, designed to potentiate the functional profiling of novel AAS, has been made available at http://profile.mutdb.org/.
Collapse
Affiliation(s)
- Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Yamaguchi S, Brailey LL, Morizono H, Bale AE, Tuchman M. Mutations and polymorphisms in the human ornithine transcarbamylase (OTC) gene. Hum Mutat 2006; 27:626-32. [PMID: 16786505 DOI: 10.1002/humu.20339] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ornithine transcarbamylase (OTC) deficiency is the most common inherited disorder of the urea cycle and is transmitted as an X-linked trait. Defects in the OTC gene cause a block in ureagenesis resulting in hyperammonemia, which can lead to brain damage and death. Three previous mutation updates for the OTC gene have been published, in 1993, 1995, and 2002. The most recent comprehensive update, in 2002, contained 244 mutations including 13 nondisease-causing mutations and polymorphisms. This current update reports 341 mutations, of which 93 have not been previously reported, and an additional 29 nondisease-causing mutations and polymorphisms. Out of the 341 mutations, 149 were associated with neonatal onset of hyperammonemia (within the first week of life), 70 were seen in male patients with later onset of hyperammonemia, and 121 were found in heterozygous females (one unknown). Along with the reported mutations, residual enzyme activities and other pertinent clinical information are included whenever available. Most mutations in the OTC gene are specific to a particular family ("private" mutations). They are distributed throughout the gene, with a significant paucity of mutations in the 32 first codons encoding the "leader" peptide (exon 1 and the beginning of exon 2). Almost all mutations in consensus splice sites confer a neonatal onset phenotype. Using the current molecular screening methods, mutations are found in about 80% of the patients. The remaining patients may have mutations in regulatory domains or mutations deep in the introns, which constitute 98.5% of the genomic sequence. In addition, a phenocopy of OTC deficiency caused by mutations in another unknown gene cannot be excluded.
Collapse
Affiliation(s)
- Saori Yamaguchi
- College of Life Science, University of Maryland, College Park, Maryland, USA
| | | | | | | | | |
Collapse
|
4
|
Marini JC, Lee B, Garlick PJ. Ornithine restores ureagenesis capacity and mitigates hyperammonemia in Otc(spf-ash) mice. J Nutr 2006; 136:1834-8. [PMID: 16772445 DOI: 10.1093/jn/136.7.1834] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We showed that Otc(spf-ash) mice, a model of ornithine transcarbamylase deficiency, were able to sustain ureagenesis at the same rate as control mice, despite reduced enzyme activity, when a complete mixture of amino acids was provided. An unbalanced amino acid mixture, however, resulted in reduced ureagenesis and hyperammonemia. To study the effect of ornithine supplementation [316 micromol/(kg.h)] on urea and glutamine kinetics in conscious Otc(spf-ash) mice under a glycine-alanine load [6.06 mmol/(kg.h)], a multiple tracer infusion protocol ([(13)C(18)O]urea, [5-(15)N]glutamine, [2,3,3,4,4 D(5)]glutamine and [ring-D(5)] phenylalanine) was conducted. Ornithine supplementation increased ureagenesis [3.18 +/- 0.88 vs. 4.56 +/- 0.51 mmol/(kg.h), P < 0.001], reduced plasma ammonia concentration (1125 +/- 621 vs. 193 +/- 94 micromol/L, P < 0.001), and prevented acute hepatic enlargement (P < 0.006) in Otc(spf-ash) mice. Ornithine supplementation also increased [96 +/- 20 vs. 120 +/- 16 micromol/(kg.h), P < 0.001] the transfer of (15)N from glutamine to urea, to values observed in the control mice [123 +/- 17 micromol/(kg.h)]. De novo amido-N glutamine flux was higher [1.57 +/- 0.37 vs. 3.04 +/- 0.86 mmol/(kg.h); P < 0.001] in Otc(spf-ash) mice, but ornithine supplementation had no effect (P < 0.56). The flux of glutamine carbon skeleton was affected by both genotype (P < 0.0001) and by ornithine (P 0. 036). In conclusion, ornithine supplementation restored ureagenesis, mitigated hyperammonemia, prevented liver enlargement, and normalized the transfer of (15)N from glutamine to urea. These data strongly suggest that ornithine has the potential for the biochemical correction of OTCD in Otc(spf-ash) mice.
Collapse
Affiliation(s)
- Juan C Marini
- Molecular and Human Genetics and Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
5
|
Marini JC, Lee B, Garlick PJ. Reduced ornithine transcarbamylase activity does not impair ureagenesis in Otc(spf-ash) mice. J Nutr 2006; 136:1017-20. [PMID: 16549467 DOI: 10.1093/jn/136.4.1017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mouse models for urea cycle disorders have been available for the past 30 y; however, until now, no measurements of urea production in vivo have been conducted. Urea entry rate was determined in Otc(spf-ash) and littermate controls employing a primed-continuous infusion of 15N15N urea. A saline infusion control, a complete mixture of amino acids (AA), or a glycine-alanine (GA) mixture was infused at 86 (AA1 and GA1) and 172 mg N.kg(-1).h(-1) (AA2 and GA2) to impose a defined nitrogen load on the urea cycle. Urea entry rate and plasma urea concentration increased (P < 0.001) as a consequence of the increase in the infusion rate of the complete mixture of amino acids, but the 2 genotypes did not differ (P = 0.96 and P = 0.44, respectively). The infusion of the GA mixture, however, decreased (P < 0.001) the plasma urea concentration and urea entry rate in Otc(spf-ash) mice compared with controls. At the highest level (GA2), urea entry rate was further depressed (P < 0.001), Otc(spf-ash) mice became hyperammonemic (1701 +/- 150 micromol/L), and hyperammonemic symptoms were evident. An acute hepatic enlargement (P < 0.001) was also evident in Otc(spf-ash) mice infused with GA2. These results show that despite vestigial OTC activity, Otc(spf-ash) mice were able to maintain ureagenesis at the same rate of control animals when a complete mixture of amino acids was infused. This implies that Otc(spf-ash) mice are able to dispose of ammonia, without apparent adverse effects, when a balance mixture of amino acids is provided, despite reduced enzyme activity.
Collapse
Affiliation(s)
- Juan C Marini
- Animal Science Department, University of Illinois, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
6
|
Sumi S, Imaeda M, Ito T, Ueta A, Ban K, Ohkubo Y, Togari H. Urinary uracil in female patients with ornithine transcarbamylase deficiency. Pediatr Int 2005; 47:262-6. [PMID: 15910448 DOI: 10.1111/j.1442-200x.2005.02063.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Female patients with ornithine transcarbamylase deficiency (OTCD) show a wide range of clinical severity, from asymptomatic to lethal hyperammonemia. It is important to establish a simple method to distinguish symptomatic from asymptomatic patients. METHODS Uracil and orotic acid concentrations were analyzed in three female patients with OTCD at both the hyperammonemia-attack and interval stages. These concentrations were compared with those in asymptomatic female patients reported previously. RESULTS Uracil concentrations in symptomatic female patients were uniformly higher than those in asymptomatic female patients at both the hyperammonemia-attack and interval stages. CONCLUSION Uracil may present a useful index for detecting OTCD female patients who are destined to suffer from hyperammonemia attack. Further data on uracil concentrations are necessary to establish the threshold for distinguishing symptomatic from asymptomatic subjects.
Collapse
Affiliation(s)
- Satoshi Sumi
- Department of Pediatrics, Neonatology and Congenital Disorders, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Zenker M, Wermuth B, Trautmann U, Knerr I, Kraus C, Rauch A, Reis A. Severe, neonatal-onset OTC deficiency in twin sisters with a de novo balanced reciprocal translocation t(X;5)(p21.1;q11). Am J Med Genet A 2005; 132A:185-8. [PMID: 15578616 DOI: 10.1002/ajmg.a.30414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OTC deficiency, the most common urea cycle defect, is transmitted as a partially dominant X-linked trait. The most severe form of the disease, however, is usually restricted to males. We report on monozygotic female twins with severe neonatal-onset OTC deficiency and a de novo balanced reciprocal translocation t(X;5)(p21.1;q11). Disruption of the OTC gene on the derivative X-chromosome was confirmed by FISH analysis. Consistent inactivation of the normal X could be demonstrated by RGB staining. Manifestation of X-linked recessive disorders in females due to a balanced reciprocal X-autosome translocation has previously been described in Duchenne muscular dystrophy and several other disorders but not in OTC deficiency. This report emphasizes the importance of chromosome analysis in any female manifesting severe OTC deficiency.
Collapse
Affiliation(s)
- Martin Zenker
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nuremberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Tuchman M, Jaleel N, Morizono H, Sheehy L, Lynch MG. Mutations and polymorphisms in the human ornithine transcarbamylase gene. Hum Mutat 2002; 19:93-107. [PMID: 11793468 DOI: 10.1002/humu.10035] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ornithine transcarbamylase (OTC) deficiency, an X-linked, semidominant disorder, is the most common inherited defect in ureagenesis resulting in hyperammonemia. The previous two mutation updates for the OTC gene were published in 1993 and 1995 and included 36 and 30 mutations respectively. This comprehensive update contains a compilation of 244 mutations including 13 polymorphisms. Twenty-four of the mutations are reported here for the first time. Forty-two percent of the disease-causing mutations are associated with acute neonatal hyperammonemia; 21% were found in patients with late onset disease and approximately 37% were found in manifesting heterozygous females, most of which are presumed to confer a neonatal phenotype in hemizygous males. Also included are residual enzyme activities and residual incorporation of ammonium nitrogen into urea and results of expression studies for a small proportion of the mutations. Most mutations in the OTC gene are "private" and are distributed throughout the gene with paucity of mutation in the sequence encoding the leader peptide (exon 1 and beginning of exon 2) and in exon 7. Almost all mutations in consensus splicing sites confer a neonatal phenotype. Thirteen polymorphisms have been found, several of which are useful for allele tracking in patients in whom the mutation can't be found. Even with sequencing of the entire reading frame and exon/intron boundaries, only about 80% of the mutations are detected in patients with proven OTC deficiency. The remaining probably occur within the introns or in regulatory domains.
Collapse
Affiliation(s)
- Mendel Tuchman
- Children's Research Institute, Children's National Medical Center, George Washington University, Washington DC, USA
| | | | | | | | | |
Collapse
|
9
|
Staudt M, Wermuth B, Freisinger P, Hässler A, Pontz BF. Symptomatic ornithine carbamoyltransferase deficiency (point mutation H202P) with normal in vitro activity. J Inherit Metab Dis 1998; 21:71-2. [PMID: 9501271 DOI: 10.1023/a:1005315531630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M Staudt
- Children's Hospital, Technical University, Munich, Germany
| | | | | | | | | |
Collapse
|
10
|
Ellaway C, North K, Arbuckle S, Christodoulou J. Complex I deficiency in association with structural abnormalities of the diaphragm and brain. J Inherit Metab Dis 1998; 21:72-3. [PMID: 9501272 DOI: 10.1023/a:1005367515701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- C Ellaway
- Western Sydney Genetics Program, Royal Alexandra Hospital for Children, Parramatta, NSW, Australia
| | | | | | | |
Collapse
|