1
|
Evtushenko EV, Gatzkaya SS, Stepochkin PI, Vershinin AV. The Parental Centromere Sizes Remain Unaltered in Allopolyploid Wheat-Rye Hybrids. Cytogenet Genome Res 2024:1-10. [PMID: 39353403 DOI: 10.1159/000541705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION In chromatin nucleosomes, the presence - instead of canonical histone H3 - of its variant, CENH3 (in plants), is considered the most reliable marker of the location of centromeres. In this study, we investigated the effects of distant hybridization and maternal cytoplasm on centromere size in allopolyploid hybrids between wheat and rye as compared to their parental forms. METHODS Centromere sizes were measured using 2D images of CENH3 fluorescent signals on interphase nuclei obtained from parental forms and a triticale hybrid (genomic formula AABBBRR), in which the maternal form is wheat and secalotriticum hybrids (genomic formula RRAABBB) in which the maternal form is rye. For measurements, we selected the largest spherical nuclei with large nucleoli in the late G2 phase, in which most of the loading of CENH3 into centromeric chromatin takes place. RESULTS When processing the results of the measurement of centromere sizes in the hybrids, the obtained values were compared with those expected for the case of no change in centromere sizes in any of the parental sets of chromosomes. We found no significant differences between expected and measured values. CONCLUSION We believe that, in the case of allopolyploid hybrids between wheat and rye, centromeres of chromosomes from the parental species retain the sizes formed during evolution. This conservatism may be promoted by the high similarity in the structure of the CENH3 molecules between these species.
Collapse
Affiliation(s)
- Elena V Evtushenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| | - Sima S Gatzkaya
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| | - Petr I Stepochkin
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russian Federation
| | - Alexander V Vershinin
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|
2
|
Hu G, Grover CE, Vera DL, Lung PY, Girimurugan SB, Miller ER, Conover JL, Ou S, Xiong X, Zhu D, Li D, Gallagher JP, Udall JA, Sui X, Zhang J, Bass HW, Wendel JF. Evolutionary Dynamics of Chromatin Structure and Duplicate Gene Expression in Diploid and Allopolyploid Cotton. Mol Biol Evol 2024; 41:msae095. [PMID: 38758089 PMCID: PMC11140268 DOI: 10.1093/molbev/msae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.
Collapse
Affiliation(s)
- Guanjing Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated, Chinese Academy of Agricultural Sciences, Institute of Cotton Research, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Daniel L Vera
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | | | - Emma R Miller
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Justin L Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Shujun Ou
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Dongming Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Joseph P Gallagher
- Forage Seed and Cereal Research Unit, USDA/Agricultural Research Service, Corvallis, OR 97331, USA
| | - Joshua A Udall
- Crop Germplasm Research Unit, USDA/Agricultural Research Service, College Station, TX 77845, USA
| | - Xin Sui
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Hank W Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Alisawi O, Richert-Pöggeler KR, Heslop-Harrison J(P, Schwarzacher T. The nature and organization of satellite DNAs in Petunia hybrida, related, and ancestral genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1232588. [PMID: 37868307 PMCID: PMC10587573 DOI: 10.3389/fpls.2023.1232588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
Introduction The garden petunia, Petunia hybrida (Solanaceae) is a fertile, diploid, annual hybrid species (2n=14) originating from P. axillaris and P. inflata 200 years ago. To understand the recent evolution of the P. hybrida genome, we examined tandemly repeated or satellite sequences using bioinformatic and molecular cytogenetic analysis. Methods Raw reads from available genomic assemblies and survey sequences of P. axillaris N (PaxiN), P. inflata S6, (PinfS6), P. hybrida (PhybR27) and the here sequenced P. parodii S7 (PparS7) were used for graph and k-mer based cluster analysis of TAREAN and RepeatExplorer. Analysis of repeat specific monomer lengths and sequence heterogeneity of the major tandem repeat families with more than 0.01% genome proportion were complemented by fluorescent in situ hybridization (FISH) using consensus sequences as probes to chromosomes of all four species. Results Seven repeat families, PSAT1, PSAT3, PSAT4, PSAT5 PSAT6, PSAT7 and PSAT8, shared high consensus sequence similarity and organisation between the four genomes. Additionally, many degenerate copies were present. FISH in P. hybrida and in the three wild petunias confirmed the bioinformatics data and gave corresponding signals on all or some chromosomes. PSAT1 is located at the ends of all chromosomes except the 45S rDNA bearing short arms of chromosomes II and III, and we classify it as a telomere associated sequence (TAS). It is the most abundant satellite repeat with over 300,000 copies, 0.2% of the genomes. PSAT3 and the variant PSAT7 are located adjacent to the centromere or mid-arm of one to three chromosome pairs. PSAT5 has a strong signal at the end of the short arm of chromosome III in P. axillaris and P.inflata, while in P. hybrida additional interstitial sites were present. PSAT6 is located at the centromeres of chromosomes II and III. PSAT4 and PSAT8 were found with only short arrays. Discussion These results demonstrate that (i) repeat families occupy distinct niches within chromosomes, (ii) they differ in the copy number, cluster organization and homogenization events, and that (iii) the recent genome hybridization in breeding P. hybrida preserved the chromosomal position of repeats but affected the copy number of repetitive DNA.
Collapse
Affiliation(s)
- Osamah Alisawi
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf, Iraq
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
| | - Katja R. Richert-Pöggeler
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - J.S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Zhang F, Chen F, Schwarzacher T, Heslop-Harrison JS, Teng N. The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes. ANNALS OF BOTANY 2023; 131:215-228. [PMID: 35639931 PMCID: PMC9904347 DOI: 10.1093/aob/mcac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Tandemly repeated DNA and transposable elements represent most of the DNA in higher plant genomes. High-throughput sequencing allows a survey of the DNA in a genome, but whole-genome assembly can miss a substantial fraction of highly repeated sequence motifs. Chrysanthemum nankingense (2n = 2x = 18; genome size = 3.07 Gb; Asteraceae), a diploid reference for the many auto- and allopolyploids in the genus, was considered as an ancestral species and serves as an ornamental plant and high-value food. We aimed to characterize the major repetitive DNA motifs, understand their structure and identify key features that are shaped by genome and sequence evolution. METHODS Graph-based clustering with RepeatExplorer was used to identify and classify repetitive motifs in 2.14 millions of 250-bp paired-end Illumina reads from total genomic DNA of C. nankingense. Independently, the frequency of all canonical motifs k-bases long was counted in the raw read data and abundant k-mers (16, 21, 32, 64 and 128) were extracted and assembled to generate longer contigs for repetitive motif identification. For comparison, long terminal repeat retrotransposons were checked in the published C. nankingense reference genome. Fluorescent in situ hybridization was performed to show the chromosomal distribution of the main types of repetitive motifs. KEY RESULTS Apart from rDNA (0.86 % of the total genome), a few microsatellites (0.16 %), and telomeric sequences, no highly abundant tandem repeats were identified. There were many transposable elements: 40 % of the genome had sequences with recognizable domains related to transposable elements. Long terminal repeat retrotransposons showed widespread distribution over chromosomes, although different sequence families had characteristic features such as abundance at or exclusion from centromeric or subtelomeric regions. Another group of very abundant repetitive motifs, including those most identified as low-complexity sequences (9.07 %) in the genome, showed no similarity to known sequence motifs or tandemly repeated elements. CONCLUSIONS The Chrysanthemum genome has an unusual structure with a very low proportion of tandemly repeated sequences (~1.02 %) in the genome, and a high proportion of low-complexity sequences, most likely degenerated remains of transposable elements. Identifying the presence, nature and genomic organization of major genome fractions enables inference of the evolutionary history of sequences, including degeneration and loss, critical to understanding biodiversity and diversification processes in the genomes of diploid and polyploid Chrysanthemum, Asteraceae and plants more widely.
Collapse
Affiliation(s)
- Fengjiao Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | | |
Collapse
|
5
|
Salina E, Muterko A, Kiseleva A, Liu Z, Korol A. Dissection of Structural Reorganization of Wheat 5B Chromosome Associated With Interspecies Recombination Suppression. FRONTIERS IN PLANT SCIENCE 2022; 13:884632. [PMID: 36340334 PMCID: PMC9629394 DOI: 10.3389/fpls.2022.884632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 06/16/2023]
Abstract
Chromosomal rearrangements that lead to recombination suppression can have a significant impact on speciation, and they are also important for breeding. The regions of recombination suppression in wheat chromosome 5B were identified based on comparisons of the 5B map of a cross between the Chinese Spring (CS) variety of hexaploid wheat and CS-5Bdic (genotype CS with 5B substituted with its homologue from tetraploid Triticum dicoccoides) with several 5B maps of tetraploid and hexaploid wheat. In total, two regions were selected in which recombination suppression occurred in cross CS × CS-5Bdic when compared with other maps: one on the short arm, 5BS_RS, limited by markers BS00009810/BS00022336, and the second on the long arm, 5BL_RS, between markers Ra_c10633_2155 and BS00087043. The regions marked as 5BS_RS and 5BL_RS, with lengths of 5 Mb and 3.6 Mb, respectively, were mined from the 5B pseudomolecule of CS and compared to the homoeologous regions (7.6 and 3.8 Mb, respectively) of the 5B pseudomolecule of Zavitan (T. dicoccoides). It was shown that, in the case of 5BS_RS, the local heterochromatin islands determined by the satellite DNA (119.2) and transposable element arrays, as well as the dissimilarity caused by large insertions/deletions (chromosome rearrangements) between 5BSs aestivum/dicoccoides, are likely the key determinants of recombination suppression in the region. Two major and two minor segments with significant loss of similarity were recognized within the 5BL_RS region. It was shown that the loss of similarity, which can lead to suppression of recombination in the 5BL_RS region, is caused by chromosomal rearrangements, driven by the activity of mobile genetic elements (both DNA transposons and long terminal repeat retrotransposons) and their divergence during evolution. It was noted that the regions marked as 5BS_RS and 5BL_RS are associated with chromosomal rearrangements identified earlier by С-banding analysis of intraspecific polymorphism of tetraploid emmer wheat. The revealed divergence in 5BS_RS and 5BL_RS may be a consequence of interspecific hybridization, plant genetic adaptation, or both.
Collapse
Affiliation(s)
- Elena Salina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - Alexander Muterko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Antonina Kiseleva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - Zhiyong Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
6
|
Evtushenko EV, Elisafenko EA, Gatzkaya SS, Schubert V, Houben A, Vershinin AV. Expression of Two Rye CENH3 Variants and Their Loading into Centromeres. PLANTS (BASEL, SWITZERLAND) 2021; 10:2043. [PMID: 34685852 PMCID: PMC8538535 DOI: 10.3390/plants10102043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022]
Abstract
Gene duplication and the preservation of both copies during evolution is an intriguing evolutionary phenomenon. Their preservation is related to the function they perform. The central component of centromere specification and function is the centromere-specific histone H3 (CENH3). Some cereal species (maize, rice) have one copy of the gene encoding this protein, while some (wheat, barley, rye) have two. Therefore, they represent a good model for a comparative study of the functional activity of the duplicated CENH3 genes and their protein products. We determined the organization of the CENH3 locus in rye (Secale cereale L.) and identified the functional motifs in the vicinity of the CENH3 genes. We compared the expression of these genes at different stages of plant development and the loading of their products, the CENH3 proteins, into nucleosomes during mitosis and meiosis. Using extended chromatin fibers, we revealed patterns of loading CENH3 proteinsinto polynucleosomal domains in centromeric chromatin. Our results indicate no sign of neofunctionalization, subfunctionalization or specialization in the gene copies. The influence of negative selection on the coding part of the genes led them to preserve their conserved function. The advantage of having two functional genes appears as the gene-dosage effect.
Collapse
Affiliation(s)
- Elena V. Evtushenko
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (E.V.E.); (E.A.E.); (S.S.G.)
| | - Evgeny A. Elisafenko
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (E.V.E.); (E.A.E.); (S.S.G.)
- Institute of Cytology and Genetics, SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia
| | - Sima S. Gatzkaya
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (E.V.E.); (E.A.E.); (S.S.G.)
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany; (V.S.); (A.H.)
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany; (V.S.); (A.H.)
| | - Alexander V. Vershinin
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (E.V.E.); (E.A.E.); (S.S.G.)
| |
Collapse
|
7
|
Garrido-Ramos MA. The Genomics of Plant Satellite DNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:103-143. [PMID: 34386874 DOI: 10.1007/978-3-030-74889-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
Collapse
|
8
|
Barbier J, Vaillant C, Volff JN, Brunet FG, Audit B. Coupling between Sequence-Mediated Nucleosome Organization and Genome Evolution. Genes (Basel) 2021; 12:genes12060851. [PMID: 34205881 PMCID: PMC8228248 DOI: 10.3390/genes12060851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
The nucleosome is a major modulator of DNA accessibility to other cellular factors. Nucleosome positioning has a critical importance in regulating cell processes such as transcription, replication, recombination or DNA repair. The DNA sequence has an influence on the position of nucleosomes on genomes, although other factors are also implicated, such as ATP-dependent remodelers or competition of the nucleosome with DNA binding proteins. Different sequence motifs can promote or inhibit the nucleosome formation, thus influencing the accessibility to the DNA. Sequence-encoded nucleosome positioning having functional consequences on cell processes can then be selected or counter-selected during evolution. We review the interplay between sequence evolution and nucleosome positioning evolution. We first focus on the different ways to encode nucleosome positions in the DNA sequence, and to which extent these mechanisms are responsible of genome-wide nucleosome positioning in vivo. Then, we discuss the findings about selection of sequences for their nucleosomal properties. Finally, we illustrate how the nucleosome can directly influence sequence evolution through its interactions with DNA damage and repair mechanisms. This review aims to provide an overview of the mutual influence of sequence evolution and nucleosome positioning evolution, possibly leading to complex evolutionary dynamics.
Collapse
Affiliation(s)
- Jérémy Barbier
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
| | - Cédric Vaillant
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
- Correspondence: (J.-N.V.); (B.A.)
| | - Frédéric G. Brunet
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Univ Claude Bernard Lyon 1, F-69364 Lyon, France; (J.B.); (F.G.B.)
| | - Benjamin Audit
- Laboratoire de Physique, Univ Lyon, ENS de Lyon, CNRS, F-69342 Lyon, France;
- Correspondence: (J.-N.V.); (B.A.)
| |
Collapse
|
9
|
Vondrak T, Ávila Robledillo L, Novák P, Koblížková A, Neumann P, Macas J. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:484-500. [PMID: 31559657 PMCID: PMC7004042 DOI: 10.1111/tpj.14546] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 05/21/2023]
Abstract
Amplification of monomer sequences into long contiguous arrays is the main feature distinguishing satellite DNA from other tandem repeats, yet it is also the main obstacle in its investigation because these arrays are in principle difficult to assemble. Here we explore an alternative, assembly-free approach that utilizes ultra-long Oxford Nanopore reads to infer the length distribution of satellite repeat arrays, their association with other repeats and the prevailing sequence periodicities. Using the satellite DNA-rich legume plant Lathyrus sativus as a model, we demonstrated this approach by analyzing 11 major satellite repeats using a set of nanopore reads ranging from 30 to over 200 kb in length and representing 0.73× genome coverage. We found surprising differences between the analyzed repeats because only two of them were predominantly organized in long arrays typical for satellite DNA. The remaining nine satellites were found to be derived from short tandem arrays located within LTR-retrotransposons that occasionally expanded in length. While the corresponding LTR-retrotransposons were dispersed across the genome, this array expansion occurred mainly in the primary constrictions of the L. sativus chromosomes, which suggests that these genome regions are favourable for satellite DNA accumulation.
Collapse
Affiliation(s)
- Tihana Vondrak
- Biology CentreCzech Academy of SciencesBranišovská 31České BudějoviceCZ‐37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Laura Ávila Robledillo
- Biology CentreCzech Academy of SciencesBranišovská 31České BudějoviceCZ‐37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Petr Novák
- Biology CentreCzech Academy of SciencesBranišovská 31České BudějoviceCZ‐37005Czech Republic
| | - Andrea Koblížková
- Biology CentreCzech Academy of SciencesBranišovská 31České BudějoviceCZ‐37005Czech Republic
| | - Pavel Neumann
- Biology CentreCzech Academy of SciencesBranišovská 31České BudějoviceCZ‐37005Czech Republic
| | - Jiří Macas
- Biology CentreCzech Academy of SciencesBranišovská 31České BudějoviceCZ‐37005Czech Republic
| |
Collapse
|
10
|
Liu Q, Li X, Zhou X, Li M, Zhang F, Schwarzacher T, Heslop-Harrison JS. The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads. BMC PLANT BIOLOGY 2019; 19:226. [PMID: 31146681 PMCID: PMC6543597 DOI: 10.1186/s12870-019-1769-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/09/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Repetitive DNA motifs - not coding genetic information and repeated millions to hundreds of times - make up the majority of many genomes. Here, we identify the nature, abundance and organization of all the repetitive DNA families in oats (Avena sativa, 2n = 6x = 42, AACCDD), a recognized health-food, and its wild relatives. RESULTS Whole-genome sequencing followed by k-mer and RepeatExplorer graph-based clustering analyses enabled assessment of repetitive DNA composition in common oat and its wild relatives' genomes. Fluorescence in situ hybridization (FISH)-based karyotypes are developed to understand chromosome and repetitive sequence evolution of common oat. We show that some 200 repeated DNA motifs make up 70% of the Avena genome, with less than 20 families making up 20% of the total. Retroelements represent the major component, with Ty3/Gypsy elements representing more than 40% of all the DNA, nearly three times more abundant than Ty1/Copia elements. DNA transposons are about 5% of the total, while tandemly repeated, satellite DNA sequences fit into 55 families and represent about 2% of the genome. The Avena species are monophyletic, but both bioinformatic comparisons of repeats in the different genomes, and in situ hybridization to metaphase chromosomes from the hexaploid species, shows that some repeat families are specific to individual genomes, or the A and D genomes together. Notably, there are terminal regions of many chromosomes showing different repeat families from the rest of the chromosome, suggesting presence of translocations between the genomes. CONCLUSIONS The relatively small number of repeat families shows there are evolutionary constraints on their nature and amplification, with mechanisms leading to homogenization, while repeat characterization is useful in providing genome markers and to assist with future assemblies of this large genome (c. 4100 Mb in the diploid). The frequency of inter-genomic translocations suggests optimum strategies to exploit genetic variation from diploid oats for improvement of the hexaploid may differ from those used widely in bread wheat.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiaoyu Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangying Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingzhi Li
- Genepioneer Biotechnologies Co. Ltd., Nanjing, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Trude Schwarzacher
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - John Seymour Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
11
|
Garrido-Ramos MA. Satellite DNA: An Evolving Topic. Genes (Basel) 2017; 8:genes8090230. [PMID: 28926993 PMCID: PMC5615363 DOI: 10.3390/genes8090230] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.
Collapse
Affiliation(s)
- Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
12
|
Palacios-Gimenez OM, Dias GB, de Lima LG, Kuhn GCES, Ramos É, Martins C, Cabral-de-Mello DC. High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci Rep 2017; 7:6422. [PMID: 28743997 PMCID: PMC5527012 DOI: 10.1038/s41598-017-06822-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
Satellite DNAs (satDNAs) constitute large portion of eukaryote genomes, comprising non-protein-coding sequences tandemly repeated. They are mostly found in heterochromatic regions of chromosomes such as around centromere or near telomeres, in intercalary heterochromatin, and often in non-recombining segments of sex chromosomes. We examined the satellitome in the cricket Eneoptera surinamensis (2n = 9, neo-X1X2Y, males) to characterize the molecular evolution of its neo-sex chromosomes. To achieve this, we analyzed illumina reads using graph-based clustering and complementary analyses. We found an unusually high number of 45 families of satDNAs, ranging from 4 bp to 517 bp, accounting for about 14% of the genome and showing different modular structures and high diversity of arrays. FISH mapping revealed that satDNAs are located mostly in C-positive pericentromeric regions of the chromosomes. SatDNAs enrichment was also observed in the neo-sex chromosomes in comparison to autosomes. Especially astonishing accumulation of satDNAs loci was found in the highly differentiated neo-Y, including 39 satDNAs over-represented in this chromosome, which is the greatest satDNAs diversity yet reported for sex chromosomes. Our results suggest possible involvement of satDNAs in genome increasing and in molecular differentiation of the neo-sex chromosomes in this species, contributing to the understanding of sex chromosome composition and evolution in Orthoptera.
Collapse
Affiliation(s)
| | - Guilherme Borges Dias
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo Gomes de Lima
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Érica Ramos
- UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Departamento de Morfologia, Botucatu, São Paulo, Brazil
| | - Cesar Martins
- UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Departamento de Morfologia, Botucatu, São Paulo, Brazil
| | | |
Collapse
|
13
|
Ichikawa Y, Nishimura Y, Kurumizaka H, Shimizu M. Nucleosome organization and chromatin dynamics in telomeres. Biomol Concepts 2016; 6:67-75. [PMID: 25720088 DOI: 10.1515/bmc-2014-0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/01/2014] [Indexed: 11/15/2022] Open
Abstract
Telomeres are DNA-protein complexes located at the ends of linear eukaryotic chromosomes, and are essential for chromosome stability and maintenance. In most organisms, telomeres consist of tandemly repeated sequences of guanine-clusters. In higher eukaryotes, most of the telomeric repeat regions are tightly packaged into nucleosomes, even though telomeric repeats act as nucleosome-disfavoring sequences. Although telomeres were considered to be condensed heterochromatin structures, recent studies revealed that the chromatin structures in telomeres are actually dynamic. The dynamic properties of telomeric chromatin are considered to be important for the structural changes between the euchromatic and heterochromatic states during the cell cycle and in cellular differentiation. We propose that the nucleosome-disfavoring property of telomeric repeats is a crucial determinant for the lability of telomeric nucleosomes, and provides a platform for chromatin dynamics in telomeres. Furthermore, we discuss the influences of telomeric components on the nucleosome organization and chromatin dynamics in telomeres.
Collapse
|
14
|
Inner Kinetochore Protein Interactions with Regional Centromeres of Fission Yeast. Genetics 2015; 201:543-61. [PMID: 26275423 PMCID: PMC4596668 DOI: 10.1534/genetics.115.179788] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/10/2015] [Indexed: 01/19/2023] Open
Abstract
Centromeres of the fission yeast Schizosaccharomyces pombe lack the highly repetitive sequences that make most other "regional" centromeres refractory to analysis. To map fission yeast centromeres, we applied H4S47C-anchored cleavage mapping and native and cross-linked chromatin immunoprecipitation with paired-end sequencing. H3 nucleosomes are nearly absent from the central domain, which is occupied by centromere-specific H3 (cenH3 or CENP-A) nucleosomes with two H4s per particle that are mostly unpositioned and are more widely spaced than nucleosomes elsewhere. Inner kinetochore proteins CENP-A, CENP-C, CENP-T, CENP-I, and Scm3 are highly enriched throughout the central domain except at tRNA genes, with no evidence for preferred kinetochore assembly sites. These proteins are weakly enriched and less stably incorporated in H3-rich heterochromatin. CENP-A nucleosomes protect less DNA from nuclease digestion than H3 nucleosomes, while CENP-T protects a range of fragment sizes. Our results suggest that CENP-T particles occupy linkers between CENP-A nucleosomes and that classical regional centromeres differ from other centromeres by the absence of CENP-A nucleosome positioning.
Collapse
|
15
|
Garrido-Ramos MA. Satellite DNA in Plants: More than Just Rubbish. Cytogenet Genome Res 2015; 146:153-170. [PMID: 26202574 DOI: 10.1159/000437008] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 11/19/2022] Open
Abstract
For decades, satellite DNAs have been the hidden part of genomes. Initially considered as junk DNA, there is currently an increasing appreciation of the functional significance of satellite DNA repeats and of their sequences. Satellite DNA families accumulate in the heterochromatin in different parts of the eukaryotic chromosomes, mainly in pericentromeric and subtelomeric regions, but they also span the functional centromere. Tandem repeat sequences may spread from subtelomeric to interstitial loci, leading to the formation of chromosome-specific loci or to the accumulation in equilocal sites in different chromosomes. They also appear as the main components of the heterochromatin in the sex-specific region of sex chromosomes. Satellite DNA, required for chromosome organization, also plays a role in pairing and segregation. Some satellite repeats are transcribed and can participate in the formation and maintenance of heterochromatin structure and in the modulation of gene expression. In addition to the identification of the different satellite DNA families, their characteristics and location, we are interested in determining their impact on the genomes, by identifying the mechanisms leading to their appearance and amplification as well as in understanding how they change over time, the factors affecting these changes, and the influence exerted by the evolutionary history of the organisms. On the other hand, satellite DNA sequences are rapidly evolving sequences that may cause reproductive barriers between organisms and promote speciation. The accumulation of experimental data collected in recent years and the emergence of new approaches based on next-generation sequencing and high-throughput genome analysis are opening new perspectives that are changing our understanding of satellite DNA. This review examines recent data to provide a timely update on the overall information gathered about this part of the genome, focusing on the advances in the knowledge of its origin, its evolution, and its potential functional roles.
Collapse
|
16
|
Barghini E, Natali L, Cossu RM, Giordani T, Pindo M, Cattonaro F, Scalabrin S, Velasco R, Morgante M, Cavallini A. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol Evol 2015; 6:776-91. [PMID: 24671744 PMCID: PMC4007544 DOI: 10.1093/gbe/evu058] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome.
Collapse
Affiliation(s)
- Elena Barghini
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Heslop-Harrison JS(P, Schwarzacher T. Nucleosomes and centromeric DNA packaging. Proc Natl Acad Sci U S A 2013; 110:19974-5. [PMID: 24282300 PMCID: PMC3864337 DOI: 10.1073/pnas.1319945110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
18
|
The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proc Natl Acad Sci U S A 2013; 110:E4875-83. [PMID: 24191062 DOI: 10.1073/pnas.1319548110] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Plant and animal centromeres comprise megabases of highly repeated satellite sequences, yet centromere function can be specified epigenetically on single-copy DNA by the presence of nucleosomes containing a centromere-specific variant of histone H3 (cenH3). We determined the positions of cenH3 nucleosomes in rice (Oryza sativa), which has centromeres composed of both the 155-bp CentO satellite repeat and single-copy non-CentO sequences. We find that cenH3 nucleosomes protect 90-100 bp of DNA from micrococcal nuclease digestion, sufficient for only a single wrap of DNA around the cenH3 nucleosome core. cenH3 nucleosomes are translationally phased with 155-bp periodicity on CentO repeats, but not on non-CentO sequences. CentO repeats have an ∼10-bp periodicity in WW dinucleotides and in micrococcal nuclease cleavage, providing evidence for rotational phasing of cenH3 nucleosomes on CentO and suggesting that satellites evolve for translational and rotational stabilization of centromeric nucleosomes.
Collapse
|
19
|
Ichikawa Y, Morohashi N, Nishimura Y, Kurumizaka H, Shimizu M. Telomeric repeats act as nucleosome-disfavouring sequences in vivo. Nucleic Acids Res 2013; 42:1541-52. [PMID: 24174540 PMCID: PMC3919577 DOI: 10.1093/nar/gkt1006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Telomeric DNAs consist of tandem repeats of G-clusters such as TTAGGG and TG1-3, which are the human and yeast repeat sequences, respectively. In the yeast Saccharomyces cerevisiae, the telomeric repeats are non-nucleosomal, whereas in humans, they are organized in tightly packaged nucleosomes. However, previous in vitro studies revealed that the binding affinities of human and yeast telomeric repeat sequences to histone octamers in vitro were similar, which is apparently inconsistent with the differences in the human and yeast telomeric chromatin structures. To further investigate the relationship between telomeric sequences and chromatin structure, we examined the effect of telomeric repeats on the formation of positioned nucleosomes in vivo by indirect end-label mapping, primer extension mapping and nucleosome repeat analyses, using a defined minichromosome in yeast cells. We found that the human and yeast telomeric repeat sequences both disfavour nucleosome assembly and alter nucleosome positioning in the yeast minichromosome. We further demonstrated that the G-clusters in the telomeric repeats are required for the nucleosome-disfavouring properties. Thus, our results suggest that this inherent structural feature of the telomeric repeat sequences is involved in the functional dynamics of the telomeric chromatin structure.
Collapse
Affiliation(s)
- Yuichi Ichikawa
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering/RISE, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8640, Japan, Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan and Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | |
Collapse
|
20
|
Nishida H, Kondo S, Matsumoto T, Suzuki Y, Yoshikawa H, Taylor TD, Sugiyama J. Characteristics of nucleosomes and linker DNA regions on the genome of the basidiomycete Mixia osmundae revealed by mono- and dinucleosome mapping. Open Biol 2013; 2:120043. [PMID: 22724063 PMCID: PMC3376729 DOI: 10.1098/rsob.120043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/07/2012] [Indexed: 02/02/2023] Open
Abstract
We present findings on the nucleosomal arrangement in the genome of the basidiomycete Mixia osmundae, focusing on nucleosomal linker DNA regions. We have assembled the genomic sequences of M. osmundae, annotated genes and transcription start sites (TSSs) on the genome, and created a detailed nucleosome map based on sequencing mono- and dinucleosomal DNA fragments. The nucleosomal DNA length distribution of M. osmundae is similar to that of the filamentous ascomycete Aspergillus fumigatus, but differs from that of ascomycetous yeasts, strongly suggesting that nucleosome positioning has evolved primarily through neutral drift in fungal species. We found clear association between dinucleotide frequencies and linker DNA regions mapped as the midpoints of dinucleosomes. We also describe a unique pattern found in the nucleosome-depleted region upstream of the TSS observed in the dinucleosome map and the precursor status of dinucleosomes prior to the digestion into mononucleosomes by comparing the mono- and dinucleosome maps. We demonstrate that observation of dinucleosomes as well as of mononucleosomes is valuable in investigating nucleosomal organization of the genome.
Collapse
Affiliation(s)
- Hiromi Nishida
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Levitsky VG, Babenko VN, Vershinin AV. The roles of the monomer length and nucleotide context of plant tandem repeats in nucleosome positioning. J Biomol Struct Dyn 2013; 32:115-26. [PMID: 23384242 DOI: 10.1080/07391102.2012.755796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Similar to regularly spaced nucleosomes in chromatin, long tandem DNA arrays are composed of regularly alternating monomers that have almost identical primary DNA structures. Such a similarity in the structural organization makes these arrays especially interesting for studying the role of intrinsic DNA preferences in nucleosome positioning. We have studied the nucleosome formation potential of DNA tandem repeat families with different monomer lengths (ML). In total, 165 plant tandem repeat families from the PlantSat database (http://w3lamc.umbr.cas.cz/PlantSat/) were divided into two classes based on the number of nucleosome repeats in one DNA monomer. For predicting nucleosome formation potential, we developed the Phase method, which combines the advantages of multiple bioinformatics models. The Phase method was able to distinguish interfamily differences and intrafamily monomer variation and identify the influence of nucleotide context on nucleosome formation potential. Three main types of nucleosome arrangement in DNA tandem repeat arrays--regular, partially regular (partial), and flexible--were distinguished among a great variety of Phase profiles. The regular type, in which all nucleosomes of the monomer array are positioned in a context-dependent manner, is the most representative type of the class 1 families, with ML equal to or a multiple of the nucleosome repeat length (NRL). In the partially regular type, nucleotide context influences the positioning of only a subset of nucleosomes. The influence of the nucleotide context on nucleosome positioning has the least effect in the flexible type, which contains the greatest number of families (65). The majority of these families belong to class 2 and have nonmultiple ML to NRL ratios.
Collapse
Affiliation(s)
- Victor G Levitsky
- a Laboratory of Molecular Genetics Systems , Institute of Cytology and Genetics , Novosibirsk , 630090 , Russia
| | | | | |
Collapse
|
22
|
Vaquero-Sedas MI, Vega-Palas MA. DNA methylation at tobacco telomeric sequences. PLANT MOLECULAR BIOLOGY 2011; 77:529-31; author reply 533-6. [PMID: 22016003 DOI: 10.1007/s11103-011-9833-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
Majerová et al. (Plant Mol Biol, 2011) have recently reported that a considerable fraction of cytosines at tobacco telomeres is methylated. Although the data presented in this report indicate that tobacco telomeric sequences undergo certain levels of DNA methylation, it is not clear whether the methylated sequences are at telomeres, at internal chromosomal loci or at both.
Collapse
|
23
|
Cuacos M, González-García M, González-Sánchez M, Puertas MJ, Vega JM. Activation of rye 5RL neocentromere by an organophosphate pesticide. Cytogenet Genome Res 2011; 134:151-62. [PMID: 21555880 DOI: 10.1159/000325744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2010] [Indexed: 01/13/2023] Open
Abstract
An interstitial constriction located on the long arm of rye chromosome 5R (5RL) shows neocentromeric activity at meiosis. In some meiocytes this region is strongly stretched orienting with the true centromere to opposite poles at metaphase I, and keeping sister chromatid cohesion at anaphase I. We found previously that the frequency of neocentric activity varied dramatically in different generations suggesting the effect of environmental factors. Here we studied the behavior of the 5RL neocentromere in mono- and ditelosomic 5RL, and mono-, and disomic 5R wheat-rye addition lines, untreated and treated with an organophosphate pesticide. The treated plants form neocentromeres with an about 4.5-fold increased frequency compared to untreated ones, demonstrating that the pesticide promotes neocentric activity. The neocentromere was activated irrespectively of the pairing configuration or the presence of a complete or truncated 5R centromere. Fluorescence in situ hybridization (FISH) with 2 repetitive sequences (UCM600 and pSc119.2) present at the constriction showed kinetic activity at several locations within this region. Immunostaining with anti-α-tubulin showed that treated plants have abnormal spindles in 46% of the metaphase I cells, indicating that disturbances in spindle formation might promote neocentromere activation.
Collapse
Affiliation(s)
- M Cuacos
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
24
|
Gámez-Arjona FM, López-López C, Vaquero-Sedas MI, Vega-Palas MA. On the organization of the nucleosomes associated with telomeric sequences. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1058-61. [PMID: 20381544 DOI: 10.1016/j.bbamcr.2010.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/29/2010] [Accepted: 03/29/2010] [Indexed: 11/25/2022]
Abstract
The functions of telomeres and, probably, of interstitial telomeric sequences (ITSs) are influenced by their chromatin structure and organization. Telomeres in higher eukaryotes fold into nucleosomes that are about 20-40 bp shorter than the nucleosomes associated with bulk chromatin. Although the functional relevance of this short nucleosomal organization remains unknown, it is believed that short nucleosomes should contribute to telomere function. Whereas telomeric nucleosomes have been widely studied in different organisms, very little is known about the nucleosomal organization of ITSs. Chinese hamster ITSs have been found to associate with short nucleosomes. However, we have found that Arabidopsis thaliana ITSs fold into nucleosomes that have a repeat length similar to bulk chromatin. We discuss how the primary sequence of telomeres and ITSs could influence their nucleosomal organization.
Collapse
Affiliation(s)
- Francisco M Gámez-Arjona
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Américo Vespucio 49, E-41092 Seville, Spain
| | | | | | | |
Collapse
|
25
|
A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosome Res 2009; 17:755-62. [PMID: 19669910 DOI: 10.1007/s10577-009-9060-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 06/06/2009] [Indexed: 10/20/2022]
Abstract
We report a new technique-nondenaturing FISH (ND-FISH)-for the rapid detection of plant telomeres without the need for prior denaturation of the chromosomes. In its development, two modified, synthetic oligonucleotides, 21 nt in length, fluorescently labelled at their 5' and 3' ends and complementary to either the cytidine-rich (C(3)TA(3)) or guanosine-rich (T(3)AG(3)) telomeric DNA strands, were used as probes. The high binding affinity of these probes and the short hybridization time required allows the visualization of plant telomeres in less than an hour. In tests, both probes gave strong signals visualized as double spots at both chromosome ends; this was true of both the mitotic and meiotic chromosomes of barley, wheat, rye, maize, Brachypodium distachyon and Rhoeo spathacea. They were also able to detect telomere motifs at certain intercalary sites in the chromosomes of R. spathacea. To investigate the nature of the target structures detected, the chromosomes were treated with RNase A and single strand-specific nuclease S1 before ND-FISH experiments. Signal formation was resistant to standard enzymatic treatment, but sensitive when much higher enzyme concentrations were used. The results are discussed in relation to current knowledge of telomere structure.
Collapse
|
26
|
Mlinarec J, Chester M, Siljak-Yakovlev S, Papes D, Leitch AR, Besendorfer V. Molecular structure and chromosome distribution of three repetitive DNA families in Anemone hortensis L. (Ranunculaceae). Chromosome Res 2009; 17:331-46. [PMID: 19224381 DOI: 10.1007/s10577-009-9025-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 12/08/2008] [Accepted: 12/08/2008] [Indexed: 10/21/2022]
Abstract
The structure, abundance and location of repetitive DNA sequences on chromosomes can characterize the nature of higher plant genomes. Here we report on three new repeat DNA families isolated from Anemone hortensis L.; (i) AhTR1, a family of satellite DNA (stDNA) composed of a 554-561 bp long EcoRV monomer; (ii) AhTR2, a stDNA family composed of a 743 bp long HindIII monomer and; (iii) AhDR, a repeat family composed of a 945 bp long HindIII fragment that exhibits some sequence similarity to Ty3/gypsy-like retroelements. Fluorescence in-situ hybridization (FISH) to metaphase chromosomes of A. hortensis (2n = 16) revealed that both AhTR1 and AhTR2 sequences co-localized with DAPI-positive AT-rich heterochromatic regions. AhTR1 sequences occur at intercalary DAPI bands while AhTR2 sequences occur at 8-10 terminally located heterochromatic blocks. In contrast AhDR sequences are dispersed over all chromosomes as expected of a Ty3/gypsy-like element. AhTR2 and AhTR1 repeat families include polyA- and polyT-tracks, AT/TA-motifs and a pentanucleotide sequence (CAAAA) that may have consequences for chromatin packing and sequence homogeneity. AhTR2 repeats also contain TTTAGGG motifs and degenerate variants. We suggest that they arose by interspersion of telomeric repeats with subtelomeric repeats, before hybrid unit(s) amplified through the heterochromatic domain. The three repetitive DNA families together occupy approximately 10% of the A. hortensis genome. Comparative analyses of eight Anemone species revealed that the divergence of the A. hortensis genome was accompanied by considerable modification and/or amplification of repeats.
Collapse
Affiliation(s)
- Jelena Mlinarec
- Department of Molecular Biology, Biology Division, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
27
|
Urdampilleta JD, de Souza AP, Schneider DRS, Vanzela ALL, Ferrucci MS, Martins ERF. Molecular and cytogenetic characterization of an AT-rich satellite DNA family in Urvillea chacoensis Hunz. (Paullinieae, Sapindaceae). Genetica 2008; 136:171-7. [DOI: 10.1007/s10709-008-9332-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 11/01/2008] [Indexed: 10/21/2022]
|
28
|
Menzel G, Dechyeva D, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T. Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris). ANNALS OF BOTANY 2008; 102:521-30. [PMID: 18682437 PMCID: PMC2701778 DOI: 10.1093/aob/mcn131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The aim of this work was the identification and molecular characterization of novel sugar beet (Beta vulgaris) repetitive sequences to unravel the impact of repetitive DNA on size and evolution of Beta genomes via amplification and diversification. METHODS Genomic DNA and a pool of B. vulgaris repetitive sequences were separately used as probes for a screening of high-density filters from a B. vulgaris plasmid library. Novel repetitive motifs were identified by sequencing and further used as probes for Southern analyses in the genus Beta. Chromosomal localization of the repeats was analysed by fluorescent in situ hybridization on chromosomes of B. vulgaris and two other species of the section Beta. KEY RESULTS Two dispersed repetitive families pDvul1 and pDvul2 and the tandemly arranged repeat family pRv1 were isolated from a sugar beet plasmid library. The dispersed repetitive families pDvul1 and pDvul2 were identified in all four sections of the genus Beta. The members of the pDvul1 and pDvul2 family are scattered over all B. vulgaris chromosomes, although amplified to a different extent. The pRv1 satellite repeat is exclusively present in species of the section Beta. The centromeric satellite pBV1 by structural variations of the monomer and interspersion of pRv1 units forms complex satellite structures, which are amplified in different degrees on the centromeres of 12 chromosomes of the three species of the Beta section. CONCLUSIONS The complexity of the pBV1 satellite family observed in the section Beta of the genus Beta and, in particular, the strong amplification of the pBV1/pRv1 satellite in the domesticated B. vulgaris indicates the dynamics of centromeric satellite evolution during species radiation within the genus. The dispersed repeat families pDvul1 and pDvul2 might represent derivatives of transposable elements.
Collapse
Affiliation(s)
- Gerhard Menzel
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Daryna Dechyeva
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Torsten Wenke
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Daniela Holtgräwe
- Institute of Genome Research, University of Bielefeld, D-33594 Bielefeld, Germany
| | - Bernd Weisshaar
- Institute of Genome Research, University of Bielefeld, D-33594 Bielefeld, Germany
| | - Thomas Schmidt
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
- For correspondence. E-mail
| |
Collapse
|
29
|
Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008; 452:215-9. [PMID: 18278030 PMCID: PMC2377394 DOI: 10.1038/nature06745] [Citation(s) in RCA: 1537] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/30/2008] [Indexed: 11/09/2022]
Abstract
Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking. To this end, we generated a map at single-base-pair resolution of methylated cytosines for Arabidopsis, by combining bisulphite treatment of genomic DNA with ultra-high-throughput sequencing using the Illumina 1G Genome Analyser and Solexa sequencing technology. This approach, termed BS-Seq, unlike previous microarray-based methods, allows one to sensitively measure cytosine methylation on a genome-wide scale within specific sequence contexts. Here we describe methylation on previously inaccessible components of the genome and analyse the DNA methylation sequence composition and distribution. We also describe the effect of various DNA methylation mutants on genome-wide methylation patterns, and demonstrate that our newly developed library construction and computational methods can be applied to large genomes such as that of mouse.
Collapse
Affiliation(s)
- Shawn J Cokus
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Macas J, Neumann P, Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 2007; 8:427. [PMID: 18031571 PMCID: PMC2206039 DOI: 10.1186/1471-2164-8-427] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 11/21/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum). RESULTS Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. CONCLUSION We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35-48% of the genome. These data provide a starting point for further investigations of legume plant genomes based on their global comparative analysis and for the development of more sophisticated approaches for data mining.
Collapse
Affiliation(s)
- Jiří Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Pavel Neumann
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Alice Navrátilová
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
31
|
Macas J, Neumann P, Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 2007. [PMID: 18031571 DOI: 10.1186/1471‐2164‐8‐427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum). RESULTS Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. CONCLUSION We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35-48% of the genome. These data provide a starting point for further investigations of legume plant genomes based on their global comparative analysis and for the development of more sophisticated approaches for data mining.
Collapse
Affiliation(s)
- Jirí Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branisovská 31, Ceské Budejovice, CZ-37005, Czech Republic.
| | | | | |
Collapse
|
32
|
Zellinger B, Riha K. Composition of plant telomeres. ACTA ACUST UNITED AC 2007; 1769:399-409. [PMID: 17383025 DOI: 10.1016/j.bbaexp.2007.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 02/01/2007] [Accepted: 02/09/2007] [Indexed: 12/15/2022]
Abstract
Telomeres are essential elements of eukaryotic chromosomes that differentiate native chromosome ends from deleterious DNA double-strand breaks (DSBs). This is achieved by assembling chromosome termini in elaborate high-order nucleoprotein structures that in most organisms encompass telomeric DNA, specific telomere-associated proteins as well as general chromatin and DNA repair factors. Although the individual components of telomeric chromatin are evolutionary highly conserved, cross species comparisons have revealed a remarkable flexibility in their utilization at telomeres. This review outlines the strategies used for chromosome end protection and maintenance in mammals, yeast and flies and discusses current progress in deciphering telomere structure in plants.
Collapse
Affiliation(s)
- Barbara Zellinger
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | | |
Collapse
|
33
|
Salina EA, Lim KY, Badaeva ED, Shcherban AB, Adonina IG, Amosova AV, Samatadze TE, Vatolina TY, Zoshchuk SA, Leitch AR. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome 2007; 49:1023-35. [PMID: 17036077 DOI: 10.1139/g06-050] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The evolution of 2 tandemly repeated sequences Spelt1 and Spelt52 was studied in Triticum species representing 2 evolutionary lineages of wheat and in Aegilops sect. Sitopsis, putative donors of their B/G genomes. Using fluorescence in situ hybridization we observed considerable polymorphisms in the hybridization patterns of Spelt1 and Spelt52 repeats between and within Triticum and Aegilops species. Between 2 and 28 subtelomeric sites of Spelt1 probe were detected in Ae. speltoidies, depending on accession. From 8 to 12 Spelt1 subtelomeric sites were observed in species of Timopheevi group (GAt genome), whereas the number of signals in emmer/aestivum accessions was significantly less (from 0 to 6). Hybridization patterns of Spelt52 in Ae. speltoides, Ae. longissima, and Ae. sharonensis were species specific. Subtelomeric sites of Spelt52 repeat were detected only in T. araraticum (T. timopheevii), and their number and chromosomal location varied between accessions. Superimposing copy number data onto our phylogenetic scheme constructed from RAPD data suggests 2 major independent amplifications of Spelt52 and 1 of Spelt1 repeats in Aegilops divergence. It is likely that the Spelt1 amplification took place in the ancient Ae. speltoides before the divergence of polyploid wheats. The Spelt52 repeat was probably amplified in the lineage of Ae. speltoides prior to divergence of the allopolyploid T. timopheevii but after the divergence of T. durum. In a separate amplification event, Spelt52 copy number expanded in the common ancestor of Ae. longissima and Ae. sharonensis.
Collapse
Affiliation(s)
- Elena A Salina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dechyeva D, Schmidt T. Molecular organization of terminal repetitive DNA in Beta species. Chromosome Res 2007; 14:881-97. [PMID: 17195925 DOI: 10.1007/s10577-006-1096-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/19/2007] [Accepted: 10/19/2006] [Indexed: 09/29/2022]
Abstract
We have isolated families of subtelomeric satellite DNA sequences from species of four sections of the genus Beta and from spinach, a related Chenopodiaceae. Twenty-five clones were sequenced and representative repeats of each family were characterized by Southern blotting and FISH. The families of ApaI restriction satellite repeats were designated pAv34, pAc34, the families of RsaI repeats pRp34, pRn34 and pRs34. The repeating units are 344-362 bp long and 45.7-98.8% homologous with a clear species-specific divergence. Each satellite monomer consists of two subrepeats SR1 and SR2 of 165-184 bp, respectively. The repeats of each subrepeat group are highly identical across species, but share only a homology of 40.8-54.8% with members of the other subrepeat group. Two evolutionary steps could be supposed in the phylogeny of the subtelomeric satellite family: the diversification of an ancestor satellite into groups representing SR1 and SR2 in the progenitor of Beta and Spinacea species, followed by the dimerization and diversification of the resulting 360 bp repeats into section-specific satellite DNA families during species radiation. The chromosomal localization of telomeric, subtelomeric and rDNA tandem repeats was investigated by multi-colour FISH. High-resolution analysis by fibre FISH revealed a unique physical organization of B. vulgaris chromosome ends with telomeric DNA and subtelomeric satellites extending over a maximum of 63 kb and 125 kb, respectively.
Collapse
Affiliation(s)
- Daryna Dechyeva
- Institute of Botany, Dresden University of Technology, Zellescher Weg 20b, 01062 Dresden, Germany
| | | |
Collapse
|
35
|
Manova V, Gecheff K, Stoilov L. Efficient repair of bleomycin-induced double-strand breaks in barley ribosomal genes. Mutat Res 2006; 601:179-90. [PMID: 16930631 DOI: 10.1016/j.mrfmmm.2006.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 06/28/2006] [Accepted: 07/11/2006] [Indexed: 05/11/2023]
Abstract
Ability of barley ribosomal genes to cope with damage produced in vivo by the radiomimetic agent bleomycin was investigated. Repair kinetics of bleomycin-induced double-strand breaks in ribosomal and total genomic DNA was compared. Induction and repair of double-strand breaks in defined regions of the ribosomal genes was also analyzed. Preferential sensitivity of barley linker DNA towards bleomycin treatment in vivo was established. Relatively higher yield of initially induced double-strand breaks in genomic DNA in comparison to ribosomal DNA was also found. Fragments containing intergenic spacers of barley rRNA genes displayed higher sensitivity to bleomycin than the coding sequences. No heterogeneity in the repair of DSB between transcribed and non-transcribed regions of ribosomal genes was detected. Data indicate that DSB repair in barley rDNA, although more efficient than in genomic DNA, does not correlate with the activity of nucleolus organizer regions.
Collapse
Affiliation(s)
- Vasilissa Manova
- Department of Molecular Genetics, Institute of Genetics, Acad D Kostoff, BAS, Sofia, Bulgaria
| | | | | |
Collapse
|
36
|
|
37
|
Fulnecek J, Matyasek R, Kovarik A. Plant 5S rDNA has multiple alternative nucleosome positions. Genome 2006; 49:840-50. [PMID: 16936792 DOI: 10.1139/g06-039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In plants, 5S ribosomal DNA (5S rDNA) is typically found in hundreds of copies of tandemly arranged units. Nucleotide database searches revealed that the majority of 5S genes (>90%) have repeat lengths that are not simple multiples of a plant nucleosomal unit, ranging in plants from 175-185 bp. To get insight into the chromatin structure, we have determined positions of nucleosomes in the Nicotiana sylvestris and Nicotiana tomentosiformis 5S rDNA units with repeat lengths of about 430 and 645 bp, respectively. Mapping experiments carried out on isolated nucleo somal DNA revealed many (>50) micrococcal nuclease cleavage sites in each class of repeats. Permutation analysis and theoretical computer prediction showed multiple DNA bend sites, mostly located in the nontranscribed spacer region. The distance between bend sites, however, did not correspond to the average spacing of nucleosomes in 5S chromatin (approximately 180 bp). These data indicate that 5S rDNA does not have fixed nucleosomal positioning sites and that units can be wrapped in a number of alternative nucleosome frames. Consequently, accessibility of transcription factors to cognate motifs might vary across the tandem array, potentially influencing gene expression.
Collapse
Affiliation(s)
- Jaroslav Fulnecek
- Institute of Biophysics, Academy of Scences of Czech Republic, Kralovopolska, Czech Republic
| | | | | |
Collapse
|
38
|
Macas J, Navrátilová A, Koblízková A. Sequence homogenization and chromosomal localization of VicTR-B satellites differ between closely related Vicia species. Chromosoma 2006; 115:437-47. [PMID: 16788823 DOI: 10.1007/s00412-006-0070-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/04/2006] [Accepted: 05/05/2006] [Indexed: 11/28/2022]
Abstract
Satellite sequences of the VicTR-B family are specific for the genus Vicia (Leguminosae), but their abundance varies among the species, being the highest in Vicia sativa and Vicia grandiflora. In this study, we have sequenced multiple randomly cloned VicTR-B fragments from these two species and analyzed their sequence variability, periodicity, and chromosomal localization. We have found that V. sativa VicTR-B sequences are homogeneous with respect to their nucleotide sequences and periodicity (monomers of 38 bp), whereas V. grandiflora repeats are considerably more variable, occurring in at least four distinct sequence subfamilies. Although the periodicity of 38 bp was conserved in most of the V. grandiflora sequences, one of the subfamilies was composed of higher-order repeats of 186 bp, which originated from a pentamer of the basic repeated unit. Individual VicTR-B subfamilies were preferentially located in either intercalary or subtelomeric regions of chromosomes. Interestingly, two V. grandiflora subfamilies with the highest similarity to V. sativa VicTR-B sequences were located in intercalary heterochromatic bands, showing similar chromosomal distribution as the majority of VicTR-B repeats in V. sativa. The other two V. grandiflora subfamilies showing a considerable divergence from V. sativa sequences were found to be accumulated at subtelomeric regions of V. grandiflora chromosomes.
Collapse
Affiliation(s)
- Jirí Macas
- Institute of Plant Molecular Biology, Branisovská 31, Ceské Budejovice, 37005, Czech Republic.
| | | | | |
Collapse
|
39
|
Contento A, Heslop-Harrison JS, Schwarzacher T. Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet Genome Res 2005; 109:34-42. [PMID: 15753556 DOI: 10.1159/000082379] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Indexed: 11/19/2022] Open
Abstract
About 90 members of a major tandemly repeated DNA sequence family originally described in rye as pSc119.2 have been isolated from 11 diploid and polyploid Triticeae species using primers from along the length of the sequence for PCR amplification. Alignment and similarity analysis showed that the 120-bp repeat unit family is diverse with single nucleotide changes and few insertions and deletions occurring throughout the sequence, with no characteristic genome or species-specific variants having developed during evolution of the extant genomes. Fluorescent in situ hybridization showed that each of the large blocks of the repeat at chromosomal sites harboured many variants of the 120-bp repeat. There were substantial copy number differences between genomes, with abundant sub-terminal sites in rye, interstitial sites in the B genome of wheat, and relatively few sites in the A and D genome. We conclude that sequence homogenization events have not been operative in this repeat and that the common ancestor of the Triticeae tribe had multiple sequences of the 120-bp repeat with a range of variation not unlike that seen within and between species today. This diversity has been maintained when sites are moved within the genome and in all species since their divergence within the Triticeae.
Collapse
Affiliation(s)
- A Contento
- Department of Biology, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
40
|
Sharma S, Raina SN. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 2005; 109:15-26. [PMID: 15753554 DOI: 10.1159/000082377] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 04/14/2004] [Indexed: 11/19/2022] Open
Abstract
A major component of the plant nuclear genome is constituted by different classes of repetitive DNA sequences. The structural, functional and evolutionary aspects of the satellite repetitive DNA families, and their organization in the chromosomes is reviewed. The tandem satellite DNA sequences exhibit characteristic chromosomal locations, usually at subtelomeric and centromeric regions. The repetitive DNA family(ies) may be widely distributed in a taxonomic family or a genus, or may be specific for a species, genome or even a chromosome. They may acquire large-scale variations in their sequence and copy number over an evolutionary time-scale. These features have formed the basis of extensive utilization of repetitive sequences for taxonomic and phylogenetic studies. Hybrid polyploids have especially proven to be excellent models for studying the evolution of repetitive DNA sequences. Recent studies explicitly show that some repetitive DNA families localized at the telomeres and centromeres have acquired important structural and functional significance. The repetitive elements are under different evolutionary constraints as compared to the genes. Satellite DNA families are thought to arise de novo as a consequence of molecular mechanisms such as unequal crossing over, rolling circle amplification, replication slippage and mutation that constitute "molecular drive".
Collapse
Affiliation(s)
- S Sharma
- Laboratory of Cellular and Molecular Cytogenetics, Department of Botany, University of Delhi, Delhi, India.
| | | |
Collapse
|
41
|
Lodha M, Schroda M. Analysis of chromatin structure in the control regions of the chlamydomonas HSP70A and RBCS2 genes. PLANT MOLECULAR BIOLOGY 2005; 59:501-13. [PMID: 16235113 DOI: 10.1007/s11103-005-0450-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 07/02/2005] [Indexed: 05/02/2023]
Abstract
We have used DNaseI and micrococcal nuclease sensitivity assays to determine the chromatin structures in the control regions of the Chlamydomonas reinhardtii HSP70A and RBCS2 genes. Both genes appear to be organized into nucleosome arrays, which exhibit shorter nucleosome repeat lengths than bulk chromatin. In HSP70A we have identified up to four confined DNaseI hypersensitive sites, three of them localize to the promoter region, a fourth one to the fourth intron. Three hypersensitive sites map close to putative heat shock elements, one close to a CCAAT-box. All hypersensitive sites are located to internucleosomal linkers. Alternative nucleosome positions at half-nucleosomal phasing were constitutively detected in the HSP70A promoter region, indicating local chromatin remodelling. Upon heat shock, dramatic changes in the nucleosome structure of HSP70A were detected that particularly affected the promoter, but also a region within the fourth intron. In contrast, light induction entailed no change in HSP70A chromatin. In the RBCS2 control region we identified a strong DNaseI hypersensitive site that maps close to a CCAAT-box. This site forms the boundary of a nucleosome array with a region of approximately 700 bp apparently devoid of nucleosomes. This study demonstrates that chromatin structure may be determined readily at fairly high resolution in Chlamydomonas, suggesting this organism as a well-suited model for studying the role of chromatin structure on gene expression in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Mukesh Lodha
- Institute of Biology II, Plant Biochemistry, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | | |
Collapse
|
42
|
Abstract
This paper examines telomeres from an evolutionary perspective. In the monocot plant order Asparagales two evolutionary switch-points in telomere sequence are known. The first occurred when the Arabidopsis-type telomere was replaced by a telomere based on a repeat motif more typical of vertebrates. The replacement is associated with telomerase activity, but the telomerase has low fidelity and this may have implications for the binding of telomeric proteins. At the second evolutionary switch-point, the telomere and its mode of synthesis are replaced by an unknown mechanism. Elsewhere in plants (Sessia, Vestia, Cestrum) and in arthropods, the telomere "typical" of the group is lost. Probably many other groups with "unusual" telomeres will be found. We question whether telomerase is indeed the original end-maintenance system and point to other candidate processes involving t-loops, t-circles, rolling circle replication and recombination. Possible evolutionary outcomes arising from the loss of telomerase activity in alternative lengthening of telomere (ALT) systems are discussed. We propose that elongation of minisatellite repeats using recombination/replication processes initially substitutes for the loss of telomerase function. Then in more established ALT groups, subtelomeric satellite repeats may replace the telomeric minisatellite repeat whilst maintaining the recombination/replication mechanisms for telomere elongation. Thereafter a retrotransposition-based end-maintenance system may become established. The influence of changing sequence motifs on the properties of the telomere cap is discussed. The DNA and protein components of telomeres should be regarded--as with any other chromosome elements--as evolving and co-evolving over time and responding to changes in the genome and to environmental stresses. We describe how telomere dysfunction, resulting in end-to-end chromosome fusions, can have a profound effect on chromosome evolution and perhaps even speciation.
Collapse
Affiliation(s)
- Jirí Fajkus
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, Masaryk University Brno, Královopolská 135, CZ-61265 Brno, Czech Republic.
| | | | | |
Collapse
|
43
|
Abstract
The structures of specific chromosome regions, centromeres and telomeres, present a number of puzzles. As functions performed by these regions are ubiquitous and essential, their DNA, proteins and chromatin structure are expected to be conserved. Recent studies of centromeric DNA from human, Drosophila and plant species have demonstrated that a hidden universal centromere-specific sequence is highly unlikely. The DNA of telomeres is more conserved consisting of a tandemly repeated 6-8 bp Arabidopsis-like sequence in a majority of organisms as diverse as protozoan, fungi, mammals and plants. However, there are alternatives to short DNA repeats at the ends of chromosomes and for telomere elongation by telomerase. Here we focus on the similarities and diversity that exist among the structural elements, DNA sequences and proteins, that make up terminal domains (telomeres and subtelomeres), and how organisms use these in different ways to fulfil the functions of end-replication and end-protection.
Collapse
Affiliation(s)
- Edward J Louis
- Department of Genetics, University of Leicester, Leicester UK.
| | | |
Collapse
|
44
|
Abstract
The role model systems have played in understanding telomere biology has been enormous, and understanding has rapidly transferred to human telomere research. Most work using model organisms to study telomerase and nontelomerase-based telomere-maintenance systems has centered on yeasts, ciliates, and insects. But it is now timely to put considerably more effort into plant models for a number of reasons: (i) the rice and Arabidopsis genome sequencing projects make data mining possible; (ii) extensive collections of insertion mutants of Arabidopsis thaliana enable phenotypic effects of protein gene knockouts to be analyzed, including for those genes involved in telomere structure, function (including, for example, in meiosis), and maintenance; and (iii) the variability of plant telomeres is considerable and ranges from the telomerase-mediated synthesis of the Arabidopsis-type (TTTAGGG) and vertebrate-type (TTAGGG) repeats to sequences synthesized by telomerase-independent mechanism(s) that are still to be discovered. Here we describe how the understanding of telomere biology has been advanced by methods used to isolate telomeric sequences and prove that the putative sequences isolated are indeed telomeric. We show how assays designed to prove the activity of telomerase [e.g., telomeric repeat amplification protocol (TRAP)] lead not only to an understanding of telomere structure and function, but also to the understanding of cell activity in development and in the cell cycle. We review how assays designed to reveal protein/protein and protein/nucleic acid interactions promote understanding of the structure and activities of plant telomeres. Together, the data are making significant contributions to telomere biology in general and could have medical implications.
Collapse
Affiliation(s)
- Jirí Fajkus
- Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | |
Collapse
|
45
|
Alkhimova OG, Mazurok NA, Potapova TA, Zakian SM, Heslop-Harrison JS, Vershinin AV. Diverse patterns of the tandem repeats organization in rye chromosomes. Chromosoma 2004; 113:42-52. [PMID: 15257465 DOI: 10.1007/s00412-004-0294-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 04/20/2004] [Accepted: 05/14/2004] [Indexed: 10/26/2022]
Abstract
Although the monomer size, nucleotide sequence, abundance and species distribution of tandemly organized DNA families are well characterized, little is known about the internal structure of tandem arrays, including total arrays size and the pattern of monomers distribution. Using our rye specific probes, pSc200 and pSc250, we addressed these issues for telomere associated rye heterochromatin where these families are very abundant. Fluorescence in situ hybridization (FISH) on meiotic chromosomes revealed a specific mosaic arrangement of domains for each chromosome arm where either pSc200 or pSc250 predominates without any obvious tendency in order and size of domains. DNA of rye-wheat monosomic additions studied by pulse field gel electrophoresis produced a unique overall blot hybridization display for each of the rye chromosomes. The FISH signals on DNA fibres showed multiple monomer arrangement patterns of both repetitive families as well as of the Arabidopsis-type telomere repeat. The majority of the arrays consisted of the monomers of both families in different patterns separated by spacers. The primary structure of some spacer sequences revealed scrambled regions of similarity to various known repetitive elements. This level of complexity in the long-range organization of tandem arrays has not been previously reported for any plant species. The various patterns of internal structure of the tandem arrays are likely to have resulted from evolutionary interplay, array homogenization and the generation of heterogeneity mediated by double-strand breaks and associated repair mechanisms.
Collapse
|
46
|
Heslop-Harrison JS, Brandes A, Schwarzacher T. Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species. Chromosome Res 2004; 11:241-53. [PMID: 12769291 DOI: 10.1023/a:1022998709969] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite their common function, centromeric DNA sequences are not conserved between organisms. Most centromeres of animals and plants so far investigated have now been shown to consist of large blocks of tandemly repeated satellite sequences that are embedded in recombination-deficient heterochromatic regions. This central domain of satellite sequences that is postulated to mediate spindle attachment is surrounded by pericentromeric sequences incorporating various classes of repetitive sequences often including retroelements. The centromeric satellite DNA sequences are amongst the most rapidly evolving sequences and pose some fundamental problems of maintaining function. In this overview, we will discuss work on centromeric repetitive sequences in Arabidopsis thaliana and its relatives, and highlight some of the common features that are emerging when analysing closely related species.
Collapse
Affiliation(s)
- J S Heslop-Harrison
- CREST Project, Department of Biology, University of Leicester, Leicester LE1 7RH, UK.
| | | | | |
Collapse
|
47
|
Pires JC, Lim KY, Kovarík A, Matyásek R, Boyd A, Leitch AR, Leitch IJ, Bennett MD, Soltis PS, Soltis DE. Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. AMERICAN JOURNAL OF BOTANY 2004; 91:1022-35. [PMID: 21653458 DOI: 10.3732/ajb.91.7.1022] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tragopogon mirus and T. miscellus (both 2n = 4x = 24) are recent allotetraploids derived from T. dubius × T. porrifolius and T. dubius × T. pratensis (each 2n = 2x = 12), respectively. The genome sizes of T. mirus are additive of those of its diploid parents, but at least some populations of T. miscellus have undergone genome downsizing. To survey for genomic rearrangements in the allopolyploids, four repetitive sequences were physically mapped. TPRMBO (unit size 160 base pairs [bp]) and TGP7 (532 bp) are tandemly organized satellite sequences isolated from T. pratensis and T. porrifolius, respectively. Fluorescent in situ hybridization to the diploids showed that TPRMBO is a predominantly centromeric repeat on all 12 chromosomes, while TGP7 is a subtelomeric sequence on most chromosome arms. The distribution of tandem repetitive DNA loci (TPRMBO, TGP7, 18S-5.8S-26S rDNA, and 5S rDNA) gave unique molecular karyotypes for the three diploid species, permitting the identification of the parental chromosomes in the polyploids. The location and number of these loci were inherited without apparent changes in the allotetraploids. There was no evidence for major genomic rearrangements in Tragopogon allopolyploids that have arisen multiple times in North America within the last 80 yr.
Collapse
Affiliation(s)
- J Chris Pires
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lim KY, Skalicka K, Koukalova B, Volkov RA, Matyasek R, Hemleben V, Leitch AR, Kovarik A. Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana. Genetics 2004; 166:1935-46. [PMID: 15126410 PMCID: PMC1470824 DOI: 10.1534/genetics.166.4.1935] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An approximately 135-bp sequence called the A1/A2 repeat was isolated from the transcribed region of the 26-18S rDNA intergenic spacer (IGS) of Nicotiana tomentosiformis. Fluorescence in situ hybridization (FISH) and Southern blot analysis revealed its occurrence as an independent satellite (termed an A1/A2 satellite) outside of rDNA loci in species of Nicotiana section Tomentosae. The chromosomal location, patterns of genomic dispersion, and copy numbers of its tandemly arranged units varied between the species. In more distantly related Nicotiana species the A1/A2 repeats were found only at the nucleolar organizer regions (NOR). There was a trend toward the elimination of the A1/A2 satellite in N. tabacum (tobacco), an allotetraploid with parents closely related to the diploids N. sylvestris and N. tomentosiformis. This process may have already commenced in an S(3) generation of synthetic tobacco. Cytosine residues in the IGS were significantly hypomethylated compared with the A1/A2 satellite. There was no clear separation between the IGS and satellite fractions in sequence analysis of individual clones and we found no evidence for CG suppression. Taken together the data indicate a dynamic nature of the A1/A2 repeats in Nicotiana genomes, with evidence for recurrent integration, copy number expansions, and contractions.
Collapse
Affiliation(s)
- K Y Lim
- Institute of Biophysics, AV CR, 612 65 Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lim KY, Skalicka K, Koukalova B, Volkov RA, Matyasek R, Hemleben V, Leitch AR, Kovarik A. Dynamic Changes in the Distribution of a Satellite Homologous to Intergenic 26-18S rDNA Spacer in the Evolution of Nicotiana. Genetics 2004. [DOI: 10.1093/genetics/166.4.1935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
An ∼135-bp sequence called the A1/A2 repeat was isolated from the transcribed region of the 26-18S rDNA intergenic spacer (IGS) of Nicotiana tomentosiformis. Fluorescence in situ hybridization (FISH) and Southern blot analysis revealed its occurrence as an independent satellite (termed an A1/A2 satellite) outside of rDNA loci in species of Nicotiana section Tomentosae. The chromosomal location, patterns of genomic dispersion, and copy numbers of its tandemly arranged units varied between the species. In more distantly related Nicotiana species the A1/A2 repeats were found only at the nucleolar organizer regions (NOR). There was a trend toward the elimination of the A1/A2 satellite in N. tabacum (tobacco), an allotetraploid with parents closely related to the diploids N. sylvestris and N. tomentosiformis. This process may have already commenced in an S3 generation of synthetic tobacco. Cytosine residues in the IGS were significantly hypomethylated compared with the A1/A2 satellite. There was no clear separation between the IGS and satellite fractions in sequence analysis of individual clones and we found no evidence for CG suppression. Taken together the data indicate a dynamic nature of the A1/A2 repeats in Nicotiana genomes, with evidence for recurrent integration, copy number expansions, and contractions.
Collapse
Affiliation(s)
- K Y Lim
- School of Biological Sciences, University of London, London E1 4NS, United Kingdom
| | - K Skalicka
- Institute of Biophysics, AV CR, 612 65 Brno, Czech Republic
| | - B Koukalova
- Institute of Biophysics, AV CR, 612 65 Brno, Czech Republic
| | - R A Volkov
- Department of Genetics, Center of Plant Molecular Biology (ZMBP), 72076 Tübingen, Germany
| | - R Matyasek
- Institute of Biophysics, AV CR, 612 65 Brno, Czech Republic
| | - V Hemleben
- Department of Genetics, Center of Plant Molecular Biology (ZMBP), 72076 Tübingen, Germany
| | - A R Leitch
- School of Biological Sciences, University of London, London E1 4NS, United Kingdom
| | - A Kovarik
- Institute of Biophysics, AV CR, 612 65 Brno, Czech Republic
| |
Collapse
|
50
|
Dechyeva D, Gindullis F, Schmidt T. Divergence of satellite DNA and interspersion of dispersed repeats in the genome of the wild beet Beta procumbens. Chromosome Res 2003; 11:3-21. [PMID: 12675302 DOI: 10.1023/a:1022005514470] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several repetitive sequences of the genome of Beta procumbens Chr. Sm., a wild beet species of the section Procumbentes of the genus Beta have been isolated. According to their genomic organization, the repeats were assigned to satellite DNA and families of dispersed DNA sequences. The tandem repeats are 229-246 bp long and belong to an AluI restriction satellite designated pAp11. Monomers of this satellite DNA form subfamilies which can be distinguished by the divergence or methylation of an internal restriction site. The satellite is amplified in the section Procumbentes, but is also found in species of the section Beta including cultivated beet (Beta vulgaris). The existence of the pAp11 satellite in distantly related species suggests that the AluI sequence family is an ancient component of Beta genomes and the ancestor of the diverged satellite subfamily pEV4 in B. vulgaris. Comparative fluorescent in-situ hybridization revealed remarkable differences in the chromosomal position between B. procumbens and B. vulgaris, indicating that the pAp11 and pEV4 satellites were most likely involved in the expansion or rearrangement of the intercalary B. vulgaris heterochromatin. Furthermore, we describe the molecular structure, and genomic and chromosomal organization of two repetitive DNA families which were designated pAp4 and pAp22 and are 1354 and 582 bp long, respectively. The families consist of sequence elements which are widely dispersed along B. procumbens chromosomes with local clustering and exclusion from distal euchromatic regions. FISH on meiotic chromosomes showed that both dispersed repeats are colocalized in some chromosomal regions. The interspersion of repeats of the pAp4 and pAp22 family was studied by PCR and enabled the determination of repeat flanking sequences. Sequence analysis revealed that pAp22 is either derived from or part of a long terminal repeat (LTR) of an Athila-like retrotransposon. Southern analysis and FISH with pAp4 and pAp22 showed that both dispersed repeats are species-specific and can be used as DNA probes to discriminate parental genomes in interspecific hybrids. This was tested in the sugar beet hybrid PRO1 which contains a small B. procumbens chromosome fragment.
Collapse
Affiliation(s)
- Daryna Dechyeva
- Plant Molecular Cytogenetics Group, Institute of Crop Science and Plant Breeding, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118 Kiel, Germany
| | | | | |
Collapse
|