1
|
Sen K, Whitehead M, Castillo Pinto C, Caldovic L, Gropman A. Fifteen years of urea cycle disorders brain research: Looking back, looking forward. Anal Biochem 2022; 636:114343. [PMID: 34637785 PMCID: PMC8671367 DOI: 10.1016/j.ab.2021.114343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023]
Abstract
Urea cycle disorders (UCD) are inherited diseases resulting from deficiency in one of six enzymes or two carriers that are required to remove ammonia from the body. UCD may be associated with neurological damage encompassing a spectrum from asymptomatic/mild to severe encephalopathy, which results in most cases from Hyperammonemia (HA) and elevation of other neurotoxic intermediates of metabolism. Electroencephalography (EEG), Magnetic resonance imaging (MRI) and Proton Magnetic resonance spectroscopy (MRS) are noninvasive measures of brain function and structure that can be used during HA to guide management and provide prognostic information, in addition to being research tools to understand the pathophysiology of UCD associated brain injury. The Urea Cycle Rare disorders Consortium (UCDC) has been invested in research to understand the immediate and downstream effects of hyperammonemia (HA) on brain using electroencephalogram (EEG) and multimodal brain MRI to establish early patterns of brain injury and to track recovery and prognosis. This review highlights the evolving knowledge about the impact of UCD and HA in particular on neurological injury and recovery and use of EEG and MRI to study and evaluate prognostic factors for risk and recovery. It recognizes the work of others and discusses the UCDC's prior work and future research priorities.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children's National Hospital, Washington D.C., United States
| | - Matthew Whitehead
- Division of Radiology, Children's National Hospital, Washington D.C., United States
| | | | - Ljubica Caldovic
- Childrens' Research Institute, Children's National Hospital, Washington D.C., United States
| | - Andrea Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children's National Hospital, Washington D.C., United States.
| |
Collapse
|
2
|
Redant S, Empain A, Mugisha A, Kamgang P, Attou R, Honoré PM, De Bels D. Management of late onset urea cycle disorders-a remaining challenge for the intensivist? Ann Intensive Care 2021; 11:2. [PMID: 33409766 PMCID: PMC7788146 DOI: 10.1186/s13613-020-00797-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/26/2020] [Indexed: 12/31/2022] Open
Abstract
Background Hyperammonemia caused by a disorder of the urea cycle is a rare cause of metabolic encephalopathy that may be underdiagnosed by the adult intensivists because of its rarity. Urea cycle disorders are autosomal recessive diseases except for ornithine transcarbamylase deficiency (OTCD) that is X-linked. Optimal treatment is crucial to improve prognosis. Main body We systematically reviewed cases reported in the literature on hyperammonemia in adulthood. We used the US National Library of Medicine Pubmed search engine since 2009. The two main causes are ornithine transcarbamylase deficiency followed by type II citrullinemia. Diagnosis by the intensivist remains very challenging therefore delaying treatment and putting patients at risk of fatal cerebral edema. Treatment consists in adapted nutrition, scavenging agents and dialysis. As adults are more susceptible to hyperammonemia, emergent hemodialysis is mandatory before referral to a reference center if ammonia levels are above 200 µmol/l as the risk of cerebral edema is then above 55%. Definitive therapy in urea cycle abnormalities is liver transplantation. Conclusion Awareness of urea cycle disorders in adults intensive care units can optimize early management and accordingly dramatically improve prognosis. By preventing hyperammonemia to induce brain edema and herniation leading to death.
Collapse
Affiliation(s)
- S Redant
- Department of Intensive Care, Université Libre de Bruxelles (ULB), CHU Brugmann-Brugmann University Hospital, 4, Place Arthur Van Gehuchten, 1020, Brussels, Belgium
| | - A Empain
- Department of Metabolic Diseases, Hôpital universitaire des enfants reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - A Mugisha
- Department of Intensive Care, Université Libre de Bruxelles (ULB), CHU Brugmann-Brugmann University Hospital, 4, Place Arthur Van Gehuchten, 1020, Brussels, Belgium
| | - P Kamgang
- Department of Internal Medicine, Brugmann University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - R Attou
- Department of Intensive Care, Université Libre de Bruxelles (ULB), CHU Brugmann-Brugmann University Hospital, 4, Place Arthur Van Gehuchten, 1020, Brussels, Belgium
| | - P M Honoré
- Department of Intensive Care, Université Libre de Bruxelles (ULB), CHU Brugmann-Brugmann University Hospital, 4, Place Arthur Van Gehuchten, 1020, Brussels, Belgium.
| | - D De Bels
- Department of Intensive Care, Université Libre de Bruxelles (ULB), CHU Brugmann-Brugmann University Hospital, 4, Place Arthur Van Gehuchten, 1020, Brussels, Belgium
| |
Collapse
|
3
|
Elsayed LEO, Mohammed IN, Hamed AAA, Elseed MA, Salih MAM, Yahia A, Abubaker R, Koko M, Abd Allah ASI, Elbashir MI, Ibrahim ME, Brice A, Ahmed AE, Stevanin G. Novel Homozygous Missense Mutation in the ARG1 Gene in a Large Sudanese Family. Front Neurol 2020; 11:569996. [PMID: 33193012 PMCID: PMC7658625 DOI: 10.3389/fneur.2020.569996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Arginases catalyze the last step in the urea cycle. Hyperargininemia, a rare autosomal-recessive disorder of the urea cycle, presents after the first year of age with regression of milestones and evolves gradually into progressive spastic quadriplegia and cognitive dysfunction. Genetic studies reported various mutations in the ARG1 gene that resulted in hyperargininemia due to a complete or partial loss of arginase activity. Case Presentation: Five patients from an extended highly consanguineous Sudanese family presented with regression of the acquired milestones, spastic quadriplegia, and mental retardation. The disease onset ranged from 1 to 3 years of age. Two patients had epileptic seizures and one patient had stereotypic clapping. Genetic testing using whole-exome sequencing, done for the patients and a healthy parent, confirmed the presence of a homozygous novel missense variant in the ARG1 gene [GRCh37 (NM_001244438.1): exon 4: g.131902487T>A, c.458T>A, p.(Val153Glu)]. The variant was predicted pathogenic by five algorithms and affected a highly conserved amino acid located in the protein domain ureohydrolase, arginase subgroup. Sanger sequencing of 13 sampled family members revealed complete co-segregation between the variant and the disease distribution in the family in line with an autosomal-recessive mode of inheritance. Biochemical analysis confirmed hyperargininemia in five patients. Conclusion: This study reports the first Sudanese family with ARG1 mutation. The reported variant is a loss-of-function missense mutation. Its pathogenicity is strongly supported by the clinical phenotype, the computational functional impact prediction, the complete co-segregation with the disease, and the biochemical assessment.
Collapse
Affiliation(s)
- Liena E O Elsayed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan.,College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.,Institut du Cerveau, INSERM, CNRS, Sorbonne Université, Paris, France
| | | | - Ahlam A A Hamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha A Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mustafa A M Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf Yahia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan.,Institut du Cerveau, INSERM, CNRS, Sorbonne Université, Paris, France.,Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Rayan Abubaker
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
| | | | | | - Muntaser E Ibrahim
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Alexis Brice
- Institut du Cerveau, INSERM, CNRS, Sorbonne Université, Paris, France.,APHP, Pitié-Salpêtrière Hospital, Department of genetics, Paris, France
| | - Ammar E Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM, CNRS, Sorbonne Université, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France.,APHP, Pitié-Salpêtrière Hospital, Department of genetics, Paris, France
| |
Collapse
|
4
|
Häberle J, Burlina A, Chakrapani A, Dixon M, Karall D, Lindner M, Mandel H, Martinelli D, Pintos-Morell G, Santer R, Skouma A, Servais A, Tal G, Rubio V, Huemer M, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J Inherit Metab Dis 2019; 42:1192-1230. [PMID: 30982989 DOI: 10.1002/jimd.12100] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
In 2012, we published guidelines summarizing and evaluating late 2011 evidence for diagnosis and therapy of urea cycle disorders (UCDs). With 1:35 000 estimated incidence, UCDs cause hyperammonemia of neonatal (~50%) or late onset that can lead to intellectual disability or death, even while effective therapies do exist. In the 7 years that have elapsed since the first guideline was published, abundant novel information has accumulated, experience on newborn screening for some UCDs has widened, a novel hyperammonemia-causing genetic disorder has been reported, glycerol phenylbutyrate has been introduced as a treatment, and novel promising therapeutic avenues (including gene therapy) have been opened. Several factors including the impact of the first edition of these guidelines (frequently read and quoted) may have increased awareness among health professionals and patient families. However, under-recognition and delayed diagnosis of UCDs still appear widespread. It was therefore necessary to revise the original guidelines to ensure an up-to-date frame of reference for professionals and patients as well as for awareness campaigns. This was accomplished by keeping the original spirit of providing a trans-European consensus based on robust evidence (scored with GRADE methodology), involving professionals on UCDs from nine countries in preparing this consensus. We believe this revised guideline, which has been reviewed by several societies that are involved in the management of UCDs, will have a positive impact on the outcomes of patients by establishing common standards, and spreading and harmonizing good practices. It may also promote the identification of knowledge voids to be filled by future research.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Alberto Burlina
- Division of Inborn Metabolic Disease, Department of Pediatrics, University Hospital Padua, Padova, Italy
| | - Anupam Chakrapani
- Department of Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children, NHS Trust, London, UK
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Lindner
- University Children's Hospital, Frankfurt am Main, Germany
| | - Hanna Mandel
- Institute of Human Genetics and metabolic disorders, Western Galilee Medical Center, Nahariya, Israel
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Guillem Pintos-Morell
- Centre for Rare Diseases, University Hospital Vall d'Hebron, Barcelona, Spain
- CIBERER_GCV08, Research Institute IGTP, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Skouma
- Institute of Child Health, Agia Sofia Children's Hospital, Athens, Greece
| | - Aude Servais
- Service de Néphrologie et maladies métaboliques adulte Hôpital Necker 149, Paris, France
| | - Galit Tal
- The Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER), Valencia, Spain
| | - Martina Huemer
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | | |
Collapse
|
5
|
Panza E, Martinelli D, Magini P, Dionisi Vici C, Seri M. Hereditary Spastic Paraplegia Is a Common Phenotypic Finding in ARG1 Deficiency, P5CS Deficiency and HHH Syndrome: Three Inborn Errors of Metabolism Caused by Alteration of an Interconnected Pathway of Glutamate and Urea Cycle Metabolism. Front Neurol 2019; 10:131. [PMID: 30853934 PMCID: PMC6395431 DOI: 10.3389/fneur.2019.00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Hereditary Spastic Paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by a progressive rigidity and weakness of the lower limbs, caused by pyramidal tract lesions. As of today, 80 different forms of HSP have been mapped, 64 genes have been cloned, and new forms are constantly being described. HSPs represent an intensively studied field, and the functional understanding of the biochemical and molecular pathogenetic pathways are starting to be elucidated. Recently, dominant and recessive mutations in the ALDH18A1 gene resulting in the deficiency of the encoded enzyme (delta-1-pyrroline-5-carboxylate synthase, P5CS) have been pathogenetically linked to HSP. P5CS is a critical enzyme in the conversion of glutamate to pyrroline-5-carboxylate, an intermediate that enters in the proline biosynthesis and that is connected with the urea cycle. Interestingly, two urea cycle disorders, Argininemia and Hyperornithinemia-Hyperammonemia-Homocitrullinuria syndrome, are clinically characterized by highly penetrant spastic paraplegia. These three diseases represent a peculiar group of HSPs caused by Inborn Errors of Metabolism. Here we comment on these forms, on the common features among them and on the hypotheses for possible shared pathogenetic mechanisms causing the HSP phenotype.
Collapse
Affiliation(s)
- Emanuele Panza
- Medical Genetics Unit, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Pamela Magini
- Medical Genetics Unit, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Carlo Dionisi Vici
- Division of Metabolism, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Marco Seri
- Medical Genetics Unit, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Hyperargininemia due to arginase I deficiency: the original patients and their natural history, and a review of the literature. Amino Acids 2015; 47:1751-62. [DOI: 10.1007/s00726-015-2032-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/13/2015] [Indexed: 12/30/2022]
|
7
|
Carvalho DR, Brand GD, Brum JM, Takata RI, Speck-Martins CE, Pratesi R. Analysis of novel ARG1 mutations causing hyperargininemia and correlation with arginase I activity in erythrocytes. Gene 2012; 509:124-30. [PMID: 22959135 DOI: 10.1016/j.gene.2012.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/06/2012] [Accepted: 08/01/2012] [Indexed: 02/09/2023]
Abstract
Hyperargininemia (HA) is an autosomal recessive disease that typically has a clinical presentation that is distinct from other urea cycle disorders. It is caused by the deficient activity of the enzyme arginase I, encoded by the gene ARG1. We screened for ARG1 mutations and measured erythrocyte enzyme activity in a series of 16 Brazilian HA patients. Novel mutations, in addition to previously described missense mutations, were analysed for their effect on the structure, stability and/or function of arginase I (ARG1) using bioinformatics tools. Three previously reported mutations were found (p.R21X; p.I11T and p.W122X), and five novel mutations were identified (p.G27D; p.G74V; p.T134I; p.R308Q; p.I174fs179). The p.T134I mutation was the most frequent in the Brazilian population. Patients carrying the p.R308Q mutation had higher residual ARG1 decreased activity, but presented no distinguishable phenotype compared to the other patients. Bioinformatics analyses revealed that missense mutations (1) affect the ARG1 active site, (2) interfere with the stability of the ARG1 folded conformation or (3) alter the quaternary structure of the ARG1. Our study reinforced the role of Arg308 residue for assembly of the ARG1 homotrimer. The panel of heterogeneous ARG1 mutations that cause HA was expanded, nevertheless a clear genotype-phenotype correlation was not observed in our series.
Collapse
Affiliation(s)
- Daniel Rocha Carvalho
- Genetic Unit, SARAH Rehabilitation Hospital, SMHS Quadra 501 Conj. A, Brasilia, Distrito Federal, 70335-901, Brazil.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Hyperargininemia is an autosomal recessive metabolic disorder caused by a deficiency of enzyme arginase I. It is a rare pan-ethnic disease with a clinical presentation distinct from that of other urea cycle disorders, and hyperammonemic encephalopathy is not usually observed. Hyperargininemia is one of the few treatable causes of pediatric spastic paraparesis, and can be confused with cerebral palsy. We retrospectively evaluated the clinical onset, neurologic manifestations, progression of abnormalities, electroencephalographic abnormalities, and laboratory findings of 16 Brazilian patients with hyperargininemia. Relevant data about the clinical spectrum and natural history of hyperargininemia are detailed. Progressive spastic diplegia constituted the key clinical abnormality in this group, but variability in clinical presentation and progression were evident in our series. Seizures in hyperargininemia may be more common than reported in previous studies. Features distinguishing hyperargininemia from cerebral palsy and hereditary spastic paraplegia are emphasized in this large series of patients.
Collapse
|
9
|
Häberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, Karall D, Martinelli D, Crespo PS, Santer R, Servais A, Valayannopoulos V, Lindner M, Rubio V, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis 2012; 7:32. [PMID: 22642880 PMCID: PMC3488504 DOI: 10.1186/1750-1172-7-32] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/06/2012] [Indexed: 12/11/2022] Open
Abstract
Urea cycle disorders (UCDs) are inborn errors of ammonia detoxification/arginine synthesis due to defects affecting the catalysts of the Krebs-Henseleit cycle (five core enzymes, one activating enzyme and one mitochondrial ornithine/citrulline antiporter) with an estimated incidence of 1:8.000. Patients present with hyperammonemia either shortly after birth (~50%) or, later at any age, leading to death or to severe neurological handicap in many survivors. Despite the existence of effective therapy with alternative pathway therapy and liver transplantation, outcomes remain poor. This may be related to underrecognition and delayed diagnosis due to the nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity. These guidelines aim at providing a trans-European consensus to: guide practitioners, set standards of care and help awareness campaigns. To achieve these goals, the guidelines were developed using a Delphi methodology, by having professionals on UCDs across seven European countries to gather all the existing evidence, score it according to the SIGN evidence level system and draw a series of statements supported by an associated level of evidence. The guidelines were revised by external specialist consultants, unrelated authorities in the field of UCDs and practicing pediatricians in training. Although the evidence degree did hardly ever exceed level C (evidence from non-analytical studies like case reports and series), it was sufficient to guide practice on both acute and chronic presentations, address diagnosis, management, monitoring, outcomes, and psychosocial and ethical issues. Also, it identified knowledge voids that must be filled by future research. We believe these guidelines will help to: harmonise practice, set common standards and spread good practices with a positive impact on the outcomes of UCD patients.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children’s Hospital Zurich and Children’s Research Centre, Zurich, 8032, Switzerland
| | - Nathalie Boddaert
- Radiologie Hopital Necker, Service Radiologie Pediatrique, 149 Rue De Sevres, Paris 15, 75015, France
| | - Alberto Burlina
- Department of Pediatrics, Division of Inborn Metabolic Disease, University Hospital Padua, Via Giustiniani 3, Padova, 35128, Italy
| | - Anupam Chakrapani
- Birmingham Children’s Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, United Kingdom
| | - Marjorie Dixon
- Dietetic Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, United Kingdom
| | - Martina Huemer
- Kinderabteilung, LKH Bregenz, Carl-Pedenz-Strasse 2, Bregenz, A-6900, Austria
| | - Daniela Karall
- University Children’s Hospital, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Piazza S. Onofrio 4, Rome, I-00165, Italy
| | | | - René Santer
- Universitätsklinikum Hamburg Eppendorf, Klinik für Kinder- und Jugendmedizin, Martinistr. 52, Hamburg, 20246, Germany
| | - Aude Servais
- Service de Néphrologie et maladies métaboliques adulte Hôpital Necker 149, rue de Sèvres, Paris, 75015, France
| | - Vassili Valayannopoulos
- Reference Center for Inherited Metabolic Disorders (MaMEA), Hopital Necker-Enfants Malades, 149 Rue de Sevres, Paris, 75015, France
| | - Martin Lindner
- University Children’s Hospital, Im Neuenheimer Feld 430, Heidelberg, 69120, Germany
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC) and Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER), C/ Jaume Roig 11, Valencia, 46010, Spain
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Piazza S. Onofrio 4, Rome, I-00165, Italy
| |
Collapse
|
10
|
Oldham MS, vanMeter JW, Shattuck KF, Cederbaum SD, Gropman AL. Diffusion tensor imaging in arginase deficiency reveals damage to corticospinal tracts. Pediatr Neurol 2010; 42:49-52. [PMID: 20004862 PMCID: PMC3758690 DOI: 10.1016/j.pediatrneurol.2009.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 11/29/2022]
Abstract
Individuals with a proximal urea cycle disorder, such as carbamoyl phosphate synthetase deficiency 1 or ornithine transcarbamylase deficiency, may present with encephalopathy resulting from hyperammonemia. The clinical presentation of arginase deficiency is considerably different, characterized by progressive spasticity involving the lower extremities and usually dementia. Diagnosis may be delayed, and patients are often thought to have cerebral palsy. The true etiology of brain injury in arginase deficiency is unknown, but is not thought to be due to hyperammonemia and brain swelling, the mechanism of injury recognized in ornithine transcarbamylase deficiency. Elevated arginine could augment nitric oxide synthesis, leading to oxidative damage. The hypothesis for the present study was that specific brain vulnerability in arginase deficiency would involve microstructural alterations in corticospinal tracts and that this finding, as measured by diffusion tensor imaging, would differ from age-matched control subjects and those with ornithine transcarbamylase deficiency. Diffusion tensor imaging data were compared for a 17-year-old male patient with arginase deficiency, age-matched normal control subjects, and age-matched individuals with ornithine transcarbamylase deficiency. Significant differences were found in suspected areas of interest, specifically in the corticospinal tracts. This finding confirms the hypothesis that the mechanism of injury in arginase deficiency, although still unknown, is unlikely to be similar to that causing ornithine transcarbamylase deficiency.
Collapse
Affiliation(s)
- Michael S. Oldham
- Department of Neurology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - John W. vanMeter
- Department of Neurology and the Center for Functional and Molecular Imaging, Georgetown University, Washington, District of Columbia
| | - Kyle F. Shattuck
- Department of Neurology and the Center for Functional and Molecular Imaging, Georgetown University, Washington, District of Columbia
| | - Stephen D. Cederbaum
- Departments of Psychiatry, Pediatrics, and Human Genetics and the Mental Retardation Research Center, University of California, Los Angeles, California
| | - Andrea L. Gropman
- Department of Neurology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia,Department of Neurology, Children's National Medical Center, Washington, District of Columbia
| |
Collapse
|
11
|
Sedel F, Lyon-Caen O, Saudubray JM. [Treatable hereditary neuro-metabolic diseases]. Rev Neurol (Paris) 2008; 163:884-96. [PMID: 18033024 DOI: 10.1016/s0035-3787(07)92631-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hereditary metabolic diseases may appear during adolescence or young adulthood, revealed by an apparently unexplained neurological or psychiatric disorder. Certain metabolic diseases respond to specific treatments and should be identified early, particularly in emergency situations where rapid introduction of a treatment can avoid fatal outcome or irreversible neurological damage. The main diseases leading to an acute neurological syndrome in the adult are urea cycle disorders, homocysteine metabolisms disorders and porphyria. More rarely, Wilson's disease, aminoacid diseases, organic aciduria, or pyruvate dehydrogenase deficiency, beta-oxidation disordes or biotin metabolism may be involved. Most emergency situations can be screen correctly with simple tests (serum ammonia, homocysteine, lactate, urinary prophyrines, acylcarnitine pattern, amino acid and organic acid chromatography). For chronic situations, the main treatable diseases are Wilson's disease, homocysteine, cerebrotendinous xanthomatosis, Refsum's disease, vitamin E deficiency, Gaucher's disease, Fabry's disease, and neurotransmitter metabolism disorders. We present treatable metabolic disorders as a function of the different clinical situations observed in adults.
Collapse
Affiliation(s)
- F Sedel
- Fédération des maladies du système nerveux, Groupe Hospitalier Pitié-Salpêtrière, Paris.
| | | | | |
Collapse
|
12
|
Abstract
INTRODUCTION Urea cycle disorders (UCD) usually present after 24 h to 48 h of life with failure to thrive, lethargy and coma leading to death, but milder forms may occur from infancy to adulthood. STATE OF THE ART Survival of children with UCD has significantly improved and the need for transitional care to adulthood has emerged. Adult onset UCD present with chronic or acute neurological, psychiatric and digestive symptoms associated with protein avoidance. Ornithine transcarbamylase (OTC) deficiency, which is inherited as an X-linked disorder, is the most well-described UCD in adults. Acute decompensations associate the triad of encephalopathy, respiratory alkalosis and hyperammonemia. Acute encephalopathy is characterized by brain edema, which is life-threatening without treatment. Specific urea cycle enzyme deficiency can be suspected in the presence of abnormal plasma amino acids concentrations and urinary excretion of orotic acid. A measurement enzyme activity in appropriate tissue, or DNA analysis if available, is required for diagnosis. Treatment requires restriction of dietary protein intake and the use of alternative pathways of waste nitrogen excretion with sodium benzoate and sodium phenylbutyrate. Patients with acute forms may need hemodialysis or hemodiafiltration. Therapeutic goals for OTC deficiency are to maintain plasma ammonia<80 micromol/L, plasma glutamine<1,000 micromol/L, argininemia 80-150 micromol/L and branched chain amino acids within the normal range, in order to prevent episodes of potentially lethal acute hyperammonemia. CONCLUSION Potentially fatal acute hyperammonemia may occur in male or female patients at any age. Ammonia should be measured promptly in case of acute neurological and psychiatric symptoms or coma.
Collapse
Affiliation(s)
- F Maillot
- Service de Médecine Interne et Nutrition, CHRU,Tours, France.
| | | |
Collapse
|
13
|
Sedel F, Fontaine B, Saudubray JM, Lyon-Caen O. Hereditary spastic paraparesis in adults associated with inborn errors of metabolism: a diagnostic approach. J Inherit Metab Dis 2007; 30:855-64. [PMID: 17957490 DOI: 10.1007/s10545-007-0745-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 08/18/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
Spastic paraparesis is a general term describing progressive stiffness and weakness in the lower limbs caused by pyramidal tract lesions. This clinical situation is frequently encountered in adult neurology. The diagnostic survey is usually limited to searching for acquired causes (spinal cord compression, inflammatory, metabolic, infectious diseases) and the so-called 'hereditary spastic paraparesis'. Although poorly recognized by neurologists, spastic paraparesis is also one of the multiple presentations of inborn errors of metabolism (IEMs) in children and adults. Pyramidal signs are usually included in a diffuse neurological or systemic clinical picture; however, in some cases spastic paraparesis remains the only symptom for years. Since these metabolic causes are often treatable, it is essential to include them in the general diagnostic approach to spastic paraparesis. Here we review IEMs causing paraparesis in adults.
Collapse
Affiliation(s)
- F Sedel
- Federation of Nervous System Diseases, The Salpêtrière Hospital, Pierre et Marie Curie University, Paris, France.
| | | | | | | |
Collapse
|
14
|
Sedel F, Lyon-Caen O, Saudubray JM. Therapy insight: inborn errors of metabolism in adult neurology--a clinical approach focused on treatable diseases. ACTA ACUST UNITED AC 2007; 3:279-90. [PMID: 17479075 DOI: 10.1038/ncpneuro0494] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 03/13/2007] [Indexed: 12/25/2022]
Abstract
Inborn errors of metabolism (IEMs) are genetic disorders characterized by dysfunction of an enzyme or other protein involved in cellular metabolism. In most cases, IEMs involve the nervous system. The first clinical symptoms of IEMs usually present in infancy, but in an unknown proportion of cases they can appear in adolescence or adulthood. In this Review, we focus on treatable IEMs, presenting acutely or chronically, that can be diagnosed in an adult neurology department. To make our presentation readily usable by clinicians, the Review is subdivided into eight sections according to the main clinical presentations: emergencies (acute encephalopathies and strokes), movement disorders, peripheral neuropathies, spastic paraparesis, cerebellar ataxia, psychiatric disorders, epilepsy and leukoencephalopathies. Our aim is to present simple guidelines to enable neurologists to avoid overlooking a treatable metabolic disease.
Collapse
Affiliation(s)
- Frédéric Sedel
- Department of Neurology at Salpêtrière Hospital, Paris, France
| | | | | |
Collapse
|
15
|
Picker JD, Puga AC, Levy HL, Marsden D, Shih VE, Degirolami U, Ligon KL, Cederbaum SD, Kern RM, Cox GF. Arginase deficiency with lethal neonatal expression: evidence for the glutamine hypothesis of cerebral edema. J Pediatr 2003; 142:349-52. [PMID: 12640389 DOI: 10.1067/mpd.2003.97] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a rare and lethal case of arginase deficiency in a 2-day-old female infant with encephalopathy and cerebral edema. The levels of glutamine and arginine but not ammonia were markedly elevated, lending support to the "glutamine hypothesis" as the mechanism of cerebral edema in urea cycle defects.
Collapse
Affiliation(s)
- Jonathan D Picker
- Divisions of Genetics and Neuropathology, Children's Hospital Boston, the Department of Neurology, Massachusetts General Hospital, Cambridge, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|