1
|
Hummel G, Berr A, Graindorge S, Cognat V, Ubrig E, Pflieger D, Molinier J, Drouard L. Epigenetic silencing of clustered tRNA genes in Arabidopsis. Nucleic Acids Res 2020; 48:10297-10312. [PMID: 32941623 PMCID: PMC7544208 DOI: 10.1093/nar/gkaa766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/21/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Beyond their key role in translation, cytosolic transfer RNAs (tRNAs) are involved in a wide range of other biological processes. Nuclear tRNA genes (tDNAs) are transcribed by the RNA polymerase III (RNAP III) and cis-elements, trans-factors as well as genomic features are known to influence their expression. In Arabidopsis, besides a predominant population of dispersed tDNAs spread along the 5 chromosomes, some clustered tDNAs have been identified. Here, we demonstrate that these tDNA clusters are transcriptionally silent and that pathways involved in the maintenance of DNA methylation play a predominant role in their repression. Moreover, we show that clustered tDNAs exhibit repressive chromatin features whilst their dispersed counterparts contain permissive euchromatic marks. This work demonstrates that both genomic and epigenomic contexts are key players in the regulation of tDNAs transcription. The conservation of most of these regulatory processes suggests that this pioneering work in Arabidopsis can provide new insights into the regulation of RNA Pol III transcription in other organisms, including vertebrates.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Alexandre Berr
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Stéfanie Graindorge
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Valérie Cognat
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Elodie Ubrig
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Jean Molinier
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| |
Collapse
|
2
|
Novel in vivo system to monitor tRNA expression based on the recovery of GFP fluorescence and its application for the determination of plant tRNA expression. Gene 2019; 703:145-152. [PMID: 30940526 DOI: 10.1016/j.gene.2019.03.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 11/23/2022]
Abstract
We developed a novel assay system to quantitatively detect amber codon suppression by tRNAs expressed in plant cells. The assay was based on recovery of the expression of the green fluorescent protein (GFP) as a reporter, in which a fourth Lys codon (AAG) was changed to a premature amber codon TAG, designated as GFP/amber. Plasmids carrying GFP/amber, suppressor tRNA, and red fluorescent protein (RFF) as an internal control, respectively, were introduced into onion epidermal cells to monitor cell numbers with GFP and RFP fluorescence. First, an amber suppressor tRNASer from tobacco (NtS2) to suppress a TAG codon in GFP mRNA was examined, leading to the recovery of GFP fluorescence. Second, we used two different tRNAs (i.e., AtY3II-am and AtY3II-amiG7), both of which are intron-containing amber suppressor tRNAsTyr, the former impaired precursor-tRNA splicing but the latter did not, as confirmed previously using two different approaches (Szeykowska-Kulinska and Beier, 1991; Akama and Beier, 2003). As expected, coexpression of GFP/amber with AtY3II-am gave no green fluorescence, but significant fluorescence was observed with AtY3II-amiG7. Then, we applied this system for the analysis of 5'-regulatory sequences of the tRNAGln gene family from Arabidopsis. A 5'-flanking sequence of each of the 17 tRNAGln genes was fused to a coding region of an amber suppressor tRNASer gene (NtS2/amber) and its 3'-flanking sequence. Chimeric tRNASer gene, GFP/amber, and RFP were coexpressed, and the GFP or RFP fluorescence intensity was determined in cells using laser-scanning microscopy. In parallel, 17 kinds of original Arabidopsis tRNAGln genes and their chimeric genes with NtS2/amber were all analyzed in cell-free nuclear extract (Yukawa et al., 1997). Comparison of in vitro and in vivo expression of these chimeric tRNA genes displayed generally similar results, accompanied by a wide range of variance in the expression of each gene. Nevertheless, the expression patterns of several genes were clearly the opposite of each other comparing between the two different system, demonstrating the importance of in vivo systems in the study on tRNA expression in plants.
Collapse
|
3
|
Soprano AS, Smetana JHC, Benedetti CE. Regulation of tRNA biogenesis in plants and its link to plant growth and response to pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:344-353. [PMID: 29222070 DOI: 10.1016/j.bbagrm.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/23/2022]
Abstract
The field of tRNA biology, encompassing the functional and structural complexity of tRNAs, has fascinated scientists over the years and is continuously growing. Besides their fundamental role in protein translation, new evidence indicates that tRNA-derived molecules also regulate gene expression and protein synthesis in all domains of life. This review highlights some of the recent findings linking tRNA transcription and modification with plant cell growth and response to pathogens. In fact, mutations in proteins directly involved in tRNA synthesis and modification most often lead to pleiotropic effects on plant growth and immunity. As plants need to optimize and balance their energy and nutrient resources towards growth and defense, regulatory pathways that play a central role in integrating tRNA transcription and protein translation with cell growth control and organ development, such as the auxin-TOR signaling pathway, also influence the plant immune response against pathogens. As a consequence, distinct pathogens employ an array of effector molecules including tRNA fragments to target such regulatory pathways to exploit the plant's translational capacity, gain access to nutrients and evade defenses. An example includes the RNA polymerase III repressor MAF1, a conserved component of the TOR signaling pathway that controls ribosome biogenesis and tRNA synthesis required for plant growth and which is targeted by a pathogen effector molecule to promote disease. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Adriana Santos Soprano
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Juliana Helena Costa Smetana
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil.
| |
Collapse
|
4
|
Soma A. Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development. Front Genet 2014; 5:63. [PMID: 24744771 PMCID: PMC3978253 DOI: 10.3389/fgene.2014.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
A number of genome analyses and searches using programs that focus on the RNA-specific bulge-helix-bulge (BHB) motif have uncovered a wide variety of disrupted tRNA genes. The results of these analyses have shown that genetic information encoding functional RNAs is described in the genome cryptically and is retrieved using various strategies. One such strategy is represented by circularly permuted tRNA genes, in which the sequences encoding the 5′-half and 3′-half of the specific tRNA are separated and inverted on the genome. Biochemical analyses have defined a processing pathway in which the termini of tRNA precursors (pre-tRNAs) are ligated to form a characteristic circular RNA intermediate, which is then cleaved at the acceptor-stem to generate the typical cloverleaf structure with functional termini. The sequences adjacent to the processing site located between the 3′-half and the 5′-half of pre-tRNAs potentially form a BHB motif, which is the dominant recognition site for the tRNA-intron splicing endonuclease, suggesting that circularization of pre-tRNAs depends on the splicing machinery. Some permuted tRNAs contain a BHB-mediated intron in their 5′- or 3′-half, meaning that removal of an intron, as well as swapping of the 5′- and 3′-halves, are required during maturation of their pre-tRNAs. To date, 34 permuted tRNA genes have been identified from six species of unicellular algae and one archaeon. Although their physiological significance and mechanism of development remain unclear, the splicing system of BHB motifs seems to have played a key role in the formation of permuted tRNA genes. In this review, current knowledge of circularly permuted tRNA genes is presented and some unanswered questions regarding these species are discussed.
Collapse
Affiliation(s)
- Akiko Soma
- Graduate School of Horticulture, Chiba University Matsudo, Japan
| |
Collapse
|
5
|
Yukawa Y, Akama K, Noguchi K, Komiya M, Sugiura M. The context of transcription start site regions is crucial for transcription of a plant tRNALys(UUU) gene group both in vitro and in vivo. Gene 2013; 512:286-93. [DOI: 10.1016/j.gene.2012.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/22/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
|
6
|
Niazi AK, Mileshina D, Cosset A, Val R, Weber-Lotfi F, Dietrich A. Targeting nucleic acids into mitochondria: progress and prospects. Mitochondrion 2012; 13:548-58. [PMID: 22609422 DOI: 10.1016/j.mito.2012.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022]
Abstract
Given the essential functions of these organelles in cell homeostasis, their involvement in incurable diseases and their potential in biotechnological applications, genetic transformation of mitochondria has been a long pursued goal that has only been reached in a couple of unicellular organisms. The challenge led scientists to explore a wealth of different strategies for mitochondrial delivery of DNA or RNA in living cells. These are the subject of the present review. Targeting DNA into the organelles currently shows promise but remarkably a number of alternative approaches based on RNA trafficking were also established and will bring as well major contributions.
Collapse
Affiliation(s)
- Adnan Khan Niazi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
7
|
Michaud M, Cognat V, Duchêne AM, Maréchal-Drouard L. A global picture of tRNA genes in plant genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:80-93. [PMID: 21443625 DOI: 10.1111/j.1365-313x.2011.04490.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although transfer RNA (tRNA) has a fundamental role in cell life, little is known about tRNA gene organization and expression on a genome-wide scale in eukaryotes, particularly plants. Here, we analyse the content and distribution of tRNA genes in five flowering plants and one green alga. The tRNA gene content is homogenous in plants, and is mostly correlated with genome size. The number of tRNA pseudogenes and organellar-like tRNA genes present in nuclear genomes varies greatly from one plant species to another. These pseudogenes or organellar-like genes appear to be generated or inserted randomly during evolution. Interestingly, we identified a new family of tRNA-related short interspersed nuclear elements (SINEs) in the Populus trichocarpa nuclear genome. In higher plants, intron-containing tRNA genes are rare, and correspond to genes coding for tRNA(Tyr) and tRNA(Mete) . By contrast, in green algae, more than half of the tRNA genes contain an intron. This suggests divergent means of intron acquisition and the splicing process between green algae and land plants. Numerous tRNAs are co-transcribed in Chlamydomonas, but they are mostly transcribed as a single unit in flowering plants. The only exceptions are tRNA(Gly) -snoRNA and tRNA(Mete) -snoRNA cotranscripts in dicots and monocots, respectively. The internal or external motifs required for efficient transcription of tRNA genes by RNA polymerase III are well conserved among angiosperms. A brief analysis of the mitochondrial and plastidial tRNA gene populations is also provided.
Collapse
Affiliation(s)
- Morgane Michaud
- Institut de Biologie Moléculaire des Plantes, UPR 2357-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
8
|
Ogawa A, Doi Y, Matsushita N. Improvement of in vitro-transcribed amber suppressor tRNAs toward higher suppression efficiency in wheat germ extract. Org Biomol Chem 2011; 9:8495-503. [DOI: 10.1039/c1ob06351k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Yukawa Y, Dieci G, Alzapiedi M, Hiraga A, Hirai K, Yamamoto YY, Sugiura M. A common sequence motif involved in selection of transcription start sites of Arabidopsis and budding yeast tRNA genes. Genomics 2010; 97:166-72. [PMID: 21147216 DOI: 10.1016/j.ygeno.2010.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/12/2010] [Accepted: 12/02/2010] [Indexed: 11/28/2022]
Abstract
The transcription start site (TSS) is useful to predict gene and to understand transcription initiation. Although vast data on mRNA TSSs are available, little is known about tRNA genes because of rapid processing. Using a tobacco in vitro transcription system under conditions of impaired 5' end processing, TSSs were determined for 64 Arabidopsis tRNA genes. This analysis revealed multiple TSSs distributed in a region from 10 to 2bp upstream of the mature tRNA coding sequence (-10 to -2). We also analyzed 31 Saccharomyces cerevisiae tRNA genes that showed a smaller number but a broader distribution (-13 to -1) of TSSs. In both cases, transcription was initiated preferentially at adenosine, and a common 'TCAACA' sequence was found spanning the TSSs. In plant, this motif caused multiple TSSs to converge at one site and enhanced transcription. The TATA-like sequence upstream of Arabidopsis tRNA genes also contributed to TSS selection.
Collapse
Affiliation(s)
- Yasushi Yukawa
- Graduate School of Natural Sciences, Nagoya City University, 467-8501 Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
De Amicis F, Patti T, Marchetti S. Improvement of the pBI121 plant expression vector by leader replacement with a sequence combining a poly(CAA) and a CT motif. Transgenic Res 2007; 16:731-8. [PMID: 17237982 DOI: 10.1007/s11248-006-9063-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 12/04/2006] [Indexed: 10/23/2022]
Abstract
To improve expression levels of recombinant proteins in plants, a new leader sequence was designed. Several elements known to enhance gene translation and/or transcription were considered, including the CaMV 35S Inr site, a CT-rich motif often shared by highly expressed plant genes and a poly(CAA) region widespread in tobamovirus and plant leaders. The effect of the synthetic leader on gusA expression was evaluated in genetically modified tobacco plants by measuring the beta-glucuronidase activity and the mRNA level. When compared to the gusA leader of pBI121, the new sequence determined a 8.6-fold and a 12.5-fold increase of enzyme concentration taking into account the whole plant population or the above-average expressors, respectively. Since most pCAMBIA vectors harbour a very short 5'-UTR, identical to a fragment of the pBI121 leader, leader replacement with the sequence herein described is strongly suggested.
Collapse
Affiliation(s)
- Francesca De Amicis
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 208, Udine 33100, Italy
| | | | | |
Collapse
|
11
|
Yukawa Y, Mizutani T, Akama K, Sugiura M. A survey of expressed tRNA genes in the chromosome I of Arabidopsis using an RNA polymerase III-dependent in vitro transcription system. Gene 2007; 392:7-13. [PMID: 17157999 DOI: 10.1016/j.gene.2006.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/23/2006] [Accepted: 10/11/2006] [Indexed: 11/24/2022]
Abstract
Eukaryotic tRNA genes are transcribed by RNA polymerase III. These tRNA genes are generally predicted using computer programs, and 620 tRNA genes in the Arabidopsis thaliana genome are currently annotated. However, no effort has been made to assay whether these predicted tRNA genes are all expressed, because it has been difficult to assay by routine in vivo methods. We report here a large-scale tRNA expression assay of predicted Arabidopsis tRNA genes using an RNA polymerase III-dependent in vitro transcription system developed by our group. DNA fragments including an annotated tRNA gene each were amplified by PCR and the resulting linear DNA was subjected to in vitro transcription. The addition of poly(dA-dT).poly(dA-dT) enhanced activity significantly and reduced background. The 124 predicted tRNA genes present in the Arabidopsis chromosome I were examined, and transcription activity and transcript stability from individual genes were determined. These results indicated that eight annotated genes are not expressed. Based on previous reports on pseudo-tRNA genes (e.g., Beier and Beier, Mol. Gen. Genet. 1992; 233: 201-208) and the present results, we estimated that 16% or more of the annotated tRNA genes in the chromosome I are not functional.
Collapse
Affiliation(s)
- Yasushi Yukawa
- Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan
| | | | | | | |
Collapse
|
12
|
Wu XR, Chen Z, Shende A, Dooner HK, Folk WR. Visualizing bz1 missense suppression in Zea mays: an assay for monocot tRNA expression and utilization. PLANT MOLECULAR BIOLOGY 2006; 61:795-8. [PMID: 16897493 DOI: 10.1007/s11103-006-0050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Accepted: 03/20/2006] [Indexed: 05/11/2023]
Abstract
Bombardment of a highly expressed dicot tRNA(ala)(GAC) gene into Zea mays bz-E2 or bz-E5 coleoptiles causes suppression of an Ala(458 )-->Val missense mutation, visualized by the development of anthocyanin pigment. Missense suppression is blocked by mutation of tRNA(ala)(GAC) at a site that prevents aminoacylation by the dicot alanyl-tRNA synthetase, indicating that features identified for expression and utilization of dicot tRNAs also function in monocots. This assay of the expression and utilization of tRNA(ala)(GAC) also can be used to study a variety of tRNAs and their genes, most of which can be relatively easily altered to be charged by alanyl tRNA synthetase.
Collapse
Affiliation(s)
- Xing Rong Wu
- Department of Biochemistry, University of Missouri-Columbia, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | | | | | | | | |
Collapse
|
13
|
Dieci G, Yukawa Y, Alzapiedi M, Guffanti E, Ferrari R, Sugiura M, Ottonello S. Distinct modes of TATA box utilization by the RNA polymerase III transcription machineries from budding yeast and higher plants. Gene 2006; 379:12-25. [PMID: 16839711 DOI: 10.1016/j.gene.2006.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/23/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
The TATA box is a key upstream control element for basal tRNA gene transcription by RNA polymerase III in some eukaryotes, such as the fission yeast (Schizosaccharomyces pombe) and higher plants, but not in others such as the budding yeast (Saccharomyces cerevisiae). To gain information on this differential TATA box requirement, we examined side-by-side the in vitro transcription properties of TATA-containing and TATA-mutated plant and S. cerevisiae tDNAs in homologous in vitro transcription systems from both organisms and in a hybrid system in which yeast TBP was replaced by its plant homologue. The data support the general conclusion that specific features of the plant transcription machinery, rather than upstream region architecture per se, are responsible for the much stronger TATA box dependence of the plant system. In both systems, however, a strong influence of the TATA box on transcription start site selection was observed. This was particularly striking in the case of plant tDNAs, where TATA-rich upstream regions were found to favour the use of alternative initiation sites. Replacement of yeast TBP with its plant counterpart did not confer any general TATA box responsiveness to the yeast transcription machinery. Interactions involving components other than TBP are thus responsible for the strong TATA box requirement of plant tDNA transcription.
Collapse
Affiliation(s)
- Giorgio Dieci
- Department of Biochemistry and Molecular Biology, University of Parma, Parco Area delle Scienze 23A, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Giuliodori S, Percudani R, Braglia P, Ferrari R, Guffanti E, Ottonello S, Dieci G. A composite upstream sequence motif potentiates tRNA gene transcription in yeast. J Mol Biol 2003; 333:1-20. [PMID: 14516739 DOI: 10.1016/j.jmb.2003.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcription of eukaryotic tRNA genes relies on the TFIIIC-dependent recruitment of TFIIIB on a approximately 50 bp region upstream of the transcription start site (TSS). TFIIIC specifically interacts with highly conserved, intragenic promoter elements, while the contacts between TFIIIB and the upstream DNA have long been considered as largely non-specific. Through a computer search procedure designed to detect shared, yet degenerate sequence features, we have identified a conserved sequence pattern upstream of Saccharomyces cerevisiae tDNAs. This pattern consists of four regions in which particular sequences are over-represented. The most downstream of these regions surrounds the TSS, while the other three districts of sequence conservation (appearing as a centrally located TATA-like sequence flanked by T-rich elements on both sides) are located across the DNA region known to interact with TFIIIB. Upstream regions whose sequence conforms to this pattern were found to potentiate tRNA gene transcription, both in vitro and in vivo, by enhancing TFIIIB binding. A conserved pattern of DNA bendability was also revealed, with peaks of bending propensity centered on the TATA-like and the TSS regions. Sequence analysis of other eukaryotic genomes further revealed the widespread occurrence of conserved sequence patterns upstream of tDNAs, with striking lineage-specific differences in the number and sequence of conserved motifs. Our data strongly support the notion that tRNA gene transcription in eukaryotes is modulated by composite TFIIIB binding sites that may confer responsiveness to variation in TFIIIB activity and/or concentration.
Collapse
Affiliation(s)
- Silvia Giuliodori
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Akama K, Beier H. Translational nonsense codon suppression as indicator for functional pre-tRNA splicing in transformed Arabidopsis hypocotyl-derived calli. Nucleic Acids Res 2003; 31:1197-207. [PMID: 12582239 PMCID: PMC150238 DOI: 10.1093/nar/gkg220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transient expression of three novel plant amber suppressors derived from a cloned Nicotiana tRNA(Ser)(CGA), an Arabidopsis intron-containing tRNA(Tyr)(GTA) and an Arabidopsis intron-containing tRNA(Met)(CAT) gene, respectively, was studied in a homologous plant system that utilized the Agro bacterium-mediated gene transfer to Arabidopsis hypocotyl explants. This versatile system allows the detection of beta-glucuronidase (GUS) activity by histochemical and enzymatic analyses. The activity of the suppressors was demonstrated by the ability to suppress a premature amber codon in a modified GUS gene. Co-transformation of Arabidopsis hypocotyls with the amber suppressor tRNA(Ser) gene and the GUS reporter gene resulted in approximately 10% of the GUS activity found in the same tissue transformed solely with the functional control GUS gene. Amber suppressor tRNAs derived from intron-containing tRNA(Tyr) or tRNA(Met) genes were functional in vivo only after some additional gene manipulations. The G3:C70 base pair in the acceptor stem of tRNA(Met)(CUA) had to be converted to a G3:U70 base pair, which is the major determinant for alanine tRNA identity. The inability of amber suppressor tRNA(Tyr) to show any activity in vivo predominantly results from a distorted intron secondary structure of the corresponding pre-tRNA that could be cured by a single nucleotide exchange in the intervening sequence. The improved amber suppressors tRNA(Tyr) and tRNA(Met) were subsequently employed for studying various aspects of the plant-specific mechanism of pre-tRNA splicing as well as for demonstrating the influence of intron-dependent base modifications on suppressor activity.
Collapse
MESH Headings
- Arabidopsis/genetics
- Base Sequence
- Codon, Nonsense/genetics
- Culture Techniques
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Hypocotyl/genetics
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Plants, Genetically Modified
- Protein Biosynthesis/genetics
- RNA Precursors/genetics
- RNA Splicing
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Suppression, Genetic
Collapse
Affiliation(s)
- Kazuhito Akama
- Department of Biological Science, Shimane University, Matsue, 690-8504, Japan.
| | | |
Collapse
|
16
|
Yukawa Y, Fan H, Akama K, Beier H, Gross HJ, Sugiura M. A tobacco nuclear extract supporting transcription, processing, splicing and modification of plant intron-containing tRNA precursors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:583-94. [PMID: 11849597 DOI: 10.1046/j.1365-313x.2001.01172.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nuclear tRNA genes are transcribed by RNA polymerase III (Pol III) and pre-tRNAs are processed into mature tRNAs via complex processes in the nucleus. We have developed an in vitro Pol III-dependent transcription system derived from tobacco cultured cells, which supports efficiently not only transcription of a variety of plant tRNA genes but also 5'-and 3'-end processing, nucleotide modification and splicing of intron-containing pre-tRNAs. The structures of in vitro transcripts have been confirmed by primer extension analysis and by RNase T1 fingerprinting. The optimal Mg2+ concentration differed for each step so that each reaction can be controlled by adjusting the Mg2+ concentration. At 1 mm Mg2+, only transcription occurs so that pre-tRNAs accumulate. The splicing reaction can be initiated by raising Mg2+ ions (> 5 mm) and enhanced by adding 1 mm hexamminecobalt chloride. Using the optimized system for the Nicotiana intron-containing tRNATyr gene, the precise initiation and termination sites of transcription and the splice sites were determined. The presence of 1 mm NAD+ in the reaction mixture leads to the removal of the 2' phosphate at the splice junction of tRNATyr, demonstrating the activity of a 2'-phosphotransferase in the tobacco nuclear extract. Many modified nucleosides such as m2G, m22G, m1A, phi27 and phi35 are introduced in either of the studied transcripts. As shown in other systems, the conversion of U35 to phi requires an intron-containing substrate.
Collapse
Affiliation(s)
- Y Yukawa
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Hamada M, Huang Y, Lowe TM, Maraia RJ. Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast. Mol Cell Biol 2001; 21:6870-81. [PMID: 11564871 PMCID: PMC99864 DOI: 10.1128/mcb.21.20.6870-6881.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to directing transcription initiation, core promoters integrate input from distal regulatory elements. Except for rare exceptions, it has been generally found that eukaryotic tRNA and rRNA genes do not contain TATA promoter elements and instead use protein-protein interactions to bring the TATA-binding protein (TBP), to the core promoter. Genomewide analysis revealed TATA elements in the core promoters of tRNA and 5S rRNA (Pol III), U1 to U5 snRNA (Pol II), and 37S rRNA (Pol I) genes in Schizosaccharomyces pombe. Using tRNA-dependent suppression and other in vivo assays, as well as in vitro transcription, we demonstrated an obligatory requirement for upstream TATA elements for tRNA and 5S rRNA expression in S. pombe. The Pol III initiation factor Brf is found in complexes with TFIIIC and Pol III in S. pombe, while TBP is not, consistent with independent recruitment of TBP by TATA. Template commitment assays are consistent with this and confirm that the mechanisms of transcription complex assembly and initiation by Pol III in S. pombe differ substantially from those in other model organisms. The results were extended to large-rRNA synthesis, as mutation of the TATA element in the Pol I promoter also abolishes rRNA expression in fission yeast. A survey of other organisms' genomes reveals that a substantial number of eukaryotes may use widespread TATAs for transcription. These results indicate the presence of TATA-unified transcription systems in contemporary eukaryotes and provide insight into the residual need for TBP by all three Pols in other eukaryotes despite a lack of TATA elements in their promoters.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Base Sequence
- Conserved Sequence
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Evolution, Molecular
- Genome, Fungal
- Immunoblotting
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA Polymerase I/genetics
- RNA Polymerase I/metabolism
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA Polymerase III/genetics
- RNA Polymerase III/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 5S/genetics
- RNA, Transfer/metabolism
- Schizosaccharomyces/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- TATA-Box Binding Protein
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- M Hamada
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | |
Collapse
|
18
|
Arnaud P, Yukawa Y, Lavie L, Pélissier T, Sugiura M, Deragon JM. Analysis of the SINE S1 Pol III promoter from Brassica; impact of methylation and influence of external sequences. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:295-305. [PMID: 11439118 DOI: 10.1046/j.1365-313x.2001.01029.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transcription is an important control point in the transposable element mobilization process. To better understand the regulation of the plant SINE (Short Interspersed Elements) S1, its promoter sequence was studied using an in vitro pol III transcription system derived from tobacco cells. We show that the internal S1 promoter can be functional although upstream external sequences were found to enhance this basal level of transcription. For one putative 'master' locus (na7), three CAA triplets (in positions -12, -7 and -2) and two overlapping TATA motifs (in positions -54 to -43) were important to stimulate transcription. For this locus, two transcription initiation regions were characterized, one centered on position + 1 (first nucleotide of the S1 element) and one centered on position - 19 independently of the internal motifs. The CAA triplets only influence transcription in + 1 and work in association with the internal motifs. We show that methylation can inhibit transcription at the na7 locus. We also observe that S1 RNA is cleaved in a smaller Poly (A) minus product by a process analogous to the maturation of mammalian SINEs.
Collapse
Affiliation(s)
- P Arnaud
- CNRS UMR6547 and GDR2157, Biomove, Université Blaise Pascal Clermont-Ferrand II, 63177 Aubière Cedex, France
| | | | | | | | | | | |
Collapse
|
19
|
Fiedorow P, Odrzykoski I, Szweykowski J, Szweykowska-Kulińska Z. Phylogeny of the European species of the genus Pellia (Hepaticae; Metzgeriales) based on the molecular data from nuclear tRNA(Leu)(CAA) intergenic sequences. Gene 2001; 262:309-15. [PMID: 11179697 DOI: 10.1016/s0378-1119(00)00523-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Species of the genus Pellia are similar to such an extent that their proper recognition based on morphological and anatomical features is difficult. To solve this problem isozyme methods were developed. As a result of these studies new cryptic species were recognized and new hypotheses concerning phylogenetic relationship in Pellia were formed. To examine hypotheses derived from isozyme data we decided to study species of the genus Pellia at the DNA level. Total DNA from all Polish Pellia species was isolated. The taxonomic and phylogenetic relationships in Pellia were examined using intergenic spacer sequences between nuclear tRNA(Leu) genes organised in tandem arrays. PCR (polymerase chain reaction) amplification of tRNA(Leu) gene spacers produced fragments of different sizes in all species and their restriction analysis showed species-specific patterns. PCR products were cloned and sequenced. Nucleotide sequence data were used for phylogenetic reconstruction. Sequence analysis confirmed previous results based on isozyme studies that P. endiviifolia- species A and species B as well as P. epiphylla- species S and species N (having different isozyme multilocus genotypes) are separate sibling species. Our results also confirmed the allopolyploid character of the only polyploid species in Pellia, P. borealis which was formed by hybridization of P. epiphylla- species N and P. epiphylla- species S cryptic species.
Collapse
Affiliation(s)
- P Fiedorow
- Department of Gene Expression, Adam Mickiewicz University, Miedzychodzka 5, 60371, Poznań, Poland
| | | | | | | |
Collapse
|
20
|
Dieci G, Percudani R, Giuliodori S, Bottarelli L, Ottonello S. TFIIIC-independent in vitro transcription of yeast tRNA genes. J Mol Biol 2000; 299:601-13. [PMID: 10835271 DOI: 10.1006/jmbi.2000.3783] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The most peculiar transcriptional property of eukaryotic tRNA genes, as well as of other genes served by RNA polymerase III, is their complete dependence on the intragenic interaction platform provided by transcription factor IIIC (TFIIIC) for the productive assembly of the TBP-containing initiation factor TFIIIB. The sole exception, in yeast, is the U6 RNA gene, which is able to exploit a TATAAATA element, 30 bp upstream of the transcription start site, for the TFIIIC-independent assembly of TFIIIB. To find out whether this extragenic core promoter organization and autonomous TFIIIB assembly capacity are unique features of the U6 gene or also apply to other genes transcribed by RNA polymerase III, we scanned the 5'-flanking regions (up to position -100) of the entire tRNA gene set of Saccharomyces cerevisiae searching for U6-like TATA motifs. Four tRNA genes harboring such a sequence motif around position -30 were identified and found to be transcribed in vitro by a minimal system only composed of TFIIIB and RNA polymerase III. In this system, start site selection is not at all affected by the absence of TFIIIC, which, when added, significantly stimulates transcription by determining an increase in the number, rather than in the efficiency of utilization, of productive initiation complexes. A specific TBP-TATA element interaction is absolutely required for TFIIIC-independent transcription, but the nearby sequence context also contributes to the efficiency of autonomous TFIIIB assembly. The existence of a TFIIIB assembly pathway leading to the faithful transcription of natural eukaryotic tRNA genes in the absence of TFIIIC provides novel insights into the functional flexibility of the eukaryotic tRNA gene transcription machinery and on its evolution from an ancestral RNA polymerase III system relying on upstream, TATA- centered control elements.
Collapse
MESH Headings
- Base Sequence
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA-Binding Proteins/metabolism
- Evolution, Molecular
- Gene Expression Regulation, Fungal/genetics
- Gene Frequency/genetics
- Genes, Fungal/genetics
- Genes, Plant/genetics
- Kinetics
- Molecular Sequence Data
- Mutation/genetics
- RNA Polymerase III/metabolism
- RNA, Fungal/analysis
- RNA, Fungal/biosynthesis
- RNA, Fungal/genetics
- RNA, Small Nuclear/genetics
- RNA, Transfer/analysis
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- TATA Box/genetics
- TATA-Box Binding Protein
- Templates, Genetic
- Transcription Factor TFIIIB
- Transcription Factors/metabolism
- Transcription Factors, TFIII/physiology
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- G Dieci
- Institute of Biochemical Sciences, University of Parma, Parma, I-43100, Italy.
| | | | | | | | | |
Collapse
|
21
|
Yukawa Y, Sugita M, Choisne N, Small I, Sugiura M. The TATA motif, the CAA motif and the poly(T) transcription termination motif are all important for transcription re-initiation on plant tRNA genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:439-47. [PMID: 10849359 DOI: 10.1046/j.1365-313x.2000.00752.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effect of alteration of 5' and 3' flanking sequences on the transcription of plant tRNA genes was analysed using an RNA polymerase III-dependent in vitro transcription system derived from nuclei of cultured tobacco cells. A TATA-like sequence and the CAA motif frequently observed upstream of plant tRNA genes, and the poly(T) stretch usually present downstream, were shown to be necessary for efficient re-initiation of transcription. The CAA motif was shown to be a transcription initiation site. Introduction of the CAA and TATA-like motifs into a gene naturally lacking them greatly enhanced transcription by promoting efficient re-initiation.
Collapse
Affiliation(s)
- Y Yukawa
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
22
|
Akama K, Yukawa Y, Sugiura M, Small I. Plant cytosolic tRNAHis possesses an exceptional C54 in the canonical TPsiC loop. Nucleic Acids Res 1998; 26:2708-14. [PMID: 9592158 PMCID: PMC147610 DOI: 10.1093/nar/26.11.2708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A nuclear gene coding for tRNAHis from Arabidopsis has been reported to contain C54in the TPsiC loop, although the corresponding nucleotide is an invariant U or a derivative in nearly all other tRNAs. The only previously reported plant cytosolic tRNAHis sequence, from lupin, has U54. To re-examine plant cytosolic tRNAsHis and their genes we have used DNA and RNA sequence analyses, restriction enzyme digestion of PCR-amplified tRNA genes, RNA hybridization and in vivo aminoacylation assays. Our results suggest that Arabidopsis nuclear tRNAHis genes ubiquitously contain C54, as do those from tobacco, lupin and pea. The C54 nucleotide is maintained in the mature tRNAHis, which is aminoacylated in vivo , but to a relatively low level compared with other tRNAs examined. Finally, it was shown that an Arabidopsis tRNAHis gene with T54in place of C54 is over 5-fold more transcriptionally active than the wild-type gene using an in vitro system derived from plant nuclei. A possible role for this apparently sub-optimal tRNAHis sequence is suggested.
Collapse
Affiliation(s)
- K Akama
- Department of Biological Science, Shimane University, Matsue 690, Japan.
| | | | | | | |
Collapse
|