1
|
Gholipour A, Zahedmehr A, Arabian M, Shakerian F, Maleki M, Oveisee M, Malakootian M. MiR-6721-5p as a natural regulator of Meta-VCL is upregulated in the serum of patients with coronary artery disease. Noncoding RNA Res 2025; 10:25-34. [PMID: 39296643 PMCID: PMC11406674 DOI: 10.1016/j.ncrna.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Background Coronary artery disease (CAD), the leading cause of mortality globally, arises from atherosclerotic blockage of the coronary arteries. Meta-vinculin (meta-VCL), a large spliced isoform of VCL, co-localizes in muscular adhesive structures and plays significant roles in cardiac physiology and pathophysiology. This study aimed to identify microRNAs (miRNAs) regulating meta-VCL expression and investigate the expression alterations of the miRNAs of interest and meta-VCL as potential biomarkers in the serum of CAD patients. Methods Bioinformatics tools were employed to select miRNAs targeting meta-VCL. Cell-based ectopic expression analysis and a dual-luciferase assay were used to examine the interactions between miRNAs and meta-VCL. An ELISA assessed the concentrations of interleukin-6 (IL-6), IL-10, and tumor necrosis factor-α (TNF-α). MiRNA and meta-VCL expression patterns and biomarker suitability were evaluated in serum samples from CAD and non-CAD individuals using real-time PCR. A cardiac cell-line data set and CAD blood exosome samples were analyzed using bioinformatics and ROC curve analyses, respectively. Results miR-6721-5p directly interacted with the putative target sites at the 3'-UTR of meta-VCL and regulated its expression. IL-10 and TNF-α concentrations, which may act as anti-inflammatory factors, decreased following miR-6721-5p upregulation and meta-VCL downregulation. Bioinformatics and experimental expression analyses confirmed downregulated meta-VCL expression and upregulated miR-6721-5p expression in CAD samples. ROC curve analysis yielded an AUC score of 0.705 (P = 0.018), indicating the potential suitability of miR-6721-5p as a biomarker for CAD. Conclusions miR-6721-5p plays a regulatory role in meta-VCL expression and may contribute to CAD development by reducing anti-inflammatory factors. These findings suggest that miR-6721-5p could serve as a novel biomarker in the pathogenesis of CAD.
Collapse
Affiliation(s)
- Akram Gholipour
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zahedmehr
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maedeh Arabian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Shakerian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Charoonnart P, Taunt HN, Yang L, Webb C, Robinson C, Saksmerprome V, Purton S. Transgenic Microalgae Expressing Double-Stranded RNA as Potential Feed Supplements for Controlling White Spot Syndrome in Shrimp Aquaculture. Microorganisms 2023; 11:1893. [PMID: 37630453 PMCID: PMC10459155 DOI: 10.3390/microorganisms11081893] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Viral infection of farmed fish and shellfish represents a major issue within the aquaculture industry. One potential control strategy involves RNA interference of viral gene expression through the oral delivery of specific double-stranded RNA (dsRNA). In previous work, we have shown that recombinant dsRNA can be produced in the chloroplast of the edible microalga Chlamydomonas reinhardtii and used to control disease in shrimp. Here, we report a significant improvement in antiviral dsRNA production and its use to protect shrimp against white spot syndrome virus (WSSV). A new strategy for dsRNA synthesis was developed that uses two convergent copies of the endogenous rrnS promoter to drive high-level transcription of both strands of the WSSV gene element in the chloroplast. Quantitative RT-PCR indicated that ~119 ng dsRNA was produced per liter of culture of the transgenic microalga. This represents an ~10-fold increase in dsRNA relative to our previous report. The engineered alga was assessed for its ability to prevent WSSV infection when fed to shrimp larvae prior to a challenge with the virus. The survival of shrimp given feed supplemented with dried alga containing the dsRNA was significantly enhanced (~69% survival) relative to a negative control (<10% survival). The findings suggest that this new dsRNA production platform could be employed as a low-cost, low-tech control method for aquaculture.
Collapse
Affiliation(s)
- Patai Charoonnart
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Henry Nicholas Taunt
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Luyao Yang
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Conner Webb
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Colin Robinson
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Vanvimon Saksmerprome
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.C.); (V.S.)
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Saul Purton
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
3
|
Cutolo EA, Mandalà G, Dall’Osto L, Bassi R. Harnessing the Algal Chloroplast for Heterologous Protein Production. Microorganisms 2022; 10:743. [PMID: 35456794 PMCID: PMC9025058 DOI: 10.3390/microorganisms10040743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Photosynthetic microbes are gaining increasing attention as heterologous hosts for the light-driven, low-cost production of high-value recombinant proteins. Recent advances in the manipulation of unicellular algal genomes offer the opportunity to establish engineered strains as safe and viable alternatives to conventional heterotrophic expression systems, including for their use in the feed, food, and biopharmaceutical industries. Due to the relatively small size of their genomes, algal chloroplasts are excellent targets for synthetic biology approaches, and are convenient subcellular sites for the compartmentalized accumulation and storage of products. Different classes of recombinant proteins, including enzymes and peptides with therapeutical applications, have been successfully expressed in the plastid of the model organism Chlamydomonas reinhardtii, and of a few other species, highlighting the emerging potential of transplastomic algal biotechnology. In this review, we provide a unified view on the state-of-the-art tools that are available to introduce protein-encoding transgenes in microalgal plastids, and discuss the main (bio)technological bottlenecks that still need to be addressed to develop robust and sustainable green cell biofactories.
Collapse
Affiliation(s)
| | | | | | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.A.C.); (G.M.); (L.D.)
| |
Collapse
|
4
|
Hsu SC, Browne DR, Tatli M, Devarenne TP, Stern DB. N-terminal sequences affect expression of triterpene biosynthesis enzymes in Chlamydomonas chloroplasts. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Kwon YM, Kim KW, Choi TY, Kim SY, Kim JYH. Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory. World J Microbiol Biotechnol 2018; 34:183. [PMID: 30478596 DOI: 10.1007/s11274-018-2567-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Abstract
The chloroplast is an essential organelle in microalgae for conducting photosynthesis, thus enabling the photoautotrophic growth of microalgae. In addition to photosynthesis, the chloroplast is capable of various biochemical processes for the synthesis of proteins, lipids, carbohydrates, and terpenoids. Due to these attractive characteristics, there has been increasing interest in the biotechnological utilization of microalgal chloroplast as a sustainable alternative to the conventional production platforms used in industrial biotechnology. Since the first demonstration of microalgal chloroplast transformation, significant development has occurred over recent decades in the manipulation of microalgal chloroplasts through genetic engineering. In the present review, we describe the advantages of the microalgal chloroplast as a production platform for various bioproducts, including recombinant proteins and high-value metabolites, features of chloroplast genetic systems, and the development of transformation methods, which represent important factors for gene expression in the chloroplast. Furthermore, we address the expression of various recombinant proteins in the microalgal chloroplast through genetic engineering, including reporters, biopharmaceutical proteins, and industrial enzymes. Finally, we present many efforts and achievements in the production of high-value metabolites in the microalgal chloroplast through metabolic engineering. Based on these efforts and advances, the microalgal chloroplast represents an economically viable and sustainable platform for biotechnological applications in the near future.
Collapse
Affiliation(s)
- Yong Min Kwon
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Kyung Woo Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Tae-Young Choi
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Sun Young Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Jaoon Young Hwan Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea.
| |
Collapse
|
6
|
Shamriz S, Ofoghi H. Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production. Biotechnol Genet Eng Rev 2017; 32:92-106. [PMID: 28359189 DOI: 10.1080/02648725.2017.1307673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microalgae, also called microphytes, are a vast group of microscopic photosynthetic organisms living in aquatic ecosystems. Microalgae have attracted the attention of biotechnology industry as a platform for extracting natural products with high commercial value. During last decades, microalgae have been also used as cost-effective and easily scalable platform for the production of recombinant proteins with medical and industrial applications. Most progress in this field has been made with Chlamydomonas reinhardtii as a model organism mainly because of its simple life cycle, well-established genetics and ease of cultivation. However, due to the scarcity of existing infrastructure for commercial production and processing together with relatively low product yields, no recombinant products from C. reinhardtii have gained approval for commercial production and most of them are still in research and development. In this review, we focus on the chloroplast of C. reinhardtii as an algal recombinant expression platform and compare its advantages and disadvantages to other currently used expression systems. We then discuss the strategies for engineering the chloroplast of C. reinhardtii to produce recombinant cells and present a comprehensive overview of works that have used this platform for the expression of high-value products.
Collapse
Affiliation(s)
- Shabnam Shamriz
- a Department of Biotechnology , Iranian Research Organization for Science and Technology , Tehran , Iran
| | - Hamideh Ofoghi
- a Department of Biotechnology , Iranian Research Organization for Science and Technology , Tehran , Iran
| |
Collapse
|
7
|
Tangphatsornruang S, Gray JC. Determination of the half-life of chloroplast transcripts in tobacco leaves. Methods Mol Biol 2014; 1132:221-34. [PMID: 24599856 DOI: 10.1007/978-1-62703-995-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The amounts of specific transcripts that accumulate in chloroplasts are determined by the rates of synthesis and degradation of the transcripts. The 3' untranslated region of transcripts is a major determinant of the stability of transcripts in chloroplasts. The half-lives of specific transcripts can be determined by northern blot analysis of a time course of transcripts in detached tobacco leaves incubated with actinomycin D, a potent transcription inhibitor. This analysis may be applied to transcripts of endogenous genes or of transgenes introduced into the chloroplast genome in transplastomic plants. Sequence determinants of transcript stability can be identified by analysis of transplastomic plants containing constructs of the green fluorescent protein (gfp) reporter gene fused to the sequences of interest.
Collapse
|
8
|
Gutiérrez CL, Gimpel J, Escobar C, Marshall SH, Henríquez V. CHLOROPLAST GENETIC TOOL FOR THE GREEN MICROALGAE HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE, VOLVOCALES)(1). JOURNAL OF PHYCOLOGY 2012; 48:976-83. [PMID: 27009007 DOI: 10.1111/j.1529-8817.2012.01178.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
At present, there is strong commercial demand for recombinant proteins, such as antigens, antibodies, biopharmaceuticals, and industrial enzymes, which cannot be fulfilled by existing procedures. Thus, an intensive search for alternative models that may provide efficiency, safety, and quality control is being undertaken by a number of laboratories around the world. The chloroplast of the eukaryotic microalgae Haematococcus pluvialis Flotow has arisen as a candidate for a novel expression platform for recombinant protein production. However, there are important drawbacks that need to be resolved before it can become such a system. The most significant of these are chloroplast genome characterizations, and the development of chloroplast transformation vectors based upon specific endogenous promoters and on homologous targeting regions. In this study, we report the identification and characterization of endogenous chloroplast sequences for use as genetic tools for the construction of H. pluvialis specific expression vectors to efficiently transform the chloroplast of this microalga via microprojectile bombardment. As a consequence, H. pluvialis shows promise as a platform for expressing recombinant proteins for biotechnological applications, for instance, the development of oral vaccines for aquaculture.
Collapse
Affiliation(s)
- Carla L Gutiérrez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma. Valparaíso, Chile CREAS, Centro Regional de Alimentos Saludables, Valparaíso, Chile NBC, Núcleo de Biotecnología Curauma, Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma. Valparaíso, Chile CREAS, Centro Regional de Alimentos Saludables, Valparaíso, Chile NBC, Núcleo de Biotecnología Curauma, Curauma, Valparaíso, Chile
| | - Javier Gimpel
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma. Valparaíso, Chile CREAS, Centro Regional de Alimentos Saludables, Valparaíso, Chile NBC, Núcleo de Biotecnología Curauma, Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma. Valparaíso, Chile CREAS, Centro Regional de Alimentos Saludables, Valparaíso, Chile NBC, Núcleo de Biotecnología Curauma, Curauma, Valparaíso, Chile
| | - Carolina Escobar
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma. Valparaíso, Chile CREAS, Centro Regional de Alimentos Saludables, Valparaíso, Chile NBC, Núcleo de Biotecnología Curauma, Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma. Valparaíso, Chile CREAS, Centro Regional de Alimentos Saludables, Valparaíso, Chile NBC, Núcleo de Biotecnología Curauma, Curauma, Valparaíso, Chile
| | - Sergio H Marshall
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma. Valparaíso, Chile CREAS, Centro Regional de Alimentos Saludables, Valparaíso, Chile NBC, Núcleo de Biotecnología Curauma, Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma. Valparaíso, Chile CREAS, Centro Regional de Alimentos Saludables, Valparaíso, Chile NBC, Núcleo de Biotecnología Curauma, Curauma, Valparaíso, Chile
| | - Vitalia Henríquez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma. Valparaíso, Chile CREAS, Centro Regional de Alimentos Saludables, Valparaíso, Chile NBC, Núcleo de Biotecnología Curauma, Curauma, Valparaíso, ChileLaboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias. Pontificia Universidad Católica de Valparaíso. Avenida Universidad 330, Campus Curauma. Valparaíso, Chile CREAS, Centro Regional de Alimentos Saludables, Valparaíso, Chile NBC, Núcleo de Biotecnología Curauma, Curauma, Valparaíso, Chile
| |
Collapse
|
9
|
Rosales-Mendoza S, Paz-Maldonado LMT, Soria-Guerra RE. Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. PLANT CELL REPORTS 2012; 31:479-94. [PMID: 22080228 DOI: 10.1007/s00299-011-1186-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 05/03/2023]
Abstract
Chlamydomonas reinhardtii has many advantages compared with traditional systems for the molecular farming of recombinant proteins. These include low production costs, rapid scalability at pilot level, absence of human pathogens and the ability to fold and assemble complex proteins accurately. Currently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its usefulness for biotechnological applications. However, several factors affect the level of recombinant protein expression in Chlamydomonas such as enhancer elements, codon dependency, sensitivity to proteases and transformation-associated genotypic modification. The present review outlines a number of strategies to increase protein yields and summarizes recent achievements in algal protein production including biopharmaceuticals such as vaccines, antibodies, hormones and enzymes with implications on health-related approaches. The current status of bioreactor developments for algal culture and the challenges of scale-up and optimization processes are also discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, SLP, Mexico.
| | | | | |
Collapse
|
10
|
Tangphatsornruang S, Birch-Machin I, Newell CA, Gray JC. The effect of different 3' untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco. PLANT MOLECULAR BIOLOGY 2011; 76:385-96. [PMID: 20859755 DOI: 10.1007/s11103-010-9689-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 09/07/2010] [Indexed: 05/11/2023]
Abstract
The 3' untranslated region (3' UTR) of transcripts is a major determinant of transcript stability in plastids and plays an important role in regulating gene expression. In order to compare the effect of different 3' UTRs on transgene expression in tobacco chloroplasts, the 3' UTRs from the tobacco chloroplast rbcL, psbA, petD and rpoA genes and the terminator region of the Escherichia coli rrnB operon were inserted downstream of the gfp reporter gene under the control of the psbA promoter, and the constructs were introduced into the plastid genome by particle bombardment. RNA-gel blot analysis of homoplasmic transplastomic plants identified gfp transcripts of ~1.0 and ~1.4 kb from all constructs and showed that plants expressing gfp with the rrnB terminator contained 4 times more gfp transcripts than plants expressing gfp with the rbcL and rpoA 3' UTRs. The amounts of transcripts accumulated roughly correlated with the half-life of the transcripts, determined by RNA-gel blot analysis of transcripts present in leaves treated with actinomycin D to prevent continued transcription of the chimeric gfp genes. Transcripts containing the 3' region of rrnB were most stable, with half-lives of ~43 h, considerably longer than the half-lives of the other ~1.0 kb gfp transcripts (13-26 h). Immunoblot analysis with antibodies to GFP indicated that all plants contained about the same amount of GFP (~0.2% total soluble protein), suggesting either that translation was limited by something other than the amount of transcript or that the 3' UTR was affecting translation.
Collapse
|
11
|
Braun EL, Kimball RT, Han KL, Iuhasz-Velez NR, Bonilla AJ, Chojnowski JL, Smith JV, Bowie RCK, Braun MJ, Hackett SJ, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Reddy S, Sheldon FH, Witt CC, Yuri T. Homoplastic microinversions and the avian tree of life. BMC Evol Biol 2011; 11:141. [PMID: 21612607 PMCID: PMC3123225 DOI: 10.1186/1471-2148-11-141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 05/25/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Microinversions are cytologically undetectable inversions of DNA sequences that accumulate slowly in genomes. Like many other rare genomic changes (RGCs), microinversions are thought to be virtually homoplasy-free evolutionary characters, suggesting that they may be very useful for difficult phylogenetic problems such as the avian tree of life. However, few detailed surveys of these genomic rearrangements have been conducted, making it difficult to assess this hypothesis or understand the impact of microinversions upon genome evolution. RESULTS We surveyed non-coding sequence data from a recent avian phylogenetic study and found substantially more microinversions than expected based upon prior information about vertebrate inversion rates, although this is likely due to underestimation of these rates in previous studies. Most microinversions were lineage-specific or united well-accepted groups. However, some homoplastic microinversions were evident among the informative characters. Hemiplasy, which reflects differences between gene trees and the species tree, did not explain the observed homoplasy. Two specific loci were microinversion hotspots, with high numbers of inversions that included both the homoplastic as well as some overlapping microinversions. Neither stem-loop structures nor detectable sequence motifs were associated with microinversions in the hotspots. CONCLUSIONS Microinversions can provide valuable phylogenetic information, although power analysis indicates that large amounts of sequence data will be necessary to identify enough inversions (and similar RGCs) to resolve short branches in the tree of life. Moreover, microinversions are not perfect characters and should be interpreted with caution, just as with any other character type. Independent of their use for phylogenetic analyses, microinversions are important because they have the potential to complicate alignment of non-coding sequences. Despite their low rate of accumulation, they have clearly contributed to genome evolution, suggesting that active identification of microinversions will prove useful in future phylogenomic studies.
Collapse
Affiliation(s)
- Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Kin-Lan Han
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | | | - Amber J Bonilla
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Jena L Chojnowski
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Jordan V Smith
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Rauri CK Bowie
- Zoology Department, Field Museum of Natural History, 1400 S. Lakeshore Drive, Chicago, IL 60605, USA
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael J Braun
- Department of Vertebrate Zoology, Smithsonian Institution, 4210 Silver Hill Road, Suitland, MD 20746, USA
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD 20742, USA
| | - Shannon J Hackett
- Zoology Department, Field Museum of Natural History, 1400 S. Lakeshore Drive, Chicago, IL 60605, USA
| | - John Harshman
- Zoology Department, Field Museum of Natural History, 1400 S. Lakeshore Drive, Chicago, IL 60605, USA
- 4869 Pepperwood Way, San Jose, CA 95124, USA
| | - Christopher J Huddleston
- Department of Vertebrate Zoology, Smithsonian Institution, 4210 Silver Hill Road, Suitland, MD 20746, USA
| | - Ben D Marks
- Museum of Natural Science and Department of Biological Sciences, 119 Foster Hall, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kathleen J Miglia
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - William S Moore
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Sushma Reddy
- Zoology Department, Field Museum of Natural History, 1400 S. Lakeshore Drive, Chicago, IL 60605, USA
- Biology Department, Loyola University Chicago, Chicago, IL 60626, USA
| | - Frederick H Sheldon
- Museum of Natural Science and Department of Biological Sciences, 119 Foster Hall, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Christopher C Witt
- Museum of Natural Science and Department of Biological Sciences, 119 Foster Hall, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Tamaki Yuri
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Department of Vertebrate Zoology, Smithsonian Institution, 4210 Silver Hill Road, Suitland, MD 20746, USA
- Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK 73072, USA
| |
Collapse
|
12
|
Gao L, Zhou Y, Wang ZW, Su YJ, Wang T. Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers. BMC PLANT BIOLOGY 2011; 11:64. [PMID: 21486489 PMCID: PMC3098776 DOI: 10.1186/1471-2229-11-64] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/13/2011] [Indexed: 05/12/2023]
Abstract
BACKGROUND The rpoB-psbZ (BZ) region of some fern plastid genomes (plastomes) has been noted to go through considerable genomic changes. Unraveling its evolutionary dynamics across all fern lineages will lead to clarify the fundamental process shaping fern plastome structure and organization. RESULTS A total of 24 fern BZ sequences were investigated with taxon sampling covering all the extant fern orders. We found that: (i) a tree fern Plagiogyria japonica contained a novel gene order that can be generated from either the ancestral Angiopteris type or the derived Adiantum type via a single inversion; (ii) the trnY-trnE intergenic spacer (IGS) of the filmy fern Vandenboschia radicans was expanded 3-fold due to the tandem 27-bp repeats which showed strong sequence similarity with the anticodon domain of trnY; (iii) the trnY-trnE IGSs of two horsetail ferns Equisetum ramosissimum and E. arvense underwent an unprecedented 5-kb long expansion, more than a quarter of which was consisted of a single type of direct repeats also relevant to the trnY anticodon domain; and (iv) ycf66 has independently lost at least four times in ferns. CONCLUSIONS Our results provided fresh insights into the evolutionary process of fern BZ regions. The intermediate BZ gene order was not detected, supporting that the Adiantum type was generated by two inversions occurring in pairs. The occurrence of Vandenboschia 27-bp repeats represents the first evidence of partial tRNA gene duplication in fern plastomes. Repeats potentially forming a stem-loop structure play major roles in the expansion of the trnY-trnE IGS.
Collapse
Affiliation(s)
- Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yuan Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhi-Wei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ying-Juan Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ting Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
13
|
|
14
|
Iglesias R, Pérez Y, Citores L, Ferreras JM, Méndez E, Girbés T. Elicitor-dependent expression of the ribosome-inactivating protein beetin is developmentally regulated. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1215-1223. [PMID: 18343888 DOI: 10.1093/jxb/ern030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BE27 and BE29 are two forms of beetin, a virus-inducible type 1 ribosome-inactivating protein isolated from leaves of Beta vulgaris L. Western blot analysis revealed the presence of beetin forms in adult plants but not in germ or young plants, indicating that the expression of these proteins is developmentally regulated. While beetins are expressed only in adult plants, their transcripts are present through all stages of development. In addition, the treatment of B. vulgaris leaves with mediators of plant-acquired resistance such as salicylic acid and hydrogen peroxide promoted the expression of beetin by induction of its transcript, but only in adult plants. The plant expresses three mRNAs which differ only in their 3' untranslated region. All these observations suggest a dual regulation of beetin expression, i.e. at the post-transcriptional and transcriptional levels. Additionally, total RNA isolated from leaves treated with hydrogen peroxide, which express high levels of active beetin, is not de-adenylated by endogenous beetin, nor in vitro by the addition of BE27, thus suggesting that sugar beet ribosomes are resistant to beetin.
Collapse
Affiliation(s)
- Rosario Iglesias
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Valladolid, E-47005 Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Goldschmidt-Clermont M, Rahire M, Rochaix JD. Redundant cis-acting determinants of 3' processing and RNA stability in the chloroplast rbcL mRNA of Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:566-577. [PMID: 17996019 DOI: 10.1111/j.1365-313x.2007.03365.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We have designed a screen for mutants affected in 3' maturation of the chloroplast rbcL mRNA in Chlamydomonas reinhardtii. We inserted a spectinomycin resistance cassette, 5'atpA::aadA::3'rbcL, in a peripheral domain of tscA, the gene for a small non-coding RNA involved in trans-splicing of psaA. Depending on the orientation of the cassette, a polar effect was observed which was due to processing at the 3'rbcL element: the chimeric tscA RNA was truncated and splicing of psaA was blocked. We selected phenotypic revertants of this insertion mutant that restored psaA splicing, which correlated with the presence of chimeric transcripts that regained the 3' part of tscA. We analyzed two nuclear and six chloroplast suppressors. Five chloroplast mutations altered a short element in the center of the second inverted repeat in the 3'rbcL (IR2), and one deleted a larger region including this element. These mutations revealed a cis-acting element in IR2 which is required for 3' processing. When the same mutations were inserted in the 3' untranslated region (UTR) of the native rbcL gene, the rbcL mRNA accumulated to normal levels, but in strong alleles its 3' end was located upstream, near the end of the first inverted repeat (IR1). Deletion of either IR1 or IR2 allowed stable accumulation of rbcL mRNA, but deletion of both resulted in its complete absence. This indicated that the two inverted repeats function as redundant mRNA stability determinants in the 3' UTR of rbcL.
Collapse
Affiliation(s)
- Michel Goldschmidt-Clermont
- Departments of Molecular Biology and of Plant Biology, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | | | | |
Collapse
|
16
|
Zicker AA, Kadakia CS, Herrin DL. Distinct roles for the 5' and 3' untranslated regions in the degradation and accumulation of chloroplast tufA mRNA: identification of an early intermediate in the in vivo degradation pathway. PLANT MOLECULAR BIOLOGY 2007; 63:689-702. [PMID: 17180456 DOI: 10.1007/s11103-006-9117-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 11/13/2006] [Indexed: 05/13/2023]
Abstract
Elongation factor Tu in Chlamydomonas reinhardtii is a chloroplast-encoded gene (tufA) whose 1.7-kb mRNA has a relatively short half-life. In the presence of chloramphenicol (CAP), which freezes translating chloroplast ribosomes, a 1.5-kb tufA RNA becomes prominent. Rifampicin-chase analysis indicates that the 1.5-kb RNA is a degradation intermediate, and mapping studies show that it is missing 176-180 nucleotides from the 5' end of tufA. The 5' terminus of the intermediate maps to a section of the untranslated region (UTR) predicted to be highly structured and to encode a small ORF. The intermediate could be detected in older cultures in the absence of CAP, indicating that it is not an artifact of drug treatment. Also, it did not overaccumulate in the chloroplast ribosome-deficient mutant, ac20 cr1, indicating its stabilization is specific to elongation-arrested ribosomes. To determine if the 5' UTR of tufA is destabilizing, the corresponding region of the atpA-aadA-rbcL gene was replaced with the tufA sequence, and introduced into the chloroplast genome; the 3' UTR was also substituted for comparison. Analysis of these transformants showed that the transcripts containing the tufA 3'-UTR accumulate to significantly lower levels. Data from constructs based on the vital reporter, Renilla luciferase, confirmed the importance of the tufA 3'-UTR in determining RNA levels, and suggested that the 5' UTR of tufA affects translation efficiency. These data indicate that the in vivo degradation of tufA mRNA begins in the 5' UTR, and is promoted by translation. The data also suggest, however, that the level of the mature RNA is determined more by the 3' UTR than the 5' UTR.
Collapse
Affiliation(s)
- Alicia A Zicker
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, School of Biological Sciences, University of Texas at Austin, 1 University Station A6700, Austin, TX 78712, USA
| | | | | |
Collapse
|
17
|
Calsa Jr. T, Figueira A. Citrus plastid-related gene profiling based on expressed sequence tag analyses. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Guo CH, Terachi T. Variations in a hotspot region of chloroplast DNAs among common wheat and Aegilops revealed by nucleotide sequence analysis. Genes Genet Syst 2006; 80:277-85. [PMID: 16284421 DOI: 10.1266/ggs.80.277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The second largest BamHI fragment (B2) of the chloroplast DNA in Triticum (wheat) and Aegilops contains a highly variable region (a hotspot), resulting in four types of B2 of different size, i.e. B2l (10.5kb), B2m (10.2kb), B2 (9.6kb) and B2s (9.4kb). In order to gain a better understanding of the molecular nature of the variations in length and explain unexpected identity among B2 of Ae. ovata, Ae. speltoides and common wheat (T. aestivum), the nucleotide sequence between a stop codon of rbcL and a HindIII site in cemA in the hotspot was determined for Ae. ovata, Ae. speltoides, Ae. caudata and Ae. mutica. The total number of nucleotides in the region was 2808, 2810, 3302, and 3594 bp, for Ae. speltoides, Ae. ovata, Ae. caudata and Ae. mutica, respectively, and the sequences were compared with the corresponding ones of Ae. crassa 4x, T. aestivum and Ae. squarrosa. Compared with the largest B2l fragment of Ae. mutica, a 791bp and a 793 bp deletion were found in Ae. speltoides and Ae. ovata, respectively, and the possible site of deletion in the two species is the same as that of T. aestivum. However, a deleted segment in Ae. ovata is 2 bp longer than that of Ae. speltoides (and T. aestivum), demonstrating that recurrent deletions had occurred in the chloroplast genomes of both species. Comparison of the sequences from Ae. caudata and Ae. crassa 4x with that of Ae. mutica revealed a 289 bp and a 61 bp deletion at the same site in Ae. caudata and Ae. crassa 4x, respectively. Sequence comparison using wild Aegilops plants showed that the large length variations in a hotspot are fixed to each species. A considerable number of polymorphisms are observed in a loop in the 3' of rbcL. The study reveals the relative importance of the large and small indels and minute inversions to account for variations in the chloroplast genomes among closely related species.
Collapse
Affiliation(s)
- Chang-Hong Guo
- Laboratory of Genetics, Faculty of Biology, Harbin Normal University, Heilongjiang, PR China
| | | |
Collapse
|
19
|
Baek KH, Skinner DZ. Differential mRNA stability to endogenous ribonucleases of the coding region and 3' untranslated regions of wheat (Triticum aestivum L.) manganese superoxide dismutase genes. PLANT CELL REPORTS 2006; 25:133-9. [PMID: 16240120 DOI: 10.1007/s00299-005-0046-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 07/18/2005] [Accepted: 07/22/2005] [Indexed: 05/04/2023]
Abstract
The sequences of the 3' untranslated region (UTR) of the manganese superoxide dismutase (MnSOD) genes in wheat (Triticum aestivum) were found to be quite variable with different predicted thermostabilities. The degradation rates of the 3' UTR variants and the coding region were measured following exposure to endogenous nucleases. The degradation rates of the 3' UTR variants for 15 min were not significantly different, meaning the degradation rates of the 3' UTR variants were not directly related to the thermostabilities. However, the degradation rate of the coding region was significantly faster than those of the 3' UTR variants. Further investigation revealed the coding region seemed to have specific sites for degradation, indicating a possibility of increasing MnSOD expression by the degradation site alteration.
Collapse
Affiliation(s)
- Kwang-Hyun Baek
- Department of Crop and Soil Sciences, Washington State University, WA 99164-6420, USA
| | | |
Collapse
|
20
|
Baek KH, Skinner DZ. Differential expression of manganese superoxide dismutase sequence variants in near isogenic lines of wheat during cold acclimation. PLANT CELL REPORTS 2006; 25:223-30. [PMID: 16308702 DOI: 10.1007/s00299-005-0073-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 09/29/2005] [Accepted: 10/02/2005] [Indexed: 05/05/2023]
Abstract
Numerous sequence variants of wheat (Triticum aestivum L.) manganese superoxide dismutase (MnSOD) genes have been found. Quantitative real-time PCR was used to measure the expression levels of three MnSOD genes distinguished by a variable amino acid, and three genes distinguished by sequence variation in the 3' untranslated region (3' UTR), in wheat plants grown at 20 degrees C and cold-acclimated for 1-4 weeks at 2 degrees C. The amino acid variants did not differ significantly in expression levels, however, differential expression of genes differing in the 3' UTR was observed. Diploid wheat-related species also carried sequence variants of MnSOD, with differing levels of expression, suggesting diversification of the MnSOD gene family occurred prior to the polyploidization events of hexaploid wheat.
Collapse
Affiliation(s)
- Kwang-Hyun Baek
- Department of Crop and Soil Sciences, 210 Johnson Hall, Washington State University, Pullman, WA 99164-6420, USA
| | | |
Collapse
|
21
|
Klinkert B, Elles I, Nickelsen J. Translation of chloroplast psbD mRNA in Chlamydomonas is controlled by a secondary RNA structure blocking the AUG start codon. Nucleic Acids Res 2006; 34:386-94. [PMID: 16410618 PMCID: PMC1331992 DOI: 10.1093/nar/gkj433] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 12/21/2005] [Accepted: 12/21/2005] [Indexed: 11/28/2022] Open
Abstract
Translation initiation represents a key step during regulation of gene expression in chloroplasts. Here, we report on the identification and characterization of three suppressor point mutations which overcome a translational defect caused by the deletion of a U-rich element in the 5'-untranslated region (5'-UTR) of the psbD mRNA in the green alga Chlamydomonas reinhardtii. All three suppressors affect a secondary RNA structure encompassing the psbD AUG initiation codon within a double-stranded region as judged by the analysis of site-directed chloroplast mutants as well as in vitro RNA mapping experiments using RNase H. In conclusion, the data suggest that these new element serves as a negative regulator which mediates a rapid shut-down of D2 synthesis.
Collapse
Affiliation(s)
- Birgit Klinkert
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150D-44780 Bochum, Germany
| | - Ingolf Elles
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150D-44780 Bochum, Germany
| | - Jörg Nickelsen
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150D-44780 Bochum, Germany
| |
Collapse
|
22
|
Barnes D, Franklin S, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP. Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 2005; 274:625-36. [PMID: 16231149 DOI: 10.1007/s00438-005-0055-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/05/2005] [Indexed: 10/25/2022]
Abstract
Expression of chloroplast genes is primarily regulated posttranscriptionally, and a number of RNA elements, found in either the 5'- or 3'-untranslated regions (UTRs) of plastid mRNAs, that impact gene expression have been identified. Complex regulatory and feedback mechanisms influence both translation and protein accumulation, making assignment of roles for specific RNA elements difficult. To identify specific contributions made by various UTRs on translation of plastid mRNAs, we used a heterologous gfp reporter gene that is fused combinatorially to chloroplast 5'- and 3'-UTRs. In general, the 5'-UTR, including the promoter, of the plastid atpA and psbD genes produced the highest levels of chimeric mRNA and protein accumulation, while the 5'-UTR of the rbcL and psbA genes produced less mRNA and protein. Varying the 3'-UTR had little impact on mRNA and protein accumulation, as long as a 3'-UTR was present. Overall, accumulation of chimeric mRNAs was proportional to protein accumulation, with a few notable exceptions. Light-regulated translation continues to operate in chimeric mRNAs containing the 5'-UTR of either the psbA or psbD mRNAs, despite translation of these two chimeric mRNAs at very different efficiencies, suggesting that translational efficiency and light-regulated translation are separate events. Translation of some chimeric mRNAs was much more efficient than others, suggesting that interactions between the untranslated and coding sequences can dramatically impact translational efficiency.
Collapse
Affiliation(s)
- Dwight Barnes
- Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Randle CP, Wolfe AD. The evolution and expression of RBCL in holoparasitic sister-genera Harveya and Hyobanche (Orobanchaceae). AMERICAN JOURNAL OF BOTANY 2005; 92:1575-1585. [PMID: 21646175 DOI: 10.3732/ajb.92.9.1575] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The evolution of holoparasitism decreases the adaptive value of genes maintaining the photosynthetic apparatus. These may become pseudogenes through insertion or deletion events resulting in frameshift mutations, or by the evolution of premature stop codons. The holoparasitic sister genera Harveya and Hyobanche have undergone alternate pathways of evolution and expression at the plastid locus rbcL. An open reading frame in all but a single species of Harveya is maintained by purifying selection and is expressed. However, the function of Rubisco in this putative holoparasite is unknown. Conversely, Hyobanche has undergone rbcL pseudogene formation, and comparison of synonymous and nonsynonymous rates of evolution indicates that selection has not played a role in its evolution. This is complicated by the following findings: multiple pseudogene copies of rbcL exist in tissues of Hyobanche, rbcL transcripts also encode pseudogenes, and the large subunit is present in some tissues of Hyobanche. We hypothesize that the rbcL operon is in a state of degradation as may be expected in a holoparasite and is not endogenously expressed. Rather, the large subunit may be taken up from the host plants, and accumulate in tissues as a result of transpiration.
Collapse
Affiliation(s)
- Christopher P Randle
- Department of Ecology and Evolutionary Biology and the Natural History Museum, University of Kansas, 1200 Sunnyside Ave., Lawrence, Kansas 66045 USA
| | | |
Collapse
|
24
|
Jiao HS, Hicks A, Simpson C, Stern DB. Short dispersed repeats in the Chlamydomonas chloroplast genome are collocated with sites for mRNA 3' end formation. Curr Genet 2004; 45:311-22. [PMID: 14760508 DOI: 10.1007/s00294-004-0487-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 12/26/2003] [Accepted: 12/31/2003] [Indexed: 10/26/2022]
Abstract
The Chlamydomonas reinhardtii chloroplast genome possesses thousands of small dispersed repeats (SDRs), which are of unknown function. Here, we used the petA gene as a model to investigate the role of SDRs in mRNA 3' end formation. In wild-type cells, petA mRNA accumulated as a major 1.3-kb transcript, whose 3' end was mapped to the distal end of a predicted stem-loop structure. To determine whether this stem-loop was required for petA mRNA stability, a series of deletions was constructed. These deletion strains accumulated a variety of petA mRNAs, for which approximate 3' ends were deduced. These 3' ends were found to flank stem-loop structures, many of which were formed partially or completely from inverted copies of SDRs. All strains accumulated wild-type levels of cytochrome f, demonstrating that alternative 3' termini are compatible with efficient translation. The ability to form alternative mRNA termini using SDRs lends additional flexibility to the chloroplast gene expression apparatus and thus could confer an evolutionary advantage.
Collapse
Affiliation(s)
- Henry S Jiao
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
25
|
Salvador ML, Suay L, Anthonisen IL, Klein U. Changes in the 5'-untranslated region of the rbcL gene accelerate transcript degradation more than 50-fold in the chloroplast of Chlamydomonas reinhardtii. Curr Genet 2003; 45:176-82. [PMID: 14628153 DOI: 10.1007/s00294-003-0470-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2003] [Revised: 10/25/2003] [Accepted: 10/29/2003] [Indexed: 10/26/2022]
Abstract
Using uidA (beta-glucuronidase; GUS) reporter gene constructs, the 5'-untranslated region (UTR) of the Chlamydomonas chloroplast rbcL gene was screened by deletion and mutational analysis for the presence of a promoter element that previous studies implied to reside within the first 63 base pairs of the UTR. Deleting a large segment of the rbcL 5'UTR in a 3'-->5' direction to position +36, changing the remaining 36 base pairs at the 5' end of the UTR, and increasing by five base pairs the distance between the rbcL 5'UTR and the basic promoter element located at position -10 did not abolish transcription from the basic rbcL promoter. It is concluded that the apparent loss of transcriptional activity found in earlier studies after deletion of sequences downstream of the transcription initiation site is due to the synthesis of very unstable transcripts that escape detection by Northern analysis and in vivo transcription assays. Chimeric rbcL:GUS transcripts containing changes in the beginning of the 5'UTR that affect RNA secondary structure are estimated to be at least 50 times less stable than rbcL:GUS transcripts containing the non-modified rbcL 5'UTR sequence.
Collapse
Affiliation(s)
- Maria Luisa Salvador
- Department of Biochemistry and Molecular Biology, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
26
|
Hicks A, Drager RG, Higgs DC, Stern DB. An mRNA 3' processing site targets downstream sequences for rapid degradation in Chlamydomonas chloroplasts. J Biol Chem 2002; 277:3325-33. [PMID: 11724790 DOI: 10.1074/jbc.m108979200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Chlamydomonas chloroplasts, atpB pre-mRNA matures through a two-step process. Initially, endonuclease cleavage occurs 8-10 nt downstream of the mature 3' end, which itself lies at the end of a stem-loop-forming inverted repeat (IR) sequence. This intermediate product is then trimmed by a 3' -->5' exonuclease activity. Although the initial endonucleolytic cleavage by definition generates two products, the downstream product of atpB pre-mRNA endonucleolytic processing cannot be detected, even transiently. This product thus appears to be highly unstable, and it can be hypothesized that specific mechanisms exist to prevent its accumulation. In experiments described here, the atpB 3' maturation site was placed upstream of reporter genes in vivo. Constructs containing both the IR and endonuclease cleavage site (ECS) did not accumulate the reporter gene mRNA, whereas constructs containing only the IR did accumulate the reporter mRNA. The ECS alone gave an intermediate result, suggesting that the IR and ECS act synergistically. Additional secondary structures were used to test whether 5' -->3' and/or 3' -->5' exonuclease activities mediated degradation. Because these structures did not prevent degradation, rapid endonucleolytic cleavages most likely trigger RNA destruction after ECS cleavage. On the other hand, fragments resulting from cleavage within the endogenous atpB mRNA could occasionally be detected as antisense transcripts of the adjacent reporter genes. Because endonuclease cleavages are also involved in the 5' maturation of chloroplast mRNAs, where only the downstream cleavage product accumulates, it appears that chloroplast endoribonuclease activities have evolved mechanisms to selectively stabilize different ECS products.
Collapse
Affiliation(s)
- Amanda Hicks
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
27
|
Nakamura T, Ohta M, Sugiura M, Sugita M. Chloroplast ribonucleoproteins function as a stabilizing factor of ribosome-free mRNAs in the stroma. J Biol Chem 2001; 276:147-52. [PMID: 11038367 DOI: 10.1074/jbc.m008817200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-transcriptional RNA processing is an important step in the regulation of chloroplast gene expression, and a number of chloroplast ribonucleoproteins (cpRNPs) are likely to be involved in this process. The major tobacco cpRNPs are composed of five species: cp28, cp29A, cp29B, cp31, and cp33 and these are divided into three groups (I, II, and III). By immunoprecipitation, gel filtration, and Western blot analysis, we demonstrated that these cpRNPs are abundant stromal proteins that exist as complexes with ribosome-free mRNAs. Many ribosome-free psbA mRNAs coprecipitate with cpRNPs, indicating that the majority of stromal psbA mRNAs are associated with cpRNPs. In addition, an in vitro mRNA degradation assay indicated that exogenous psbA mRNA is more rapidly degraded in cpRNP-depleted extracts than in nondepleted extracts. When the depleted extract was reconstituted with recombinant cpRNPs, the psbA mRNA in the extract was protected from degradation to a similar extent as the psbA mRNA in the nondepleted extract. Moreover, restoration of the stabilizing activity varied following addition of individual group-specific cpRNPs alone or in combination. When the five cpRNPs were supplemented in the depleted extract, full activity was restored. We propose that these cpRNPs act as stabilizing factors for nonribosome-bound mRNAs in the stroma.
Collapse
Affiliation(s)
- T Nakamura
- Center for Gene Research, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
28
|
Abstract
The conversion of genetic information stored in DNA into a protein product proceeds through the obligatory intermediate of messenger RNA. The steady-state level of an mRNA is determined by its relative synthesis and degradation rates, i.e., an interplay between transcriptional regulation and control of RNA stability. When the biological status of an organism requires that a gene product's abundance varies as a function of developmental stage, environmental factors or intracellular signals, increased or decreased RNA stability can be the determining factor. RNA stability and processing have long been known as important regulatory points in chloroplast gene expression. Here we summarize current knowledge and prospects relevant to these processes, emphasizing biochemical data. The extensive literature on nuclear mutations affecting chloroplast RNA metabolism is reviewed in another article in this volume (Barkan and Goldschmidt-Clermont, this issue).
Collapse
Affiliation(s)
- R A Monde
- Boyce Thompson Institute for Plant Research, Tower Rd., Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
29
|
Patenge N, Haase A, Bolhuis H, Oesterhelt D. The gene for a halophilic beta-galactosidase (bgaH) of Haloferax alicantei as a reporter gene for promoter analyses in Halobacterium salinarum. Mol Microbiol 2000; 36:105-13. [PMID: 10760167 DOI: 10.1046/j.1365-2958.2000.01831.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Investigations of transcriptional regulation and the characterization of promoters in homologous expression systems are most easily performed using suitable reporter genes. Presumably because of the high internal salt concentration in halophilic Archaea, the successful application of the commonly used reporter genes has not been reported so far. Recently, the gene for an extremely halophilic beta-galactosidase (bgaH) from Haloferax alicantei has become available. After transformation of Halobacterium salinarum with a vector-carrying bgaH, the enzyme activity in cell lysates could be readily determined by a simple colorimetric assay and colonies could be screened for activity on plates containing Xgal substrate. Expression of bgaH under the control of various halobacterial promoters of known strength led to different specific beta-galactosidase activities in the lysates. Using Northern blot hybridization and semiquantitative RT-PCR, it was shown that the bgaH transcript level corresponded to the specific enzyme activity. Therefore, the bgaH gene of Haloferax alicantei appears to be a useful tool for in vivo studies of gene expression in Halobacterium salinarum and possibly other halophilic Archaea.
Collapse
Affiliation(s)
- N Patenge
- Max-Planck Institute of Biochemistry, Department of Membrane Biochemistry, Am Klopferspitz 18A, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
30
|
Levy H, Kindle KL, Stern DB. Target and specificity of a nuclear gene product that participates in mRNA 3'-end formation in Chlamydomonas chloroplasts. J Biol Chem 1999; 274:35955-62. [PMID: 10585484 DOI: 10.1074/jbc.274.50.35955] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chloroplast mRNA maturation is catalyzed by nucleus-encoded processing enzymes. We previously described a recessive nuclear mutation (crp3) that affects 3'-end formation of several chloroplast mRNAs in Chlamydomonas reinhardtii (Levy, H., Kindle, K. L., and Stern, D. B. (1997) Plant Cell 9, 825-836). In the crp3 background, atpB mRNA lacking a 3'-inverted repeat normally required for stability accumulates as a discrete transcript. The mutation also affects the atpA gene cluster; polycistronic mRNAs with psbI or cemA 3'-ends accumulate to a lower level in the crp3 background. Here, we demonstrate that the crp3 mutation also alters 3'-end formation of psbI mRNA and cemA-containing mRNAs. A novel 3'-end is formed in monocistronic psbI transcripts, and this is the only terminus observed when the psbI 3'-untranslated region is fused to an aadA reporter gene. Accumulation of mRNAs with 3'-ends between cemA and atpH, which is immediately downstream, was reduced. However, this sequence was not recognized as a 3'-end formation element in chimeric genes. The crp3 mutation was able to confer stability to three different atpB 3'-stem-loop-disrupting mutations that lack sequence similarity, but are located at a similar distance from the translation termination codon. We propose that the wild-type CRP3 gene product is part of the general 3' --> 5' processing machinery.
Collapse
Affiliation(s)
- H Levy
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853-1801, USA
| | | | | |
Collapse
|
31
|
Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop HU. In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:333-345. [PMID: 10476080 DOI: 10.1046/j.1365-313x.1999.00543.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
5' and 3' untranslated regions (UTRs) of plastid RNAs act as regulatory elements for post-transcriptional control of gene expression. Polyethylene glycol-mediated plastid transformation with UTR-GUS reporter gene fusions was used to study the function of the psbA, rbcL and rpl32 UTRs in vivo. All gene fusions were expressed from the same promoter, i.e. the promoter of the 16S-rRNA gene, such that variations in RNA and protein levels would be due to the involved UTR elements alone. Transgenic tobacco lines containing different combinations of UTRs showed fivefold variation in the uidA-mRNA level (RNA stability) and approximately 100-fold differences in GUS activity, a measure of translation activity. The rbcL 5'-UTR conferred greater mRNA stability than the psbA 5'-UTR on uidA transcripts. In contrast, the psbA 5'-UTR enhanced translation of GUS to a much greater extent compared to the rbcL 5'-UTR. The psbA 5'-UTR also mediated light-induced activation of translation which was not observed with other constructs. Deletion mutagenesis of an unanalysed terminal sequence element of the psbA 5'-UTR resulted in a twofold drop in uidA-mRNA level and a fourfold decrease in translation efficiency. Exchange of 3'-UTRs results in up to fivefold changes of mRNA levels and does not significantly influence translation efficiency. The mechanical impacts of these results on plastid translation regulation are discussed.
Collapse
|
32
|
Holländer V, Kück U. Group II intron splicing in chloroplasts: identificationof mutations determining intron stability and fate of exon RNA. Nucleic Acids Res 1999; 27:2345-53. [PMID: 10325424 PMCID: PMC148801 DOI: 10.1093/nar/27.11.2345] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In order to investigate in vivo splicing of group II introns in chloroplasts, we previously have integrated the mitochondrial intron rI1 from the green alga Scenedesmus obliquus into the Chlamydomonas chloroplast tscA gene. This construct allows a functional analysis of conserved intron sequences in vivo, since intron rI1 is correctly spliced in chloroplasts. Using site-directed mutagenesis, deletions of the conserved intron domains V and VI were performed. In another set of experiments, each possible substitution of the strictly conserved first intron nucleotide G1 was generated, as well as each possible single and double mutation of the tertiary base pairing gamma-gamma ' involved in the formation of the intron's tertiary RNA structure. In most cases, the intron mutations showed the same effect on in vivo intron splicing efficiency as they did on the in vitro self-splicing reaction, since catalytic activity is provided by the intron RNA itself. In vivo, all mutations have additional effects on the chimeric tscA -rI1 RNA, most probably due to the role played by trans -acting factors in intron processing. Substitutions of the gamma-gamma ' base pair lead to an accumulation of excised intron RNA, since intron stability is increased. In sharp contrast to autocatalytic splicing, all point mutations result in a complete loss of exon RNA, although the spliced intron accumulates to high levels. Intron degradation and exon ligation only occur in double mutants with restored base pairing between the gamma and gamma' sites. Therefore, we conclude that intron degradation, as well as the ligation of exon-exon molecules, depends on the tertiary intron structure. Furthermore, our data suggest that intron excision proceeds in vivo independent of ligation of exon-exon molecules.
Collapse
Affiliation(s)
- V Holländer
- Lehrstuhl für Allgemeine Botanik, Fakultät für Biologie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
33
|
Rott R, Levy H, Drager RG, Stern DB, Schuster G. 3'-Processed mRNA is preferentially translated in Chlamydomonas reinhardtii chloroplasts. Mol Cell Biol 1998; 18:4605-11. [PMID: 9671470 PMCID: PMC109046 DOI: 10.1128/mcb.18.8.4605] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
3'-end processing of nucleus-encoded mRNAs includes the addition of a poly(A) tail that is important for translation initiation. Since the vast majority of chloroplast mRNAs acquire their 3' termini by processing yet are not polyadenylated, we asked whether 3' end maturation plays a role in chloroplast translation. A general characteristic of the 3' untranslated regions of chloroplast mRNAs is an inverted repeat (IR) sequence that can fold into a stem-loop structure. These stem-loops and their flanking sequences serve as RNA 3'-end formation signals. Deletion of the Chlamydomonas chloroplast atpB 3' IR in strain Delta26 results in reduced accumulation of atpB transcripts and the chloroplast ATPase beta-subunit, leading to weakly photosynthetic growth. Of the residual atpB mRNA in Delta26, approximately 1% accumulates as a discrete RNA of wild-type size, while the remainder is heterogeneous in length due to the lack of normal 3' end maturation. In this work, we have analyzed whether these unprocessed atpB transcripts are actively translated in vivo. We found that only the minority population of discrete transcripts of wild-type size is associated with polysomes and thus accounts for the ATPase beta-subunit which accumulates in Delta26. Analysis of chloroplast rbcL mRNA revealed that transcripts extending beyond the mature 3' end were not polysome associated. These results suggest that 3'-end processing of chloroplast mRNA is required for or strongly stimulates its translation.
Collapse
Affiliation(s)
- R Rott
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
34
|
Drapier D, Suzuki H, Levy H, Rimbault B, Kindle KL, Stern DB, Wollman FA. The chloroplast atpA gene cluster in Chlamydomonas reinhardtii. Functional analysis of a polycistronic transcription unit. PLANT PHYSIOLOGY 1998; 117:629-41. [PMID: 9625716 PMCID: PMC34983 DOI: 10.1104/pp.117.2.629] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/1997] [Accepted: 03/19/1998] [Indexed: 05/19/2023]
Abstract
Most chloroplast genes in vascular plants are organized into polycistronic transcription units, which generate a complex pattern of mono-, di-, and polycistronic transcripts. In contrast, most Chlamydomonas reinhardtii chloroplast transcripts characterized to date have been monocistronic. This paper describes the atpA gene cluster in the C. reinhardtii chloroplast genome, which includes the atpA, psbI, cemA, and atpH genes, encoding the alpha-subunit of the coupling-factor-1 (CF1) ATP synthase, a small photosystem II polypeptide, a chloroplast envelope membrane protein, and subunit III of the CF0 ATP synthase, respectively. We show that promoters precede the atpA, psbI, and atpH genes, but not the cemA gene, and that cemA mRNA is present only as part of di-, tri-, or tetracistronic transcripts. Deletions introduced into the gene cluster reveal, first, that CF1-alpha can be translated from di- or polycistronic transcripts, and, second, that substantial reductions in mRNA quantity have minimal effects on protein synthesis rates. We suggest that posttranscriptional mRNA processing is common in C. reinhardtii chloroplasts, permitting the expression of multiple genes from a single promoter.
Collapse
Affiliation(s)
- D Drapier
- Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | | | | | |
Collapse
|