1
|
Evaluation of release and pharmacokinetics of hexadecylphosphocholine (miltefosine) in phosphatidyldiglycerol-based thermosensitive liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183698. [PMID: 34283999 DOI: 10.1016/j.bbamem.2021.183698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
Hexadecylphosphocholine (HePC, Miltefosine) is a drug from the class of alkylphosphocholines with an antineoplastic and antiprotozoal activity. We previously reported that HePC uptake from thermosensitive liposomes (TSL) containing 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) into cancer cells is accelerated at mild hyperthermia (HT) resulting in increased cytotoxicity. In this study, we compared HePC release of different TSL formulations in serum. HePC showed rapid but incomplete release below the transition temperature (Tm) of investigated TSL formulations in serum. Short heating (5 min) to 42 °C increased HePC release from DPPG2-TSL (Tm = 41 °C) by a factor of two in comparison to body temperature (37 °C). Bovine serum albumin (BSA) induced HePC release from DPPG2-TSL comparable to serum. Furthermore, multilamellar vesicles (MLV) were capable to extract HePC from DPPG2-TSL in a concentration- and temperature-dependent manner. Repetitive exposure of DPPG2-TSL to MLV at 37 °C led to a fast initial release of HePC which slowed down after subsequent extraction cycles finally reaching approx. 50% HePC release. A pharmacokinetic study in rats revealed a biphasic pattern with an immediate clearance of approx. 50% HePC whereas the remaining 50% HePC showed a prolonged circulation time. We speculate that HePC located in the external leaflet of DPPG2-TSL is rapidly released upon contact with suitable biological acceptors. As demonstrated by MLV transfer experiments, asymmetric incorporation of HePC into the internal leaflet of DPPG2-TSL might improve HePC retention in presence of complex biological media and still give rise to HT-induced HePC release.
Collapse
|
2
|
El-Sheridy NA, El-Moslemany RM, Ramadan AA, Helmy MW, El-Khordagui LK. Enhancing the in vitro and in vivo activity of itraconazole against breast cancer using miltefosine-modified lipid nanocapsules. Drug Deliv 2021; 28:906-919. [PMID: 33960245 PMCID: PMC8131005 DOI: 10.1080/10717544.2021.1917728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Itraconazole (ITC), a well-tolerated antifungal drug, exerts multiple anticancer effects which justified its preclinical and clinical investigation as potential anti-cancer agent with reduced side effects. Enhancement of ITC anti-cancer efficacy would bring valuable benefits to patients. We propose herein lipid nanocapsules (LNCs) modified with a subtherapeutic dose of miltefosine (MFS) as a membrane bioactive amphiphilic additive (M-ITC-LNC) for the development of an ITC nanoformulation with enhanced anticancer activity compared with ITC solution (ITC-sol) and unmodified ITC-LNC. Both LNC formulations showed a relatively small size (43-46 nm) and high entrapment efficiency (>97%), though ITC release was more sustained by M-ITC-LNC. Cytotoxicity studies revealed significantly greater anticancer activity and selectivity of M-ITC-LNC for MCF-7 breast cancer cells compared with ITC-sol and ITC-LNC. This trend was substantiated by in vivo findings following a 14 day-treatment of murine mammary pad Ehrlich tumors. M-ITC-LNC showed the greatest enhancement of the ITC-induced tumor growth inhibition, proliferation, and necrosis. At the molecular level, the tumor content of Gli 1, caspase-3, and vascular endothelial growth factor verified superiority of M-ITC-LNC in enhancing the ITC antiangiogenic, apoptotic, and Hedgehog pathway inhibitory effects. Finally, histopathological and biochemical analysis indicated greater reduction of ITC systemic toxicity by M-ITC-LNC. Superior performance of M-ITC-LNC was attributed to the effect of MFS on the structural and release properties of LNC coupled with its distinct bioactivities. In conclusion, MFS-modified LNC provides a simple nanoplatform integrating the potentials of LNC and MFS for enhancing the chemotherapeutic efficacy of ITC and possibly other oncology drugs.
Collapse
Affiliation(s)
- Nabila A El-Sheridy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,European Egyptian Pharmaceutical Industries, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alyaa A Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Kostadinova A, Topouzova-Hristova T, Momchilova A, Tzoneva R, Berger MR. Antitumor Lipids--Structure, Functions, and Medical Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:27-66. [PMID: 26572975 DOI: 10.1016/bs.apcsb.2015.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell proliferation and metastasis are considered hallmarks of tumor progression. Therefore, efforts have been made to develop novel anticancer drugs that inhibit both the proliferation and the motility of tumor cells. Synthetic antitumor lipids (ATLs), which are chemically divided into two main classes, comprise (i) alkylphospholipids (APLs) and (ii) alkylphosphocholines (APCs). They represent a new entity of drugs with distinct antiproliferative properties in tumor cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell, instead, they incorporate into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signaling pathways. Recently, it has been shown that the most commonly studied APLs inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected and are potent sensitizers of conventional chemo- and radiotherapy, as well as of electrical field therapy. APLs resist catabolic degradation to a large extent, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. They are internalized in the cell membrane via raft domains and cause downstream reactions as inhibition of cell growth and migration, cell cycle arrest, actin stress fibers collapse, and apoptosis. This review summarizes the in vitro, in vivo, and clinical trials of most common ATLs and their mode of action at molecular and biochemical levels.
Collapse
Affiliation(s)
- Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Martin R Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit, Heidelberg, Germany
| |
Collapse
|
4
|
Bhardwaj A, Kumar L, Mehta S, Mehta A. Stimuli-sensitive Systems-an emerging delivery system for drugs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013. [DOI: 10.3109/21691401.2013.856016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Kapoor V, Zaharieva MM, Das SN, Berger MR. Erufosine simultaneously induces apoptosis and autophagy by modulating the Akt-mTOR signaling pathway in oral squamous cell carcinoma. Cancer Lett 2011; 319:39-48. [PMID: 22202640 DOI: 10.1016/j.canlet.2011.12.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 11/27/2022]
Abstract
We investigated the anticancer activity of erufosine in oral squamous carcinoma cell lines in terms of cell proliferation, colony formation, induction of autophagy/apoptosis, cell cycle and mTOR signaling pathway. Erufosine showed dose-dependent cytotoxicity in all cell lines, it induced autophagy as well as apoptosis, G2 cell cycle arrest and modulation of cyclin D1 expression. Further erufosine downregulated the phosphorylation of major components of mTOR pathway, like p-Akt at Ser473 and Thr308 residues, p-Raptor, p-mTOR, p-PRAS40 and its downstream substrates p-p70S6K and p-4EBP1 in a dose-dependent manner. The pre-treatment of tumor cells with p-mTOR siRNA increased cytotoxic effects of erufosine comparable to cisplatin but higher than rapamycin.
Collapse
Affiliation(s)
- Vaishali Kapoor
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
6
|
|
7
|
Orthmann A, Zeisig R, Koklič T, Šentjurc M, Wiesner B, Lemm M, Fichtner I. Impact of membrane properties on uptake and transcytosis of colloidal nanocarriers across an epithelial cell barrier model. J Pharm Sci 2010; 99:2423-33. [DOI: 10.1002/jps.22001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Eue I. Differential Uptake of Conventional and Polyethylene Glycol Modified-Alkylphosphocholine-Liposomes by J 774A.1 Murine Macrophages. Drug Deliv 2009; 5:265-73. [DOI: 10.3109/10717549809065757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Chakrabandhu K, Huault S, Hueber AO. Distinctive molecular signaling in triple-negative breast cancer cell death triggered by hexadecylphosphocholine (miltefosine). FEBS Lett 2008; 582:4176-84. [DOI: 10.1016/j.febslet.2008.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 10/27/2008] [Accepted: 11/14/2008] [Indexed: 11/27/2022]
|
10
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652049809006843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Sakai H, Horinouchi H, Tomiyama K, Ikeda E, Takeoka S, Kobayashi K, Tsuchida E. Hemoglobin-vesicles as oxygen carriers: influence on phagocytic activity and histopathological changes in reticuloendothelial system. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1079-88. [PMID: 11549600 PMCID: PMC1850444 DOI: 10.1016/s0002-9440(10)61783-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hemoglobin-vesicles (HbV) have been developed for use as artificial oxygen carriers (particle diameter, 250 nm) in which a purified Hb solution is encapsulated with a phospholipid bilayer membrane. The influence of HbV on the reticuloendothelial system was studied by carbon clearance measurements and histopathological examination. The HbV suspension ([Hb] = 10 g/dl) was intravenously infused in male Wistar rats at dose rates of 10 and 20 ml/kg, and the phagocytic activity was measured by monitoring the rate of carbon clearance at 8 hours and at 1, 3, 7, and 14 days after infusion. The phagocytic activity transiently decreased one day after infusion by about 40%, but it recovered and was enhanced at 3 days, showing a maximum of about twice the quiescent level at 7 days, and then returned to the normal value at 14 days. The initial transient decreased activity indicates a partly, but not completely, suppressed defensive function of the body. The succeeding increased phagocytic activity corresponds to the increased metabolism of HbV. The histopathological examination with anti-human Hb antibody, hematoxylin/eosin, and oil red O stainings showed that HbV was metabolized within 7 days. Hemosiderin was very slightly confirmed with Berlin blue staining at 3 and 7 days in liver and spleen, though they completely disappeared at 14 days, indicating that the heme metabolism, excretion or recycling of iron proceeded smoothly and iron deposition was minimal. Electron microscopic examination of the spleen and liver tissues clearly demonstrated the particles of HbV with a diameter of about 1/40 of red blood cells in capillaries, and in phagosomes as entrapped in the spleen macrophages and Kupffer cells one day after infusion. The vesicular structure could not be observed at 7 days. Even though the infusion of HbV modified the phagocytic activity for 2 weeks, it does not seem to cause any irreversible damage to the phagocytic organs. These results offer important information for evaluating the safety issues of HbV for clinical use.
Collapse
Affiliation(s)
- H Sakai
- Department of Polymer Chemistry, Waseda University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Arndt D, Zeisig R, Bechtel D, Fichtner I. Liposomal bleomycin: increased therapeutic activity and decreased pulmonary toxicity in mice. Drug Deliv 2001; 8:1-7. [PMID: 11280437 DOI: 10.1080/107175401300002685] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Conventional and sterically stabilized liposomes derived from phosphatidylcholine or the antitumor agents, hexadecylphosphocholine and octadecyl-(1,1-dimethyl-4-piperidino-4-yl)-phosphate, as bilayer forming constituents, containing bleomycin, were developed and tested. Liposomal encapsulation of bleomycin enhanced strongly the antitumor activity against P388 leukemia and the Lewis lung carcinoma. This effect was clearly dependent on the size and lipid composition of the bleomycin-containing liposomes. The therapeutic effects were nearly equal for liposomal and free bleomycin in the B16 melanoma. The partial replacement of phosphatidylcholine by alkylphospholipids and the inclusion of polyethylene glycol modified lipids for sterical stabilization did not further improve the therapeutic efficacy but increased, in some cases, the toxicity of liposomes. Bleomycin-induced lung injury was not observed if liposomal bleomycin was administered.
Collapse
Affiliation(s)
- D Arndt
- Max Delbrück Center for Medicine for Molecular Medicine, Berlin, Germany.
| | | | | | | |
Collapse
|
13
|
Arndt D, Zeisig R, Fichtner I, Teppke AD, Fahr A. Pharmacokinetics of sterically stabilized hexadecylphosphocholine liposomes versus conventional liposomes and free hexadecylphosphocholine in tumor-free and human breast carcinoma bearing mice. Breast Cancer Res Treat 1999; 58:71-80. [PMID: 10634520 DOI: 10.1023/a:1006224611505] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The pharmacokinetics of free and different liposomal formulations of hexadecylphosphocholine (HPC) was investigated in tumor-bearing (human mammary tumor MaTu) and tumor-free mice after intravenous and intraperitoneal administration. The levels of HPC were evaluated at different times in serum, normal tissues, and tumor. The purpose was to test the hypothesis that the enhanced therapeutic efficacy of sterically stabilized HPC liposomes in comparison to conventional vesicles and free HPC is due to its pharmacokinetics. Conventional non-compartmental pharmacokinetic analysis and an elaborate three- and four-compartmental model were used for explaining the experimental data. The serum levels of HPC obtained with sterically stabilized liposomes were only consistently higher in comparison to conventional vesicles and free HPC in the first 4 h. In the xenografted MaTu carcinoma, the differences of the HPC content between the different groups are unexpectedly low and do not reflect the high therapeutic activity [5] of sterically stabilized HPC liposomes. Detailed analysis shows that the liposomally encapsulated drug displays a modified pharmacokinetic behavior, which may also involve lymphatic absorption of the liposomal drug.
Collapse
Affiliation(s)
- D Arndt
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | |
Collapse
|
14
|
Zeisig R, Arndt D, Stahn R, Fichtner I. Physical properties and pharmacological activity in vitro and in vivo of optimised liposomes prepared from a new cancerostatic alkylphospholipid. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1414:238-48. [PMID: 9804964 DOI: 10.1016/s0005-2736(98)00171-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liposomes from octadecyl-(1,1-dimethyl-4-piperidino-4-yl)-phosphate (OPP), a new alkylphospholipid derivative with an improved cancerostatic activity, were prepared for the first time and the activity in vitro and in vivo was characterised. The formation of liposomes (MLV, SUV and LUVET) differing in cholesterol content, charge, and sterical stabilisation is possible without serious problems, despite the lysolipid-like structure of the OPP. Liposomes with a low amount of cholesterol and with PEG2000DSPE-coating were the most stable OPP liposomes, both in buffer and in serum. The cytotoxicity of micellar or liposomal OPP against breast cancer cell lines in vitro was in the range of 20-60 microM. The cytotoxicity of the liposomal formulation was inversely related to the content of cholesterol, whereas the sterical stabilisation and/or the incorporation of a positive charge had only a very moderate modulating effect on the inhibition of cell proliferation. The strongest antitumour effect on the xenotransplanted breast cancer MT-3 in vivo was obtained with sterically stabilised OPP liposomes with low CH content. The beneficial therapeutic effect of these liposomes was accompanied by better tolerance and a significant inhibition of haemolysis compared to micellar OPP.
Collapse
Affiliation(s)
- R Zeisig
- Phospholipids Department, Max Delbrück Centre for Molecular Medicine, R-Rössle-Str. 10, 13122 Berlin-Buch, Germany.
| | | | | | | |
Collapse
|
15
|
Literature Alerts. J Microencapsul 1998. [DOI: 10.3109/02652049809006856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|