1
|
Volpe P, Bosutti A, Nori A, Filadi R, Gherardi G, Trautmann G, Furlan S, Massaria G, Sciancalepore M, Megighian A, Caccin P, Bernareggi A, Salanova M, Sacchetto R, Sandonà D, Pizzo P, Lorenzon P. Nerve-dependent distribution of subsynaptic type 1 inositol 1,4,5-trisphosphate receptor at the neuromuscular junction. J Gen Physiol 2022; 154:213498. [PMID: 36149386 PMCID: PMC9513380 DOI: 10.1085/jgp.202213128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are enriched at postsynaptic membrane compartments of the neuromuscular junction (NMJ), surrounding the subsynaptic nuclei and close to nicotinic acetylcholine receptors (nAChRs) of the motor endplate. At the endplate level, it has been proposed that nerve-dependent electrical activity might trigger IP3-associated, local Ca2+ signals not only involved in excitation-transcription (ET) coupling but also crucial to the development and stabilization of the NMJ itself. The present study was undertaken to examine whether denervation affects the subsynaptic IP3R distribution in skeletal muscles and which are the underlying mechanisms. Fluorescence microscopy, carried out on in vivo denervated muscles (following sciatectomy) and in vitro denervated skeletal muscle fibers from flexor digitorum brevis (FDB), indicates that denervation causes a reduction in the subsynaptic IP3R1-stained region, and such a decrease appears to be determined by the lack of muscle electrical activity, as judged by partial reversal upon field electrical stimulation of in vitro denervated skeletal muscle fibers.
Collapse
Affiliation(s)
- Pompeo Volpe
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
- Correspondence to Pompeo Volpe:
| | | | - Alessandra Nori
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
- National Research Council, Neuroscience Institute, Padova, Italy
| | - Gaia Gherardi
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | - Gabor Trautmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany
| | - Sandra Furlan
- National Research Council, Neuroscience Institute, Padova, Italy
| | | | | | - Aram Megighian
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | - Paola Caccin
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | | | - Michele Salanova
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany
- Neuromuscular Signaling, Center of Space Medicine Berlin, Berlin, Germany
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
- National Research Council, Neuroscience Institute, Padova, Italy
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
2
|
Subramaniam J, Yamankurt G, Cunha SR. Obscurin regulates ankyrin macromolecular complex formation. J Mol Cell Cardiol 2022; 168:44-57. [PMID: 35447147 PMCID: PMC11057898 DOI: 10.1016/j.yjmcc.2022.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Obscurin is a large scaffolding protein in striated muscle that maintains sarcolemmal integrity and aligns the sarcoplasmic reticulum with the underlying contractile machinery. Ankyrins are a family of adaptor proteins with some isoforms that interact with obscurin. Previous studies have examined obscurin interacting with individual ankyrins. In this study, we demonstrate that two different ankyrins interact with obscurin's carboxyl terminus via independent ankyrin-binding domains (ABDs). Using in-vitro binding assays, co-precipitation assays, and FLIM-FRET analysis, we show that obscurin interacts with small ankyrin 1.5 (sAnk1.5) and the muscle-specific ankyrin-G isoform (AnkG107). While there is no direct interaction between sAnk1.5 and AnkG107, obscurin connects the two ankyrins both in vitro and in cells. Moreover, AnkG107 recruits β-spectrin to this macromolecular protein complex and mutating obscurin's ABDs disrupts complex formation. To further characterize AnkG107 interaction with obscurin, we measure obscurin-binding to different AnkG107 isoforms expressed in the heart and find that the first obscurin-binding domain in AnkG107 principally mediates this interaction. We also find that AnkG107 does not bind to filamin-C and displays minimal binding to plectin-1 compared to obscurin. Finally, both sAnk1.5-GFP and AnkG107-CTD-RFP are targeted to the M-lines of ventricular cardiomyocytes and mutating their obscurin-binding domains disrupts the M-line localization of these ankyrin constructs. Altogether, these findings support a model in which obscurin can interact via independent binding domains with two different ankyrin protein complexes to target them to the sarcomeric M-line of ventricular cardiomyocytes.
Collapse
Affiliation(s)
- Janani Subramaniam
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Gokay Yamankurt
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - Shane R Cunha
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America.
| |
Collapse
|
3
|
Madison RD, Robinson GA. Muscle-Derived Extracellular Vesicles Influence Motor Neuron Regeneration Accuracy. Neuroscience 2019; 419:46-59. [PMID: 31454553 DOI: 10.1016/j.neuroscience.2019.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/06/2023]
Abstract
Extracellular vesicles are lipid bilayer-enclosed extracellular structures. Although the term extracellular vesicles is quite inclusive, it generally refers to exosomes (<200 nm), and microvesicles (~100-1000 nm). Such vesicles are resistant to degradation and can contain proteins, lipids, and nucleic acids. Although it was previously thought that the primary purpose of such vesicles was to rid cells of unwanted components, it is now becoming increasingly clear that they can function as intercellular messengers, sometimes operating over long distances. As such, there is now intense interest in extracellular vesicles in fields as diverse as immunology, cell biology, cancer, and more recently, neuroscience. The influence that such extracellular vesicles might exert on peripheral nerve regeneration is just beginning to be investigated. In the current studies we show that muscle-derived extracellular vesicles significantly influence the anatomical accuracy of motor neuron regeneration in the rat femoral nerve. These findings suggest a basic cellular mechanism by which target end-organs could guide their own reinnervation following nerve injury.
Collapse
Affiliation(s)
- Roger D Madison
- Research Service of the Veterans Affairs Medical Center, Durham, NC 27705, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Grant A Robinson
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Voigt T, Meyer K, Baum O, Schümperli D. Ultrastructural changes in diaphragm neuromuscular junctions in a severe mouse model for Spinal Muscular Atrophy and their prevention by bifunctional U7 snRNA correcting SMN2 splicing. Neuromuscul Disord 2010; 20:744-52. [DOI: 10.1016/j.nmd.2010.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/27/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
|
6
|
Voigt T, Dauber W. About the morphological relationships of the sarcoplasmic reticulum in the sole plate area of the frog. Tissue Cell 2004; 36:249-52. [PMID: 15261744 DOI: 10.1016/j.tice.2004.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 01/31/2004] [Accepted: 03/03/2004] [Indexed: 11/22/2022]
Abstract
In the present investigation the sole plate area of motor end plates of the frog is ultrastructurally examined with different postfixation methods. We concentrated in this case on the proof of the smooth and rough sarcoplasmic reticulum of the sole plate. The relations of the smooth and rough sarcoplasmic reticulum to subsynaptic folds and the local T-system and its connections to diads and triads in the sole plate area are represented. The morphological differences between mammal and frog are pointed out. The possible functions of the sarcoplasmic reticulum in the myofibril-free sarcoplasm are discussed.
Collapse
Affiliation(s)
- Tilman Voigt
- Institute of Anatomy, University of Fribourg, Rte Albert-Gockel 1, CH-1700 Fribourg, Switzerland.
| | | |
Collapse
|
7
|
Voigt T, Dauber W, Kohler U. Perisynaptic Schwann cells of the vertebrate motor endplate bear modified cilia. Microsc Res Tech 2004; 63:149-54. [PMID: 14755601 DOI: 10.1002/jemt.20023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Perisynaptic Schwann cells (PSCs), descendants of the myelinating Schwann cells, cover the axon terminal of the vertebrate motor endplate of the skeletal muscle fiber. PSCs are assumed to support the function of the axon terminal. This function suggests a net material transport in the direction of the axon terminal. Morphologically it is to be expected that these cells have a cytoskeleton aligned to the axon terminal. Investigations clarifying this statement have not yet been undertaken. From previous investigations we know, however, that the PSCs have a microtubule-organizing center, which is a part of this cytoskeleton. The centrioles of the organizing center may also participate in the formation of a modified cilium structure whose function is unknown. In the present investigation, characteristic ultrastructural features of the modified cilium structure and its relationship to the Golgi apparatus and the axon terminal are presented. A function for the modified cilium structure is discussed.
Collapse
Affiliation(s)
- Tilman Voigt
- Institute of Anatomy, University of Fribourg, 1700 Fribourg, Switzerland.
| | | | | |
Collapse
|
8
|
IP3 receptors and associated Ca2+ signals localize to satellite cells and to components of the neuromuscular junction in skeletal muscle. J Neurosci 2003. [PMID: 12967979 DOI: 10.1523/jneurosci.23-23-08185.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, we described an inositol 1,4,5-trisphosphate (IP3) signaling system in cultured rodent skeletal muscle, triggered by high K+ and affecting gene transcription (Powell et al., 2001). Now, in a study of adult rodent skeletal muscle, using immunocytology and confocal microscopy, we have found a high level of IP3 receptor (IP3R) staining in satellite cells, which have been shown recently to contribute to nuclei in adult fibers after muscle exercise. These IP3R staining cells are positively identified as satellite cells by their position, morphology and staining with satellite-cell-specific antibodies such as desmin and neural cell adhesion molecule. IP3Rs are also localized to postsynaptic components of the neuromuscular junction (NMJ), in areas surrounding the nuclei of the motor end plate, and in perisynaptic Schwann cells, and localized close to nicotinic acetylcholine receptors of the endplate gutters. Ca2+ imaging experiments show calcium release at the motor endplate upon K+ depolarization precisely in these IP3R-rich regions. We suggest that electrical activity stimulates IP3-associated Ca2+ signals that may be involved in gene regulation in satellite cells and in elements of the NMJ, contributing both to muscle fiber growth and stabilization of the NMJ.
Collapse
|
9
|
Voigt T, Dauber W, Bensemann-Ryvkin I, Härtel X. Shape and position of the sarcoplasmic reticulum and the Golgi apparatus in the sole plate and remaining subsarcolemmal muscle region of the mouse using imidazole-osmium staining. Microsc Res Tech 2003; 61:419-22. [PMID: 12845567 DOI: 10.1002/jemt.10308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
By means of thin (< or =150 nm) and thick (>150 nm) sections, the shape and position of the sarcoplasmic reticulum and of the Golgi apparatus in the sole plate and in the remaining subsarcolemmal sarcoplasmic region were investigated. For this purpose the membranes were stained by means of imidazole-osmium postfixation and unstained sections analyzed under the electron microscope. Both in the sarcoplasma of the sole plate and around the muscle fiber nuclei, a network of tubules is visible after imidazole-osmium staining which can be identified as the sarcoplasmic reticulum solely on the basis of its contacts with the perinuclear cistern and the cisterns of the triads. Findings in literature on the position of the Golgi apparatus are confirmed and similar spatial relationships and vesiculations between the perinuclear cisterns and the Golgi apparatus of the sole plate nuclei and the other subsarcolemmal fiber nuclei are also demonstrated using this new staining method.
Collapse
Affiliation(s)
- Tilman Voigt
- Institute of Anatomy, University of Fribourg, CH-1700 Fribourg, Switzerland.
| | | | | | | |
Collapse
|
10
|
Voigt T, Dauber W, Bensemann-Ryvkin I, Härtel X. Increasing membrane contrast by means of imidazole-osmium post-fixation as exemplified by skeletal muscle fiber. Microsc Res Tech 2002; 58:121-4. [PMID: 12203713 DOI: 10.1002/jemt.10128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Until now, the interpretation of findings derived from investigations on membrane structures (T tubules, sarcoplasmic reticulum, the Golgi apparatus) in thick sections of mammalian muscle tissue has been limited in TEM due to the lack of sharp resolution of the membrane contours. This article shows how the imidazol-osmium post-fixation of tissue blocks can be used to achieve well-contrasted, sharply defined membrane contours. Therefore, unstained sections from imidazol-osmium post-fixed tissue can be examined immediately. But protein structures (e.g., ribosomes) remain uncontrasted with this technique. If needed, it is possible to visualize the protein structures by conventional section staining with uranyl acetate and lead citrate. This method is suitable for both ultrathin and thick sections (>150 nm).
Collapse
Affiliation(s)
- Tilman Voigt
- Institute of Anatomy, Eberhard-Karls-University Tübingen, 72074 Tübingen, Germany.
| | | | | | | |
Collapse
|
11
|
Dauber W, Voigt T, Härtel X, Mayer J. The T-tubular network and its triads in the sole plate sarcoplasm of the motor end-plate of mammals. J Muscle Res Cell Motil 2001; 21:443-9. [PMID: 11129435 DOI: 10.1023/a:1005614917564] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The transition between the subsynaptic folds and the T-tubules demonstrated in a former paper was further investigated in the sole plate area by using the extracellular marker Lanthanum. A tubular network of the T-system of the sole plate area which is connected to the subsynaptic folds and to the t-tubular elements between the myofibrils is described for the first time. T-tubules of this network criss-cross through the sarcoplasm of the sole plate and lie in close proximity to sole plate nuclei and mitochondria. Cisterns of sarcoplasmic reticulum of the sole plate area make contact with these t-tubules forming triads. The possible physiological role of this sole plate network and its triads will be discussed with regard to a transport of substances in tubules with the dimension of nanotubes and Ca2+ activated processes in the sole plate area.
Collapse
Affiliation(s)
- W Dauber
- Institute of Anatomy, Eberhard-Karls-University, Tübingen, Germany.
| | | | | | | |
Collapse
|