1
|
Zahid SA, Tated R, Mathew M, Rajkumar D, Karnik SB, Pramod Roy A, Jacob FP, Baskara Salian R, Razzaq W, Shivakumar D, Khawaja UA. Diabetic Gastroparesis and its Emerging Therapeutic Options: A Narrative Review of the Literature. Cureus 2023; 15:e44870. [PMID: 37814758 PMCID: PMC10560130 DOI: 10.7759/cureus.44870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
Diabetic gastroparesis (DG) is one of the many complications of diabetes mellitus (DM). Even though this condition surfaces years after uncontrolled disease, it affects the quality of life in several ways and causes significant morbidity. Common symptoms experienced by the patients include postprandial nausea, vomiting, abdominal fullness, and pain. Strict glycemic control is essential to evade the effects of DG. The purpose of this review article is to briefly study the pathophysiology, clinical features, diagnostic modalities, and the effects of DG on different aspects of life. Furthermore, it also focuses on the emerging treatment modalities for DG. Tradipitant and relamorelin are two such treatment options that are gaining noteworthy recognition and are discussed in detail in this review article. As observed through various clinical trials, these drugs help alleviate symptoms like nausea, vomiting, abdominal pain, and bloating in patients suffering from DG, thereby targeting the most common and bothersome symptoms of the disease. This leads to an improvement in the quality of life, making it a reliable treatment option for this disease. But while pharmacological intervention is vital, psychological support and lifestyle changes are equally important and are the reason why a multidisciplinary approach is required for the treatment of DG.
Collapse
Affiliation(s)
- Shiza A Zahid
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Ritu Tated
- Department of Internal Medicine, Mahatma Gandhi Mission Institute of Medical Sciences, Navi Mumbai, IND
| | - Midhun Mathew
- Department of Internal Medicine, Pennsylvania Hospital, Philadelphia, USA
| | - Daniel Rajkumar
- Department of Internal Medicine, Hospital Alor Gajah, Alor Gajah, MYS
| | - Siddhant B Karnik
- Department of Internal Medicine, Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai, IND
| | | | - Fredy P Jacob
- Department of Internal Medicine, Jonelta Foundation School of Medicine, University of Perpetual Help System DALTA, Las Piñas, PHL
| | | | - Waleed Razzaq
- Department of Internal Medicine, Services Hospital Lahore, Lahore, PAK
| | - Divya Shivakumar
- Department of Internal Medicine, Kamineni Academy of Medical Sciences and Research Center, Hyderabad, IND
| | - Uzzam Ahmed Khawaja
- Department of Paediatrics and Child Health, Aga Khan University Hospital, Karachi, PAK
| |
Collapse
|
2
|
Wei L, Ji L, Miao Y, Han X, Li Y, Wang Z, Fu J, Guo L, Su Y, Zhang Y. Constipation in DM are associated with both poor glycemic control and diabetic complications: Current status and future directions. Biomed Pharmacother 2023; 165:115202. [PMID: 37506579 DOI: 10.1016/j.biopha.2023.115202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Constipation is a major complications of diabetes mellitus. With the accelerating prevalence of diabetes worldwide and an aging population, there is considerable research interest regarding the altered function and structure of the gastrointestinal tract in diabetic patients. Despite current advances in hyperglycemic treatment strategies, the specific pathogenesis of diabetic constipation remains unknown. Patients with constipation, may be reluctant to eat regularly, which may worsen glycemic control and thus worsen symptoms associated with underlying diabetic bowel disease. This paper presents a review of the complex relationship between diabetes and constipation, exploring the morphological alterations and biomechanical remodeling associated with intestinal motility dysfunction, as well as alterations in intestinal neurons, cellular signaling pathways, and oxidative stress. Further studies focusing on new targets that may play a role in the pathogenesis of diabetic constipation may, provide new ideas for the development of novel therapies to treat or even prevent diabetic constipation.
Collapse
Affiliation(s)
- Luge Wei
- Tianjin University of Traditional Chinese Medicine, China.
| | - Lanqi Ji
- Tianjin University of Traditional Chinese Medicine, China
| | - Yulu Miao
- Tianjin University of Traditional Chinese Medicine, China
| | - Xu Han
- Tianjin University of Traditional Chinese Medicine, China
| | - Ying Li
- Tianjin University of Traditional Chinese Medicine, China
| | - Zhe Wang
- Tianjin University of Traditional Chinese Medicine, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, China
| | - Liuli Guo
- Tianjin University of Traditional Chinese Medicine, China
| | - Yuanyuan Su
- Tianjin University of Traditional Chinese Medicine, China
| | - Yanjun Zhang
- Tianjin University of Traditional Chinese Medicine, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China
| |
Collapse
|
3
|
Yarandi SS, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil 2014; 26:611-24. [PMID: 24661628 PMCID: PMC4104990 DOI: 10.1111/nmo.12330] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/18/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Gastrointestinal manifestations of diabetes are common and a source of significant discomfort and disability. Diabetes affects almost every part of gastrointestinal tract from the esophagus to the rectum and causes a variety of symptoms including heartburn, nausea, vomiting, abdominal pain, diarrhea and constipation. Understanding the underlying mechanisms of diabetic gastroenteropathy is important to guide development of therapies for this common problem. Over recent years, the data regarding the pathophysiology of diabetic gastroenteropathy is expanding. In addition to autonomic neuropathy causing gastrointestinal disturbances the role of enteric nervous system is becoming more evident. PURPOSE In this review, we summarize the reported alterations in enteric nervous system including enteric neurons, interstitial cells of Cajal and neurotransmission in diabetic animal models and patients. We also review the possible underlying mechanisms of these alterations, with focus on oxidative stress, growth factors and diabetes induced changes in gastrointestinal smooth muscle. Finally, we will discuss recent advances and potential areas for future research related to diabetes and the ENS such as gut microbiota, micro-RNAs and changes in the microvasculature and endothelial dysfunction.
Collapse
Affiliation(s)
- S. S. Yarandi
- Division of Digestive Diseases; Emory University; Atlanta GA
- Atlanta VA Medical Center; Decatur Georgia USA
| | - S. Srinivasan
- Division of Digestive Diseases; Emory University; Atlanta GA
- Atlanta VA Medical Center; Decatur Georgia USA
| |
Collapse
|
4
|
Descorbeth M, Anand-Srivastava MB. High glucose increases the expression of Gq/11alpha and PLC-beta proteins and associated signaling in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2008; 295:H2135-42. [PMID: 18820027 DOI: 10.1152/ajpheart.00704.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The levels and activity of protein kinase C and diacylglycerol were shown to be upregulated in diabetes/hyperglycemia; however, studies on the expression of upstream signaling molecules of phosphatidylinositol turnover were lacking. The present study was therefore undertaken to examine whether hyperglycemia/diabetes could also modulate the expression of Gqalpha and phospholipase C-beta (PLC-beta) proteins and associated phosphatidylinositol turnover signaling in aortic vascular smooth muscle cells (VSMCs) and A10 VSMCs exposed to high glucose. Aortic VSMCs from streptozotocin-diabetic rats exhibited an increased expression of Gqalpha and PLC-beta1 proteins (60% and 30%, respectively) compared with control cells as determined by Western blot analysis. The pretreatment of A10 VSMCs with high glucose (26 mM) for 3 days also augmented the levels of Gqalpha, G11alpha, PLC-beta1 and -beta2 proteins by about 50, 35, 30, and 30%, respectively, compared with control cells that were restored to control levels by endothelin-1 (ET-1), ET types A and B (ET(A) and ET(B)) receptors, and angiotensin II type 1 (AT1) receptor antagonists. In addition, ET-1-stimulated inositol triphosphate formation was also significantly higher in VSMCs exposed to high glucose, whereas the basal levels of inositol triphosphate were not different between the two groups. Furthermore, the treatment of A10 VSMCs with angiotensin II and ET-1 also significantly increased the levels of Gq/11alpha and PLC-beta proteins that were restored toward control levels by ET(A)/ET(B) and AT1 receptor antagonists. These results suggest that high glucose augments the expression of Gq/11alpha, PLC-beta, and mediated signaling in VSMCs, which may be attributed to AT1, ET(A), and ET(B) receptors.
Collapse
Affiliation(s)
- Magda Descorbeth
- Department of Physiology, Faculty of Medicine, University of Montreal, C. P. 6128, Succ. Centre-ville, Montreal, QC, H3C 3J7, Canada
| | | |
Collapse
|
5
|
Sakai Y, Nobe K, Maruyama Y, Momose K, Homma I. A traditional herbal medicine, rikkunshi-to (TJ-43), prevents intracellular signaling disorders in gastric smooth muscle of diabetic rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2004; 32:245-56. [PMID: 15315262 DOI: 10.1142/s0192415x04001904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prevention of diabetic gastrointestinal dysfunction is of utmost importance. The present study demonstrated that diacylglycerol kinase (DGK) activity in diabetic gastric smooth muscle in the resting state was approximately 3.5-fold greater than that in controls. However, oral administration of TJ-43 (1% of food intake) or subcutaneous insulin injection (12 units/kg/day) in streptozotocin-induced diabetic rats (DM) for 2 weeks prevented DGK abnormalities based on the control level. Increased DGK activity in the resting state of DM was inhibited significantly by R59022, neomycin or staurosporine; in contrast, these drugs did not affect DGK activity in controls, insulin-treated DM or TJ-43-treated DM. In controls, the endogenous phosphatidic acid (PA) level was inhibited significantly by R59022 or neomycin but not affected by staurosporine. On the other hand, these three drugs significantly inhibited endogenous PA levels in DM, and neomycin significantly inhibited endogenous PA levels in insulin-treated and TJ-43-treated DM. This suggests that TJ-43 could prevent alteration of DGK activity and PA formation without reduction of blood glucose levels. Moreover, these effects were greater than those of insulin treatment. Results suggested that TJ-43 treatment influenced the hyperreactivity of DGK and DAG formation via phospholipase C activity. In conclusion, TJ-43 can be recommended with respect to enhancement of the quality of life in patients displaying diabetic gastrointestinal complications.
Collapse
Affiliation(s)
- Yasushi Sakai
- Division of Physiology, Department of Occupational Therapy, School of Nursing and Rehabilitation Sciences, Showa University, Yokohama 226, Japan.
| | | | | | | | | |
Collapse
|
6
|
Shi XZ, Sarna SK. G protein-mediated dysfunction of excitation-contraction coupling in ileal inflammation. Am J Physiol Gastrointest Liver Physiol 2004; 286:G899-905. [PMID: 15132948 DOI: 10.1152/ajpgi.00408.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammation impairs the circular muscle contractile response to muscarinic (M) receptor activation. The aim of this study was to investigate whether the expression of muscarinic receptors, their binding affinity, and the expression and activation of receptor-coupled G proteins contribute to the suppression of contractility in inflammation. The studies were performed on freshly dissociated single smooth muscle cells from normal and inflamed canine ileum. Northern blotting indicated the presence of only M(2) and M(3) receptors on canine ileal circular muscle cells. Inflammation did not alter the mRNA or protein expression of M(2) and M(3) receptors. The maximal binding and K(d) values also did not differ between normal and inflamed cells. However, the contractile response to ACh in M(3) receptor-protected cells was suppressed, whereas that in M(2) receptor-protected cells was enhanced. Further experiments indicated that the expression and binding activity of G alpha(q/11) protein, which couples to M(3) receptors, were downregulated, whereas those of G alpha(i3), which couples to M(2) receptors, were upregulated in inflamed cells. We concluded that inflammation depresses M(3) receptor function, but it enhances M(2) receptor function in ileum. These effects are mediated by the differentially altered expression and binding activity of their respective coupled G alpha(q/11) and G alpha(i3) proteins.
Collapse
Affiliation(s)
- Xuan-Zheng Shi
- Department of Internal Medicine, Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, The University of Texas Medical Branch at Galveston, 77555-0632, USA
| | | |
Collapse
|
7
|
Marwaha A, Banday AA, Lokhandwala MF. Reduced renal dopamine D1 receptor function in streptozotocin-induced diabetic rats. Am J Physiol Renal Physiol 2003; 286:F451-7. [PMID: 14612382 DOI: 10.1152/ajprenal.00227.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dopamine, via activation of renal D(1) receptors, inhibits the activities of Na-K-ATPase and Na/H exchanger and subsequently increases sodium excretion. Decreased renal dopamine production and sodium excretion are associated with type I diabetes. However, it is not known whether the response to D(1) receptor activation is altered in type I diabetes. The present study was designed to examine the effect of streptozotocin-induced type I diabetes on renal D(1) receptor expression and function. Streptozotocin treatment of Sprague-Dawley rats caused a fourfold increase in plasma levels of glucose along with a significant decrease in insulin levels compared with control rats. Intravenous administration of SKF-38393, a D(1) receptor agonist, caused a threefold increase in sodium excretion in control rats. However, SKF-38393 failed to produce natriuresis in diabetic rats. SKF-38393 caused a concentration-dependent inhibition of Na-K-ATPase activity in renal proximal tubules of control rats. However, the ability of SKF-38393 to inhibit Na-K-ATPase activity was markedly diminished in diabetic rats. D(1) receptor numbers and protein abundance as determined by [(3)H]SCH-23390 ligand binding and Western blot analysis were markedly reduced in diabetic rats compared with control rats. Moreover, SKF-38393 failed to stimulate GTP gamma S binding in proximal tubular membranes from diabetic rats compared with control rats. We conclude that the natriuretic response to D(1) receptor activation is reduced in type I diabetes as a result of a decrease in D(1) receptor expression and defective receptor G protein coupling. These abnormalities may contribute to the sodium retention associated with type I diabetes.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Diabetes Mellitus, Experimental/diagnosis
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Dopamine Agonists/pharmacology
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Kidney Tubules, Proximal/chemistry
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Male
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/analysis
- Receptors, Dopamine D1/metabolism
- Sodium-Potassium-Exchanging ATPase/metabolism
Collapse
Affiliation(s)
- Aditi Marwaha
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204-5041, USA
| | | | | |
Collapse
|
8
|
Lin S, Chugh S, Pan X, Wallner EI, Wada J, Kanwar YS. Identification of up-regulated Ras-like GTPase, Rap1b, by suppression subtractive hybridization. Kidney Int 2001; 60:2129-41. [PMID: 11737587 DOI: 10.1046/j.1523-1755.2001.00061.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Diabetic nephropathy accounts for over 30% of the end-stage renal disease (ESRD). A number of defined mechanisms and molecules that are involved in its pathogenesis are known, while others remain to be identified. METHODS Suppression subtraction hybridization (SSH)-polymerase chain reaction (PCR) was employed to search for new genes that may be relevant to the pathogenesis of diabetic nephropathy during embryonic development, the time when the kidney is most susceptible to various forms of stress. A diabetic state was induced in pregnant mice at day-13 of gestation by administration of streptozotocin. The kidneys of newborn mice with blood glucose level> 200 mg/dL were harvested, mRNA isolated and subjected to SSH-PCR. Several differentially expressed cDNA fragments with up-regulated expression were isolated. One of the cDNA fragments had homology with human Ras-like guanine 5'-triphosphate (GTPase), Rap1b gene. By utilizing the lambdaZAP II mouse cDNA library and SMART RACE amplification, a full-length Rap1b cDNA was isolated. A recombinant protein was generated in pET15b bacterial expression system. An anti-Rap1b antibody was raised in rabbits by immunizing them with the fusion protein, and its specificity was confirmed by Western blot analysis. RESULTS Rap1b cDNA had an open reading frame of 552 bp with a predicted putative protein size of approximately 21 kD. In vitro translation verified the authentication of the Rap1b cDNA clone. Northern blot analyses revealed a single approximately 2.3 kb Rap1b mRNA transcript. Its expression was up-regulated in several tissues, including the kidney of newborn diabetic mice. The degree of up-regulation of Rap1b mRNA expression was proportional to the blood glucose levels. Western blot analyses confirmed the hyperglycemia-induced up-regulation of the Rap1b expression. In situ hybridization and immunofluorescence studies revealed that Rap1b was expressed in the inner medullary collecting tubules. During hyperglycemia, its expression was accentuated and extended into the outer medullary and cortical collecting tubules. Similar up-regulation of Rap1b was observed when embryonic kidneys, harvested at day-13 of gestation, were exposed to high glucose ambience. CONCLUSION The data suggest that Rap1b, a GTP-binding protein that plays a critical role in various signaling intracellular events, is another molecule that may be relevant to the pathobiology of diabetic nephropathy.
Collapse
Affiliation(s)
- S Lin
- Department of Pathology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
9
|
Tao J, Malbon CC, Wang HY. Galpha(i2) enhances insulin signaling via suppression of protein-tyrosine phosphatase 1B. J Biol Chem 2001; 276:39705-12. [PMID: 11500506 DOI: 10.1074/jbc.m105216200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Suppression of the expression of the heterotrimeric G-protein Galpha(i2) in vivo has been shown to provoke insulin resistance, whereas enhanced insulin signaling is observed when Galpha(i2) is overexpressed in vivo. The basis for Galpha(i2) regulation of insulin signaling was explored in transgenic mice with targeted expression of the GTPase-deficient, constitutively active Q205L Galpha(i2) in fat and skeletal muscle. Phosphorylation of insulin receptor and IRS-1 in response to insulin challenge in vivo was markedly amplified in fat and skeletal muscle expressing Q205L Galpha(i2). The expression and activity of the protein-tyrosine phosphatase 1B (PTP1B), but not protein-tyrosine phosphatases SHP-1, SHP-2, and LAR, were constitutively decreased in tissues expressing the Q205L Galpha(i2), providing a direct linkage between insulin signaling and Galpha(i2). The loss of PTP1B expression may explain, in part, the loss of PTP1B activity in the iQ205L transgenic mice. Activation of Galpha(i2) in mouse adipocytes with lysophosphatidic acid was shown to decrease PTP1B activity, whereas pertussis toxin inactivates Galpha(i2), blocks lysophosphatidic acid-stimulated inhibition of PTP1B activity, and blocks tonic suppression of PTP1B activity by Galpha(i2). Elevation of intracellular cAMP in fat cells is shown to increase PTP1B activity, whereas either depression of cAMP levels or direct activation of Galpha(i2) suppresses PTP1B. These data provide the first molecular basis for the interplay between Galpha(i2) and insulin signaling, i.e. activation of Galpha(i2) can suppress both the expression and activity of PTP1B in insulin-sensitive tissues.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Animals
- Cyclic AMP/metabolism
- Enzyme Activation
- GTP-Binding Protein alpha Subunit, Gi2
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Gene Expression Regulation, Enzymologic
- Insulin/pharmacology
- Lysophospholipids/pharmacology
- Male
- Mice
- Mice, Transgenic
- Muscle, Skeletal/metabolism
- Phosphoserine
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Rats
- Receptor-Like Protein Tyrosine Phosphatases, Class 4
- Receptors, Cell Surface
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- J Tao
- Department of Molecular Pharmacology, University Medical Center, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|