1
|
Ni Y, Zhang X, Li J, Lu Q, Chen H, Ma B, Liu C. Genetic diversity of Coffea arabica L. mitochondrial genomes caused by repeat- mediated recombination and RNA editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1261012. [PMID: 37885664 PMCID: PMC10598636 DOI: 10.3389/fpls.2023.1261012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Background Coffea arabica L. is one of the most important crops widely cultivated in 70 countries across Asia, Africa, and Latin America. Mitochondria are essential organelles that play critical roles in cellular respiration, metabolism, and differentiation. C. arabica's nuclear and chloroplast genomes have been reported. However, its mitochondrial genome remained unreported. Here, we intended to sequence and characterize its mitochondrial genome to maximize the potential of its genomes for evolutionary studies, molecular breeding, and molecular marker developments. Results We sequenced the total DNA of C. arabica using Illumina and Nanopore platforms. We then assembled the mitochondrial genome with a hybrid strategy using Unicycler software. We found that the mitochondrial genome comprised two circular chromosomes with lengths of 867,678 bp and 153,529 bp, encoding 40 protein-coding genes, 26 tRNA genes, and three rRNA genes. We also detected 270 Simple Sequence Repeats and 34 tandem repeats in the mitochondrial genome. We found 515 high-scoring sequence pairs (HSPs) for a self-to-self similarity comparison using BLASTn. Three HSPs were found to mediate recombination by the mapping of long reads. Furthermore, we predicted 472 using deep-mt with the convolutional neural network model. Then we randomly validated 90 RNA editing events by PCR amplification and Sanger sequencing, with the majority being non-synonymous substitutions and only three being synonymous substitutions. These findings provide valuable insights into the genetic characteristics of the C. arabica mitochondrial genome, which can be helpful for future study on coffee breeding and mitochondrial genome evolution. Conclusion Our study sheds new light on the evolution of C. arabica organelle genomes and their potential use in genetic breeding, providing valuable data for developing molecular markers that can improve crop productivity and quality. Furthermore, the discovery of RNA editing events in the mitochondrial genome of C. arabica offers insights into the regulation of gene expression in this species, contributing to a better understanding of coffee genetics and evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chang Liu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Bergero R, Levsen N, Wolff K, Charlesworth D. Arms races with mitochondrial genome soft sweeps in a gynodioecious plant, Plantago lanceolata. Mol Ecol 2019; 28:2772-2785. [PMID: 31100183 DOI: 10.1111/mec.15121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 11/26/2022]
Abstract
Biological situations involving conflict can create arms race situations with repeated fixations of different functional variants, producing selective sweeps and lowering neutral diversity in genome regions linked to the functional locus. However, they can sometimes lead to balancing selection, potentially creating long coalescent times for sites with functionally different variants, and, if recombination occurs rarely, for extended haplotypes carrying such variants. We tested between these possibilities in a gynodioecious plant, Plantago lanceolata, in which cytoplasmic male-sterility factors conflict with nuclear restorers of male fertility. We find low mitochondrial diversity, which does not support very long-term coexistence of highly diverged mitochondrial haplotypes. Interestingly, however, we found a derived haplotype that is associated with male fertility in a restricted geographic region, and that has fixed differences from the ancestral sequence in several genes, suggesting that it did not arise very recently. Taken together, the results suggest arms race events that involved "soft" selective sweeps involving a moderately old-established haplotype, consistent with the frequency fluctuations predicted by theoretical models of gynodioecy.
Collapse
Affiliation(s)
- Roberta Bergero
- Ashworth Laboratory, School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - Nick Levsen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, UK
| | - Kirsten Wolff
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, UK
| | - Deborah Charlesworth
- Ashworth Laboratory, School of Biological Sciences, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Wu Z, Sloan DB, Brown CW, Rosenblueth M, Palmer JD, Ong HC. Mitochondrial Retroprocessing Promoted Functional Transfers of rpl5 to the Nucleus in Grasses. Mol Biol Evol 2017; 34:2340-2354. [PMID: 28541477 PMCID: PMC5850859 DOI: 10.1093/molbev/msx170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots. Multiple lines of evidence indicate that rpl5 has been functionally transferred to the nucleus at least three separate times in the grass family and that at least seven species have intact and transcribed (but not necessarily functional) copies in both the mitochondrion and nucleus. In two grasses, likely functional nuclear copies of rpl5 have been subject to recent gene conversion events via secondarily transferred mitochondrial copies in what we believe are the first described cases of mitochondrial-to-nuclear gene conversion. We show that rpl5 underwent a retroprocessing event within the mitochondrial genome early in the evolution of the grass family, which we argue predisposed the gene towards successful, DNA-mediated functional transfer by generating a "pre-edited" sequence.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Colin W. Brown
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX
| | | | | | | |
Collapse
|
4
|
Ma PF, Guo ZH, Li DZ. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses. PLoS One 2012; 7:e30297. [PMID: 22272330 PMCID: PMC3260276 DOI: 10.1371/journal.pone.0030297] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/13/2011] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. METHODOLOGY/PRINCIPAL FINDINGS We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. CONCLUSIONS/SIGNIFICANCE Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhen-Hua Guo
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - De-Zhu Li
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
5
|
Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 2012; 10:e1001241. [PMID: 22272183 PMCID: PMC3260318 DOI: 10.1371/journal.pbio.1001241] [Citation(s) in RCA: 410] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 11/30/2011] [Indexed: 11/28/2022] Open
Abstract
A pair of species within the genus Silene have evolved the largest known mitochondrial genomes, coinciding with extreme changes in mutation rate, recombination activity, and genome structure. Genome size and complexity vary tremendously among eukaryotic species and their organelles. Comparisons across deeply divergent eukaryotic lineages have suggested that variation in mutation rates may explain this diversity, with increased mutational burdens favoring reduced genome size and complexity. The discovery that mitochondrial mutation rates can differ by orders of magnitude among closely related angiosperm species presents a unique opportunity to test this hypothesis. We sequenced the mitochondrial genomes from two species in the angiosperm genus Silene with recent and dramatic accelerations in their mitochondrial mutation rates. Contrary to theoretical predictions, these genomes have experienced a massive proliferation of noncoding content. At 6.7 and 11.3 Mb, they are by far the largest known mitochondrial genomes, larger than most bacterial genomes and even some nuclear genomes. In contrast, two slowly evolving Silene mitochondrial genomes are smaller than average for angiosperms. Consequently, this genus captures approximately 98% of known variation in organelle genome size. The expanded genomes reveal several architectural changes, including the evolution of complex multichromosomal structures (with 59 and 128 circular-mapping chromosomes, ranging in size from 44 to 192 kb). They also exhibit a substantial reduction in recombination and gene conversion activity as measured by the relative frequency of alternative genome conformations and the level of sequence divergence between repeat copies. The evolution of mutation rate, genome size, and chromosome structure can therefore be extremely rapid and interrelated in ways not predicted by current evolutionary theories. Our results raise the hypothesis that changes in recombinational processes, including gene conversion, may be a central force driving the evolution of both mutation rate and genome structure. A fundamental challenge in evolutionary biology is to explain why organisms exhibit dramatic variation in genome size and complexity. One hypothesis predicts that high rates of mutation in DNA sequence create selection against large and complex genomes, which are more susceptible to mutational disruption. Species of flowering plants in the genus Silene vary by approximately 100-fold in the rates of mutation in their mitochondrial DNA, providing an excellent opportunity to test the predicted effects of high mutation rates on genome evolution. Contrary to expectation, Silene species with elevated mutation rates have experienced dramatic expansions in mitochondrial genome size compared to their slowly evolving relatives, resulting in the largest known mitochondrial genomes. In addition to the increases in size and mutation rate, these genomes also reveal a history of rapid change in genome structure. They have been fragmented into dozens of chromosomes and appear to have experienced major reductions in recombination activity. All of these changes have occurred in just the past few million years. This mitochondrial genome diversity within the genus Silene provides a striking example of rapid genomic change and raises new hypotheses regarding the relationship between mutation rate and genome evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America.
| | | | | | | | | | | | | |
Collapse
|
6
|
Rüdinger M, Fritz-Laylin L, Polsakiewicz M, Knoop V. Plant-type mitochondrial RNA editing in the protist Naegleria gruberi. RNA (NEW YORK, N.Y.) 2011; 17:2058-62. [PMID: 22025737 PMCID: PMC3222119 DOI: 10.1261/rna.02962911] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
RNA editing converts hundreds of cytidines into uridines in plant mitochondrial and chloroplast transcripts. Recognition of the RNA editing sites in the organelle transcriptomes requires numerous specific, nuclear-encoded RNA-binding pentatricopeptide repeat (PPR) proteins with characteristic carboxy-terminal protein domain extensions (E/DYW) previously thought to be unique to plants. However, a small gene family of such plant-like PPR proteins of the DYW-type was recently discovered in the genome of the protist Naegleria gruberi. This raised the possibility that plant-like RNA editing may occur in this amoeboflagellate. Accordingly, we have investigated the mitochondrial transcriptome of Naegleria gruberi and here report on identification of two sites of C-to-U RNA editing in the cox1 gene and in the cox3 gene, both of which reconstitute amino acid codon identities highly conserved in evolution. An estimated 1.5 billion years of evolution separate the heterolobosean protist Naegleria from the plant lineage. The new findings either suggest horizontal gene transfer of RNA editing factors or that plant-type RNA editing is evolutionarily much more ancestral than previously thought and yet to be discovered in many other ancient eukaryotic lineages.
Collapse
Affiliation(s)
- Mareike Rüdinger
- Department of Molecular Evolution, IZMB, University of Bonn, D-53115 Bonn, Germany
| | - Lillian Fritz-Laylin
- Department of Cellular and Molecular Pharmacology, San Francisco School of Medicine, University of California, San Francisco, California 94158, USA
| | - Monika Polsakiewicz
- Department of Molecular Evolution, IZMB, University of Bonn, D-53115 Bonn, Germany
| | - Volker Knoop
- Department of Molecular Evolution, IZMB, University of Bonn, D-53115 Bonn, Germany
- Corresponding author.E-mail .
| |
Collapse
|
7
|
Cuenca A, Petersen G, Seberg O, Davis JI, Stevenson DW. Are substitution rates and RNA editing correlated? BMC Evol Biol 2010; 10:349. [PMID: 21070620 PMCID: PMC2989974 DOI: 10.1186/1471-2148-10-349] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 11/11/2010] [Indexed: 11/19/2022] Open
Abstract
Background RNA editing is a post-transcriptional process that, in seed plants, involves a cytosine to uracil change in messenger RNA, causing the translated protein to differ from that predicted by the DNA sequence. RNA editing occurs extensively in plant mitochondria, but large differences in editing frequencies are found in some groups. The underlying processes responsible for the distribution of edited sites are largely unknown, but gene function, substitution rate, and gene conversion have been proposed to influence editing frequencies. Results We studied five mitochondrial genes in the monocot order Alismatales, all showing marked differences in editing frequencies among taxa. A general tendency to lose edited sites was observed in all taxa, but this tendency was particularly strong in two clades, with most of the edited sites lost in parallel in two different areas of the phylogeny. This pattern is observed in at least four of the five genes analyzed. Except in the groups that show an unusually low editing frequency, the rate of C-to-T changes in edited sites was not significantly higher that in non-edited 3rd codon positions. This may indicate that selection is not actively removing edited sites in nine of the 12 families of the core Alismatales. In all genes but ccmB, a significant correlation was found between frequency of change in edited sites and synonymous substitution rate. In general, taxa with higher substitution rates tend to have fewer edited sites, as indicated by the phylogenetically independent correlation analyses. The elimination of edited sites in groups that lack or have reduced levels of editing could be a result of gene conversion involving a cDNA copy (retroprocessing). If so, this phenomenon could be relatively common in the Alismatales, and may have affected some groups recurrently. Indirect evidence of retroprocessing without a necessary correlation with substitution rate was found mostly in families Alismataceae and Hydrocharitaceae (e.g., groups that suffered a rapid elimination of all their edited sites, without a change in substitution rate). Conclusions The effects of substitution rate, selection, and/or gene conversion on the dynamics of edited sites in plant mitochondria remain poorly understood. Although we found an inverse correlation between substitution rate and editing frequency, this correlation is partially obscured by gene retroprocessing in lineages that have lost most of their edited sites. The presence of processed paralogs in plant mitochondria deserves further study, since most evidence of their occurrence is circumstantial.
Collapse
Affiliation(s)
- Argelia Cuenca
- The Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83 Opg, S, DK-1307 Copenhagen C, Denmark.
| | | | | | | | | |
Collapse
|
8
|
Knoop V, Rüdinger M. DYW-type PPR proteins in a heterolobosean protist: Plant RNA editing factors involved in an ancient horizontal gene transfer? FEBS Lett 2010; 584:4287-91. [DOI: 10.1016/j.febslet.2010.09.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/21/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
|
9
|
Extensive loss of RNA editing sites in rapidly evolving Silene mitochondrial genomes: selection vs. retroprocessing as the driving force. Genetics 2010; 185:1369-80. [PMID: 20479143 DOI: 10.1534/genetics.110.118000] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Theoretical arguments suggest that mutation rates influence the proliferation and maintenance of RNA editing. We identified RNA editing sites in five species within the angiosperm genus Silene that exhibit highly divergent mitochondrial mutation rates. We found that mutational acceleration has been associated with rapid loss of mitochondrial editing sites. In contrast, we did not find a significant difference in the frequency of editing in chloroplast genes, which lack the mutation rate variation observed in the mitochondrial genome. As found in other angiosperms, the rate of substitution at RNA editing sites in Silene greatly exceeds the rate at synonymous sites, a pattern that has previously been interpreted as evidence for selection against RNA editing. Alternatively, we suggest that editing sites may experience higher rates of C-to-T mutation than other portions of the genome. Such a pattern could be caused by gene conversion with reverse-transcribed mRNA (i.e., retroprocessing). If so, the genomic distribution of RNA editing site losses in Silene suggests that such conversions must be occurring at a local scale such that only one or two editing sites are affected at a time. Because preferential substitution at editing sites appears to occur in angiosperms regardless of the mutation rate, we conclude that mitochondrial rate accelerations within Silene have "fast-forwarded" a preexisting pattern but have not fundamentally changed the evolutionary forces acting on RNA editing sites.
Collapse
|
10
|
Hendrickson PG, Silliker ME. RNA editing is absent in a single mitochondrial gene of Didymium iridis. Mycologia 2010; 102:1288-94. [PMID: 20943545 DOI: 10.3852/10-019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An open reading frame (ORF) was found in the mitochondrial genome of the Pan2-16 strain of Didymium iridis that showed high similarity to the NADH dehydrogenase subunit 3 (nad3) gene in other organisms. So far all other typical mitochondrial genes identified in this organism require RNA editing to generate ORFs capable of directing protein synthesis. The D. iridis sequence was compared to the putative nad3 gene in the related myxomycete Physarum polycephalum, which would require editing. Based on this comparison, editing sites could be predicted for the P. polycelphalum gene that would result in the synthesis of a highly conserved ND3 protein between the two organisms. To determine the editing status of the nad3 gene in other D. iridis strains, PCR was used to amplify this region from eight other independent isolates of the A1 Central American interbreeding series. In each case a 378 base pair ORF was detected by PCR amplification and sequencing. Three patterns of sequence variation were observed; however all base substitutions were in the third codon position and silent with respect to the amino acids encoded. The distribution of the sequence variants was mapped geographically. The requirement for RNA editing in all other typical mitochondrial genes of D. iridis and P. polycephalum and the presence of RNA editing in the nad3 gene of P. polycephalum suggest that the D. iridis nad3 gene might have been edited at one time. We propose that the D. iridis nad3 gene may have lost the requirement for RNA editing by reverse transcription of an edited transcript that subsequently was inserted into the genome.
Collapse
Affiliation(s)
- Peter G Hendrickson
- Children's Memorial Research Center, Immunology Department, 2300 Children's Plaza, Mailstop 212, Chicago, Illinois 60614, USA
| | | |
Collapse
|
11
|
Sloan DB, Oxelman B, Rautenberg A, Taylor DR. Phylogenetic analysis of mitochondrial substitution rate variation in the angiosperm tribe Sileneae. BMC Evol Biol 2009; 9:260. [PMID: 19878576 PMCID: PMC2777880 DOI: 10.1186/1471-2148-9-260] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 10/31/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent phylogenetic studies have revealed that the mitochondrial genome of the angiosperm Silene noctiflora (Caryophyllaceae) has experienced a massive mutation-driven acceleration in substitution rate, placing it among the fastest evolving eukaryotic genomes ever identified. To date, it appears that other species within Silene have maintained more typical substitution rates, suggesting that the acceleration in S. noctiflora is a recent and isolated evolutionary event. This assessment, however, is based on a very limited sampling of taxa within this diverse genus. RESULTS We analyzed the substitution rates in 4 mitochondrial genes (atp1, atp9, cox3 and nad9) across a broad sample of 74 species within Silene and related genera in the tribe Sileneae. We found that S. noctiflora shares its history of elevated mitochondrial substitution rate with the closely related species S. turkestanica. Another section of the genus (Conoimorpha) has experienced an acceleration of comparable magnitude. The phylogenetic data remain ambiguous as to whether the accelerations in these two clades represent independent evolutionary events or a single ancestral change. Rate variation among genes was equally dramatic. Most of the genus exhibited elevated rates for atp9 such that the average tree-wide substitution rate for this gene approached the values for the fastest evolving branches in the other three genes. In addition, some species exhibited major accelerations in atp1 and/or cox3 with no correlated change in other genes. Rates of non-synonymous substitution did not increase proportionally with synonymous rates but instead remained low and relatively invariant. CONCLUSION The patterns of phylogenetic divergence within Sileneae suggest enormous variability in plant mitochondrial mutation rates and reveal a complex interaction of gene and species effects. The variation in rates across genomic and phylogenetic scales raises questions about the mechanisms responsible for the evolution of mutation rates in plant mitochondrial genomes.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Bengt Oxelman
- Department of Plant and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anja Rautenberg
- Department of Systematic Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Douglas R Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
12
|
Pei DS, Sun YH, Chen SP, Wang YP, Zhu ZY. Cloning and characterization ofcytochrome c oxidase subunit I(COXI) inGobiocypris rarus. ACTA ACUST UNITED AC 2009; 18:1-8. [PMID: 17364807 DOI: 10.1080/10425170600699752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In study of gene expression profile in cloned embryos which derived from D. rerio embryonic nuclei and G. rarus enucleated eggs, cytochrome c oxidase subunit I (COXI) of G. rarus, exhibiting difference at expression level between cloned embryos and zebrafish embryo, was cloned. Its full cDNA length is 1654 bp and contains a 1551 bp open reading frame, encoding a 5.64 kDa protein of 516 amino acids. The alignment result shows that mitochondrion tRNAser is co-transcripted with COXI, which just was the 3'-UTR of COXI. Molecular phylogenic analysis based on COXI indicates G. rarus should belong to Gobioninae, which was not in agreement with previous study according to morphological taxonomy. Comparison of DNA with cDNA shows that RNA editing phenomenon does not occur in the COXI of G. rarus.
Collapse
Affiliation(s)
- De-Sheng Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences. Wuhan, 430072. P.R. China
| | | | | | | | | |
Collapse
|
13
|
The horsetail Equisetum arvense mitochondria share two group I introns with the liverwort Marchantia, acquired a novel group II intron but lost intron-encoded ORFs. Curr Genet 2008; 55:69-79. [PMID: 19112563 DOI: 10.1007/s00294-008-0225-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 12/16/2022]
Abstract
We studied the genomic structure and RNA editing of mitochondrial cox1, cox2, cob and atp9 from the horsetail Equisetum arvense, a representative of an old fern lineage. Editing of cox1, cob and atp9 mRNAs occur only by C-to-U transitions. No changes were found in cox2 transcripts constituting one of the rare examples of unedited mitochondrial mRNA in land plants. From three intervening sequences in cox1, cox1i395 and cox1i624 are group IB introns homologous to the Marchantia polymorpha cox1 introns, and cox1i747 is a group IIA intron different to other introns found in plant mtDNA. The group II intron cox2i373 is very similar to other introns found in cox2 from vascular plants. While cob and atp9 have no introns and display the gene structure found in seed plants, various nucleotide substitutions abolish the only potential ORF, a LAGLIDADG endonuclease present in cox1i395. Thus, E. arvense mitochondria conserve two group I introns from non-vascular plants, probably inherited from a common ancestor with liverworts. Analogous to seed plants, E. arvense has no potential mitochondrial splicing factors encoded in these introns. This is the first report concerning the presence of vertically inherited group I introns in vascular plant mitochondria.
Collapse
|
14
|
Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD. Frequent, phylogenetically local horizontal transfer of the cox1 group I Intron in flowering plant mitochondria. Mol Biol Evol 2008; 25:1762-77. [PMID: 18524785 DOI: 10.1093/molbev/msn129] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Horizontal gene transfer is surprisingly common among plant mitochondrial genomes. The first well-established case involves a homing group I intron in the mitochondrial cox1 gene shown to have been frequently acquired via horizontal transfer in angiosperms. Here, we report extensive additional sampling of angiosperms, including 85 newly sequenced introns from 30 families. Analysis of all available data leads us to conclude that, among the 640 angiosperms (from 212 families) whose cox1 intron status has been characterized thus far, the intron has been acquired via roughly 70 separate horizontal transfer events. We propose that the intron was originally seeded into angiosperms by a single transfer from fungi, with all subsequent inferred transfers occurring from one angiosperm to another. The pattern of angiosperm-to-angiosperm transfer is biased toward exchanges between plants belonging to the same family. Illegitimate pollination is proposed as one potential factor responsible for this pattern, given that aberrant, cross-species pollination is more likely between close relatives. Other potential factors include shared vectoring agents or common geographic locations. We report the first apparent cases of loss of the cox1 intron; losses are accompanied by retention of the exonic coconversion tract, which is located immediately downstream of the intron and which is a product of the intron's self-insertion mechanism. We discuss the many reasons why the cox1 intron is so frequently and detectably transferred, and rarely lost, and conclude that it should be regarded as the "canary in the coal mine" with respect to horizontal transfer in angiosperm mitochondria.
Collapse
|
15
|
Jaramillo-Correa JP, Aguirre-Planter E, Khasa DP, Eguiarte LE, Piñero D, Furnier GR, Bousquet J. Ancestry and divergence of subtropical montane forest isolates: molecular biogeography of the genus Abies (Pinaceae) in southern México and Guatemala. Mol Ecol 2008; 17:2476-90. [PMID: 18422927 DOI: 10.1111/j.1365-294x.2008.03762.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The genus Abies has a complex history in southern México and Guatemala. In this region, four closely related species, Abies flinckii, A. guatemalensis, A. hickelii, and A. religiosa, are distributed in fragmented and isolated montane populations. Range-wide genetic variation was investigated across species using cytoplasmic DNA markers with contrasted inheritance. Variation at two maternally inherited mitochondrial DNA markers was low. All species shared two of the nine mitotypes detected, while the remaining seven mitochondrial DNA types were restricted to a few isolated stands. Mitochondrial genetic differentiation across taxa was high (G(ST) = 0.933), it was not related to the taxonomic identity (amova; P > 0.05) of the populations, and it was not phylogeographically structured (G(ST) approximately N(ST)). In contrast, variation at three paternally inherited chloroplast DNA microsatellites was high. Chloroplast genetic differentiation was lower (G(ST) = 0.402; R(ST) = 0.547) than for mitochondrial DNA, but it was significantly related to taxonomy (amova; P < 0.001), and exhibited a significant phylogeographical structure (G(ST) < R(ST)). Different analyses of population structure indicated that A. flinckii was the most divergent taxon, while the remaining three species formed a relatively homogeneous group. However, a small number of the populations of these three taxa, all located at the limits of their respective ranges or in the Transverse Volcanic Belt, diverged from this main cluster. These trends suggest that the Mesoamerican Abies share a recent common ancestor and that their divergence and speciation is mainly driven by genetic drift and isolation during the warm interglacial periods.
Collapse
Affiliation(s)
- Juan P Jaramillo-Correa
- Canada Research Chair in Forest and Environmental Genomics and Centre for Forest Research, Pavillon Charles-Eugène Marchand, Université Laval, Québec, Québec, Canada G1K 7P4.
| | | | | | | | | | | | | |
Collapse
|
16
|
Mower JP. Modeling Sites of RNA Editing as a Fifth Nucleotide State Reveals Progressive Loss of Edited Sites from Angiosperm Mitochondria. Mol Biol Evol 2007; 25:52-61. [DOI: 10.1093/molbev/msm226] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
17
|
Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol 2007; 7:135. [PMID: 17688696 PMCID: PMC1973135 DOI: 10.1186/1471-2148-7-135] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Accepted: 08/09/2007] [Indexed: 11/25/2022] Open
Abstract
Background It has long been known that rates of synonymous substitutions are unusually low in mitochondrial genes of flowering and other land plants. Although two dramatic exceptions to this pattern have recently been reported, it is unclear how often major increases in substitution rates occur during plant mitochondrial evolution and what the overall magnitude of substitution rate variation is across plants. Results A broad survey was undertaken to evaluate synonymous substitution rates in mitochondrial genes of angiosperms and gymnosperms. Although most taxa conform to the generality that plant mitochondrial sequences evolve slowly, additional cases of highly accelerated rates were found. We explore in detail one of these new cases, within the genus Silene. A roughly 100-fold increase in synonymous substitution rate is estimated to have taken place within the last 5 million years and involves only one of ten species of Silene sampled in this study. Examples of unusually slow sequence evolution were also identified. Comparison of the fastest and slowest lineages shows that synonymous substitution rates vary by four orders of magnitude across seed plants. In other words, some plant mitochondrial lineages accumulate more synonymous change in 10,000 years than do others in 100 million years. Several perplexing cases of gene-to-gene variation in sequence divergence within a plant were uncovered. Some of these probably reflect interesting biological phenomena, such as horizontal gene transfer, mitochondrial-to-nucleus transfer, and intragenomic variation in mitochondrial substitution rates, whereas others are likely the result of various kinds of errors. Conclusion The extremes of synonymous substitution rates measured here constitute by far the largest known range of rate variation for any group of organisms. These results highlight the utility of examining absolute substitution rates in a phylogenetic context rather than by traditional pairwise methods. Why substitution rates are generally so low in plant mitochondrial genomes yet occasionally increase dramatically remains mysterious.
Collapse
|
18
|
Mulligan RM, Chang KLC, Chou CC. Computational analysis of RNA editing sites in plant mitochondrial genomes reveals similar information content and a sporadic distribution of editing sites. Mol Biol Evol 2007; 24:1971-81. [PMID: 17591603 DOI: 10.1093/molbev/msm125] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A computational analysis of RNA editing sites was performed on protein-coding sequences of plant mitochondrial genomes from Arabidopsis thaliana, Beta vulgaris, Brassica napus, and Oryza sativa. The distribution of nucleotides around edited and unedited cytidines was compared in 41 nucleotide segments and included 1481 edited cytidines and 21,390 unedited cytidines in the 4 genomes. The distribution of nucleotides was examined in 1, 2, and 3 nucleotide windows by comparison of nucleotide frequency ratios and relative entropy. The relative entropy analyses indicate that information is encoded in the nucleotide sequences in the 5 prime flank (-18 to -14, -13 to -10, -6 to -4, -2/-1) and the immediate 3 prime flanking nucleotide (+1), and these regions may be important in editing site recognition. The relative entropy was large when 2 or 3 nucleotide windows were analyzed, suggesting that several contiguous nucleotides may be involved in editing site recognition. RNA editing sites were frequently preceded by 2 pyrimidines or AU and followed by a guanidine (HYCG) in the monocot and dicot mitochondrial genomes, and rarely preceded by 2 purines. Analysis of chloroplast editing sites from a dicot, Nicotiana tabacum, and a monocot, Zea mays, revealed a similar distribution of nucleotides around editing sites (HYCA). The similarity of this motif around editing sites in monocots and dicots in both mitochondria and chloroplasts suggests that a mechanistic basis for this motif exists that is common in these different organelle and phylogenetic systems. The preferred sequence distribution around RNA editing sites may have an important impact on the acquisition of editing sites in evolution because the immediate sequence context of a cytidine residue may render a cytidine editable or uneditable, and consequently determine whether a T to C mutation at a specific position may be corrected by RNA editing. The distribution of editing sites in many protein-coding sequences is shown to be non-random with editing sites clustered in groups separated by regions with no editing sites. The sporadic distribution of editing sites could result from a mechanism of editing site loss by gene conversion utilizing edited sequence information, possibly through an edited cDNA intermediate.
Collapse
Affiliation(s)
- R Michael Mulligan
- Department of Developmental and Cell Biology, University of California, Irvine, USA.
| | | | | |
Collapse
|
19
|
Lopez L, Picardi E, Quagliariello C. RNA editing has been lost in the mitochondrial cox3 and rps13 mRNAs in Asparagales. Biochimie 2006; 89:159-67. [PMID: 17092626 DOI: 10.1016/j.biochi.2006.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 09/15/2006] [Indexed: 11/25/2022]
Abstract
RNA editing in plant mitochondria alters the RNA sequence by converting C-to-U or U-to-C at a specific site. We investigated the requirement for RNA editing in the complete genomic sequences of the gene encoding the cytochrome oxidase subunit III (cox3) and the ribosomal protein S13 (rps13) in 59 closely related species within the Asparagales and Liliales (monocots). To obtain a comprehensive picture of the degree of variation in editing we explored the non-synonymous RNA editing sites within the newly sequenced cox3 and rps13 genes by a comparative phylogenetic approach. RNA editing is predicted to occur in all the surveyed species, but to different extents. Zero to one non-synonymous editing site is inferred in the cox3 mRNA in species from Amaryllidaceae and Iridaceae. No RNA editing of rps13 mRNAs is required in Amaryllidaceae, because all respective genomic sequences resemble the edited version of the mRNAs of other analysed land plants. The observed absence of cox3 and rps13 RNA editing in Iridaceae and Amaryllidaceae and the striking RNA editing reduction of ccb2 in the latter family is likely generated by recombination and reverse transcription mediated events involving edited mitochondrial transcripts.
Collapse
Affiliation(s)
- L Lopez
- Dipartimento di Biologia Cellulare, Università della Calabria, Ponte P. Bucci, Cubo 4C, 87030 Arcavacata di Rende, Italy
| | | | | |
Collapse
|
20
|
Godbout J, Jaramillo-Correa JP, Beaulieu J, Bousquet J. A mitochondrial DNA minisatellite reveals the postglacial history of jack pine (Pinus banksiana), a broad-range North American conifer. Mol Ecol 2006; 14:3497-512. [PMID: 16156818 DOI: 10.1111/j.1365-294x.2005.02674.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Jack pine (Pinus banksiana Lamb.) is a broadly distributed North American conifer and its current range was covered by the Laurentian ice sheet during the last glacial maximum. To infer about the history and postglacial colonization of this boreal species, range-wide genetic variation was assessed using a new and highly variable minisatellite-like marker of the mitochondrial genome. Among the 543 trees analysed, 14 distinct haplotypes were detected, which corresponded to different repeat numbers of the 32-nucleotide minisatellite-like motif. Several haplotypes were rare with limited distribution, suggesting recent mutation events during the Holocene. At the population level, an average of 2.6 haplotypes and a mean haplotype diversity (H) of 0.328 were estimated. Population subdivision of genetic diversity was quite high with G(ST) and R(ST) values of 0.569 and 0.472, respectively. Spatial analyses identified three relatively homogeneous groups of populations presumably representative of genetically distinct glacial populations, one west and one east of the Appalachian Mountains in the United States and a third one presumably on the unglaciated northeastern coastal area in Canada. These results indicate the significant role of the northern part of the US Appalachian Mountains as a factor of vicariance during the ice age. A fourth distinct group of populations was observed in central Québec where the continental glacier retreated last. It included populations harbouring haplotypes present into the three previous groups, and it had higher level of haplotype diversity per population (H = 0.548) and lower population differentiation (G(ST) = 0.265), which indicates a zone of suture or secondary contact between the migration fronts of the three glacial populations. Introgression from Pinus contorta Dougl. var. latifolia Engelm. was apparent in one western population from Alberta. Altogether, these results indicate that the mitochondrial DNA variation of jack pine is geographically highly structured and it correlates well with large-scale patterns emerging from recent phylogeographical studies of other tree boreal species in North America.
Collapse
Affiliation(s)
- Julie Godbout
- Chaire de recherche du Canada en génomique forestière et environnementale and Centre de recherche en biologie forestière, Pavillon C.-E. Marchand, Université Laval, Sainte-Foy, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
21
|
Regina TMR, Picardi E, Lopez L, Pesole G, Quagliariello C. A novel additional group II intron distinguishes the mitochondrial rps3 gene in gymnosperms. J Mol Evol 2005; 60:196-206. [PMID: 15785848 DOI: 10.1007/s00239-004-0098-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 09/09/2004] [Indexed: 10/25/2022]
Abstract
Comparative analysis of the ribosomal protein S3 gene (rps3) in the mitochondrial genome of Cycas with newly sequenced counterparts from Magnolia and Helianthus and available sequences from higher plants revealed that the positional clustering with the genes for ribosomal protein S19 (rps19) and L16 (rpl16) is preserved in gymnosperms. However, in contrast to the other land plant species, the rps3 gene in Cycas mitochondria is unique in possessing a second intron: rps3i2. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of the transcripts generated from the rps19-rps3-rpl16 cluster in Cycas mitochondria demonstrated that the genes are cotranscribed and extensively modified by RNA editing and that both introns are efficiently spliced. Despite remarkable size heterogeneity, the Cycas rps3i1 can be shown to be homologous to the group IIA introns present within the rps3 gene of algae and land plants, including Magnolia and Helianthus. Conversely, sequences similar to the rps3i2 have not been reported previously. On the basis of conserved primary and secondary structure the second intervening sequence interrupting the Cycas rps3 gene has been classified as a group II intron. The close relationship of the rps3i2 to a group of different plant mitochondrial introns is intriguing and suggestive of a mitochondrial derivation for this novel intervening sequence. Interestingly, the rps3i2 appears to be conserved at the same gene location in other gymnosperms. Furthermore, the pattern of the rps3i2 distribution among algae and land plants provides evidence for the evolutionary acquisition of this novel intron in gymnosperms via intragenomic transposition or retrotransposition.
Collapse
MESH Headings
- Base Sequence
- Cycas/genetics
- DNA, Mitochondrial/genetics
- DNA, Plant/genetics
- Evolution, Molecular
- Genes, Plant
- Genome, Plant
- Helianthus/genetics
- Introns
- Magnolia/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plant Proteins/genetics
- RNA Editing
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomal Proteins/genetics
- Species Specificity
Collapse
Affiliation(s)
- Teresa M R Regina
- Dipartimento di Biologia Cellulare, Università degli Studi della Calabria, 87036 Arcavacata di Rende, Italy
| | | | | | | | | |
Collapse
|
22
|
Acheré V, Faivre Rampant P, Pâques LE, Prat D. Chloroplast and mitochondrial molecular tests identify European x Japanese larch hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:1643-1649. [PMID: 14991107 DOI: 10.1007/s00122-004-1595-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 01/05/2003] [Indexed: 05/24/2023]
Abstract
Hybrids between European and Japanese larches combine the properties of both parental species (drought resistance, canker resistance, stem straightness) and exhibit a fast growth rate. They are produced in seed orchards, generally by natural pollination. Seeds are collected and used for afforestation as interspecific hybrids. However, there are no convenient tests to assess the interspecific hybrid proportion. In the present study, we developed diagnostic molecular markers suitable for the individual identification of hybrids, whatever their developmental stage. Our strategy involved testing a combination of maternally inherited markers from the mitochondrial genome (mtDNA) and paternally inherited markers from the chloroplast genome (cpDNA). Hybrids were then identified by the presence of a mitochondrial sequence inherited from one parental species and a chloroplast sequence inherited from the other parental species. To achieve this aim, markers discriminating both parental species were first sought. Amplifications of mitochondrial and chloroplast sequences were performed using specific PCR primers. After testing 33 primer pairs in combination with nine restriction enzymes, we detected one mitochondrial marker, f13 which was amplified in Japanese larch and absent in European larch, and one chloroplast marker, ll- TaqI which showed different restriction patterns depending on the species. A restriction fragment of 601 bp was obtained in Japanese larch while two fragments of 120 bp and 481 bp were observed in European larch. These patterns were found in all 197 individuals tested from the two pure species. These markers were then used for the evaluation of the hybrid proportion in a seed lot produced from seed orchards; this was assessed as between 43% and 53% depending on the parental species. The male and female parental species could be determined for each progeny.
Collapse
Affiliation(s)
- V Acheré
- INRA, Unité Amélioration, Génétique et Physiologie Forestières, Avenue de la Pomme de Pin, BP 20619 Ardon, 45166 Olivet, Cedex, France
| | | | | | | |
Collapse
|
23
|
Jaramillo-Correa JP, Bousquet J, Beaulieu J, Isabel N, Perron M, Bouillé M. Cross-species amplification of mitochondrial DNA sequence-tagged-site markers in conifers: the nature of polymorphism and variation within and among species in Picea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 106:1353-1367. [PMID: 12750779 DOI: 10.1007/s00122-002-1174-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2002] [Accepted: 08/20/2002] [Indexed: 05/24/2023]
Abstract
Primers previously developed to amplify specific non-coding regions of the mitochondrial genome in Angiosperms, and new primers for additional non-coding mtDNA regions, were tested for their ability to direct DNA amplification in 12 conifer taxa and to detect sequence-tagged-site (STS) polymorphisms within and among eight species in Picea. Out of 12 primer pairs, nine were successful at amplifying mtDNA in most of the taxa surveyed. In conifers, indels and substitutions were observed for several loci, allowing them to distinguish between families, genera and, in some cases, between species within genera. In Picea, interspecific polymorphism was detected for four loci, while intraspecific variation was observed for three of the mtDNA regions studied. One of these (SSU rRNA V1 region) exhibited indel polymorphisms, and the two others ( nad1 intron b/c and nad5 intron1) revealed restriction differences after digestion with Sau3AI (PCR-RFLP). A fourth locus, the nad4L- orf25 intergenic region, showed a multibanding pattern for most of the spruce species, suggesting a possible gene duplication. Maternal inheritance, expected for mtDNA in conifers, was observed for all polymorphic markers except the intergenic region nad4L- orf25. Pooling of the variation observed with the remaining three markers resulted in two to six different mtDNA haplotypes within the different species of Picea. Evidence for intra-genomic recombination was observed in at least two taxa. Thus, these mitotypes are likely to be more informative than single-locus haplotypes. They should be particularly useful for the study of biogeography and the dynamics of hybrid zones.
Collapse
Affiliation(s)
- J P Jaramillo-Correa
- Chaire de recherche du Canada en génomique forestière et environnementale and Centre de recherche en biologie forestière, Pavillon Charles-Eugène-Marchand, Université Laval, G1K 7P4, Sainte-Foy Québec, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Whittle CA, Johnston MO. Male-driven evolution of mitochondrial and chloroplastidial DNA sequences in plants. Mol Biol Evol 2002; 19:938-49. [PMID: 12032250 DOI: 10.1093/oxfordjournals.molbev.a004151] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although there is substantial evidence that, in animals, male-inherited neutral DNA evolves at a higher rate than female-inherited DNA, the relative evolutionary rate of male- versus female-inherited DNA has not been investigated in plants. We compared the substitution rates at neutral sites of maternally and paternally inherited organellar DNA in gymnosperms. The analysis provided substantial support for the presence of a higher evolutionary rate in both the mitochondrial and chloroplastidial DNA when the organelle was inherited paternally than when inherited maternally. These results suggest that, compared with eggs, sperm tend to carry a greater number of mutations in mitochondrial and chloroplastidial DNA. The existence of a male mutation bias in plants is remarkable because, unlike animals, the germ-lines are not separated from the somatic cells throughout an individual's lifetime. The data therefore suggest that even a brief period of male and female germ-line separation can cause gender-specific mutation rates. These results are the first to show that, at least in some species, germ-lines influence the number of mutations carried in the gametes. Possible causes of male mutation bias in plants are discussed.
Collapse
Affiliation(s)
- Carrie-Ann Whittle
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
25
|
Dvornyk V, Sirviö A, Mikkonen M, Savolainen O. Low nucleotide diversity at the pal1 locus in the widely distributed Pinus sylvestris. Mol Biol Evol 2002; 19:179-88. [PMID: 11801746 DOI: 10.1093/oxfordjournals.molbev.a004070] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nucleotide polymorphism in Scots pine (Pinus sylvestris) was studied in the gene encoding phenylalanine ammonia-lyase (Pal, EC 4.3.1.5). Scots pine, like many other pine species, has a large current population size. The observed levels of inbreeding depression suggest that Scots pine may have a high mutation rate to deleterious alleles. Many Scots pine markers such as isozymes, RFLPs, and microsatellites are highly variable. These observations suggest that the levels of nucleotide variation should be higher than those in other plant species. A 2,045-bp fragment of the pal1 locus was sequenced from five megagametophytes each from a different individual from each of four populations, from northern and southern Finland, central Russia, and northern Spain. There were 12 segregating sites in the locus. The synonymous site overall nucleotide diversity was only 0.0049. In order to compare pal1 with other pine genes, sequence was obtained from two alleles of 11 other loci (total length 4,606 bp). For these, the synonymous nucleotide diversity was 0.0056. These estimates are lower than those from other plants. This is most likely because of a low mutation rate, as estimated from between-pine species synonymous site divergence. In other respects, Scots pine has the characteristics of a species with a large effective population. There was no linkage disequilibrium even between closely linked sites. This resulted in high haplotype diversity (14 different haplotypes among 20 sequences). This could also give rise to high per locus diversity at the protein level. Divergence between populations in the main range was low, whereas an isolated Spanish population had slightly lower diversity and higher divergence than the remaining populations.
Collapse
|