1
|
Mathavaraj P, Muthusamy V, Katral A, Mandal P, Zunjare RU, Hossain F. Lipoxygenases (LOXs): Will turning off this genetic switch help safeguard the flavor and nutritional quality of stored lipid-rich staple foods? Food Chem 2025; 470:142637. [PMID: 39752738 DOI: 10.1016/j.foodchem.2024.142637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/07/2024] [Accepted: 12/22/2024] [Indexed: 01/29/2025]
Abstract
Beyond storage capacity, long-term grain storage faces significant challenges due to the activity of lipoxygenases (LOXs). These enzymes catalyze the production of volatiles from free fatty acids, leading to stale odors and off-flavors. These changes degrade the quality of stored grains, even under regulated conditions, affecting the profitability of stored products to the farmers and the assurance of high-quality food for consumers. While LOXs are essential for various biological functions, their impact on storage highlights the need for targeted research to mitigate their negative effects. Optimizing LOX activity could enhance grain storability, reduce spoilage, and improve nutrient retention. This review explores recent advancements in understanding the roles of LOXs, focusing on how they can be tailored to enhance nutritional quality and shelf life. By modulating LOX activity, it is possible to address quality deterioration, support more sustainable food systems, and contribute to better nutritional security for consumers.
Collapse
Affiliation(s)
| | - Vignesh Muthusamy
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Ashvinkumar Katral
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Puja Mandal
- Department of Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Firoz Hossain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
2
|
Differential impact of the temperature stress and soil drought on lipoxygenase activity in winter rye plants. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.06.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
3
|
Lv G, Tian Q, Zhang F, Chen J, Niaz M, Liu C, Hu H, Sun C, Chen F. Reduced expression of lipoxygenase genes improves flour processing quality in soft wheat. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6247-6259. [PMID: 34097731 DOI: 10.1093/jxb/erab264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Lipoxygenases (Loxs) are dioxygenases that play an important role in plant growth and defense. Loxs affect flour processing quality in common wheat (Triticum aestivum). We conducted a genome-wide association study (GWAS) that identified 306 significant single-nucleotide polymorphisms (SNPs) related to Lox activity in Chinese wheat accessions. Among them, a novel lipoxygenase-encoding (Lpx) gene, TaLpx-B4, was detected on chromosome 3B in a biparental population. Analysis of mutant wheat lines induced using ethyl methanesulfonate confirmed the role of TaLpx-B4 in modulating Lox activity. A phylogenetic tree of various plant Lpx genes indicated the predominance of the 9-Lpx type in common wheat. Further analysis revealed conserved intron number, exon length, and motif number in the TaLpx gene family. GWAS, linkage mapping, and gene annotation collectively showed that 14 out of 29 annotated TaLpx genes played a critical role in regulating Lox activity in the Chinese wheat accessions. Transgenic wheat grains with knockdown of Lpx family genes by RNAi showed significantly lower Lox activity than the wild type. One TaLpx-RNAi line had significantly reduced starch content and dough stability, and thus possessed relatively superior biscuit quality in soft wheat. Further analysis of the transcriptome, lipid components, and other metabolites revealed that knockdown of TaLpx genes significantly increased biscuit quality via changes in unsaturated fatty acid content as well as in starch, sucrose, and galactose metabolism. Our results provide new insights into the role of the TaLpx gene family that will be beneficial in improving soft wheat flour quality.
Collapse
Affiliation(s)
- Guoguo Lv
- CIMMYT-China Joint Center of Wheat and Maize Improvement / National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Qiuzhen Tian
- CIMMYT-China Joint Center of Wheat and Maize Improvement / National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Fuyan Zhang
- CIMMYT-China Joint Center of Wheat and Maize Improvement / National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Jianhui Chen
- CIMMYT-China Joint Center of Wheat and Maize Improvement / National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Mohsin Niaz
- CIMMYT-China Joint Center of Wheat and Maize Improvement / National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Chunyi Liu
- CIMMYT-China Joint Center of Wheat and Maize Improvement / National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Huiting Hu
- CIMMYT-China Joint Center of Wheat and Maize Improvement / National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Congwei Sun
- CIMMYT-China Joint Center of Wheat and Maize Improvement / National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Feng Chen
- CIMMYT-China Joint Center of Wheat and Maize Improvement / National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Dugulin CA, De Rouck G, Cook DJ. Green Malt for a Green Future – Feasibility and Challenges of Brewing Using Freshly Germinated (Unkilned) Malt: A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1902710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Celina A. Dugulin
- International Centre for Brewing Science, School of Biosciences, Division of Microbiology, Brewing & Biotechnology, University of Nottingham, Leicestershire, UK
| | - Gert De Rouck
- KU Leuven, Faculty of Engineering Technology, Department of Food and Microbial Technology (CLMT), Laboratory of Enzyme, Fermentation and Brewing Technology, Technology Campus Ghent, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
| | - David J. Cook
- International Centre for Brewing Science, School of Biosciences, Division of Microbiology, Brewing & Biotechnology, University of Nottingham, Leicestershire, UK
| |
Collapse
|
5
|
The Molecular and Functional Characterization of the Durum Wheat Lipoxygenase TdLOX2 Suggests Its Role in Hyperosmotic Stress Response. PLANTS 2020; 9:plants9091233. [PMID: 32962020 PMCID: PMC7570197 DOI: 10.3390/plants9091233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022]
Abstract
In plants, lipoxygenases (LOXs) are involved in various processes, such as growth, development, and response to stress cues. In the present study, the expression pattern of six durum wheat LOX-encoding genes (TdLpx-B1.1, TdLpx-B1.2, TdLpx-A2, TdLpx-B2, TdLpx-A3 and TdLpx-B3) under hyperosmotic stress was investigated. With osmotic (0.42 M mannitol) and salt (0.21 M NaCl) stress imposed at the early stages of seedling growth, a strong induction of the TdLpx-A2 gene expression in the shoots paralleled an equally strong increase in the LOX activity. Enhanced levels of malondialdehyde (MDA) and increased rates of superoxide anion generation were also observed as a result of the stress imposition. Sequence analysis of the TdLOX2 encoded by the TdLpx-A2 gene revealed that it belonged to the type-1 9-LOX group. When overexpressed in E. coli, TdLOX2 exhibited normal enzyme activity, high sensitivity to specific LOX inhibitors, with 76% and 99% inhibition by salicylhydroxamic and propyl gallate, respectively, and a preference for linoleic acid as substrate, which was converted exclusively to its corresponding 13-hydroperoxide. This unexpected positional specificity could be related to the unusual TV/K motif that in TdLOX2 replaces the canonical TV/R motif of 9-LOXs. Treatment of seedlings with propyl gallate strongly suppressed the increase in LOX activity induced by the hyperosmotic stress; the MDA accumulation was also reduced but less markedly, whereas the rate of superoxide anion generation was even more increased. Overall, our findings suggest that the up-regulation of the TdLpx-A2 gene is a component of the durum wheat response to hyperosmotic stress and that TdLOX2 may act by counteracting the excessive generation of harmful reactive oxygen species responsible for the oxidative damages that occur in plants under stress.
Collapse
|
6
|
Shu Y, Zhou Y, Mu K, Hu H, Chen M, He Q, Huang S, Ma H, Yu X. A transcriptomic analysis reveals soybean seed pre-harvest deterioration resistance pathways under high temperature and humidity stress. Genome 2020; 63:115-124. [PMID: 31774699 DOI: 10.1139/gen-2019-0094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Pre-harvest soybean seeds in the field are susceptible to high temperature and humidity (HTH) stress, leading to pre-harvest seed deterioration, which will result in a reduction in grain quality, yield, and seed vigor. To understand the gene expression involved in seed deterioration response under HTH stress, in this study, we conducted an RNA-Seq analysis using two previously screened soybean cultivars with contrasting seed deterioration resistance. HTH stress induced 1081 and 357 differentially expressed genes (DEGs) in the sensitive cultivar Ningzhen No. 1 and resistant cultivar Xiangdou No. 3, respectively. The majority of DEGs in the resistant cultivar were up-regulated, while down-regulated DEGs were predominant in the sensitive cultivar. KEGG pathway analysis revealed that metabolic pathways, biosynthesis of secondary metabolites, and protein processing in endoplasmic reticulum were the predominant pathways in both cultivars during seed deterioration under HTH stress. The genes involved in photosynthesis, carbohydrate metabolism, lipid metabolism, and heat shock proteins pathways might contribute to the different response to seed deterioration under HTH treatment in the two soybean cultivars. Our study extends the knowledge of gene expression in soybean seed under HTH stress and further provides insight into the molecular mechanism of seed deterioration as well as new strategies for breeding soybean with improved seed deterioration resistance.
Collapse
Affiliation(s)
- Yingjie Shu
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuli Zhou
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
| | - Kebin Mu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingyuan He
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
| | - Shoucheng Huang
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
| | - Hao Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingwang Yu
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
8
|
Breeding of lipoxygenase-1-less malting barley variety ‘SouthernStar’ and evaluation of malting and brewing quality. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Hoki T, Kanatani R, Saito W, Iimure T, Zhou T, Takoi K, Tanigawa A, Kihara M, Ogushi K. Breeding of lipoxygenase-1-less malting barley variety ‘Satuiku 2 go’. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- T. Hoki
- Bioresources Research and Development Department; Sapporo Breweries Ltd, 37-1 Nittakizaki, Ota Gunma 370-0393 Japan
| | - R. Kanatani
- Bioresources Research and Development Department; Sapporo Breweries Ltd, 37-1 Nittakizaki, Ota Gunma 370-0393 Japan
| | - W. Saito
- Bioresources Research and Development Department; Sapporo Breweries Ltd, 37-1 Nittakizaki, Ota Gunma 370-0393 Japan
| | - T. Iimure
- Bioresources Research and Development Department; Sapporo Breweries Ltd, 37-1 Nittakizaki, Ota Gunma 370-0393 Japan
| | - T.S. Zhou
- Bioresources Research and Development Department; Sapporo Breweries Ltd, 37-1 Nittakizaki, Ota Gunma 370-0393 Japan
| | - K. Takoi
- Product and Technology Innovation Department; Sapporo Breweries Ltd, 1-10 Okatome, Yaizu Shizuoka 425-0013 Japan
| | - A. Tanigawa
- Product and Technology Innovation Department; Sapporo Breweries Ltd, 1-10 Okatome, Yaizu Shizuoka 425-0013 Japan
| | - M. Kihara
- Bioresources Research and Development Department; Sapporo Breweries Ltd, 37-1 Nittakizaki, Ota Gunma 370-0393 Japan
| | - K. Ogushi
- Bioresources Research and Development Department; Sapporo Breweries Ltd, 37-1 Nittakizaki, Ota Gunma 370-0393 Japan
| |
Collapse
|
10
|
Oozeki M, Sotome T, Haruyama N, Yamaguchi M, Watanabe H, Okiyama T, Kato T, Takayama T, Oyama M, Nagamine T, Suzuki Y, Toyoshima T, Sekiwa T, Oono K, Saito T, Usui M, Arai S, Kumekawa T, Suzuki E, Shirama K, Kihara M, Hoki T, Matsubara H, Ohsawa R. The two-row malting barley cultivar 'New Sachiho Golden' with null lipoxygenase-1 improves flavor stability in beer and was developed by marker-assisted selection. BREEDING SCIENCE 2017; 67:165-171. [PMID: 28588394 PMCID: PMC5445967 DOI: 10.1270/jsbbs.16104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/30/2016] [Indexed: 06/07/2023]
Abstract
Lipoxygenase-1 (LOX-1) null 'New Sachiho Golden' is a two-row malting barley (Hordeum vulgare L.) cultivar released in 2015 that was developed at the Tochigi Prefectural Agricultural Experimental Station by backcross breeding using the high-yield leading cultivar 'Sachiho Golden' as a recurrent parent and the LOX-1 null mutant 'Daikei LM1' as a non-recurrent parent. To develop 'New Sachiho Golden' we used a simple LOX activity assay and marker-assisted selection. This is the first LOX-1 null malting barley cultivar in Japan that is resistant to barley yellow mosaic virus (types I-III). Agronomic characteristics and malting qualities of 'New Sachiho Golden' were similar to those of 'Sachiho Golden', except that 'New Sachiho Golden' had no LOX activity in ungerminated grains and had clearly lower LOX activity during malting than 'Sachiho Golden'. The concentrations of a trans-2-nonenal (T2N) precursor in wort and beer made from 'New Sachiho Golden' were significantly lower than in those made from 'Sachiho Golden', both before and after storage.
Collapse
Affiliation(s)
- Mika Oozeki
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
- Faculty of Life and Environmental Science, University of Tsukuba,
1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8572,
Japan
| | - Toshinori Sotome
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Naoto Haruyama
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Masahiro Yamaguchi
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Hirohisa Watanabe
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Takeshi Okiyama
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Tsuneo Kato
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Toshiyuki Takayama
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Makoto Oyama
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Takashi Nagamine
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
- Asahi Breweries, Ltd.,
1-23-1 Azumabashi, Sumida, Tokyo 130-8602,
Japan
| | - Yasuo Suzuki
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Takako Toyoshima
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Takahiro Sekiwa
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Kaori Oono
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Tetsuya Saito
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Masao Usui
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Shin Arai
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Terunobu Kumekawa
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Emiko Suzuki
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Kaori Shirama
- Tochigi Prefectural Agricultural Experiment Station,
1080 Kawaraya, Utsunomiya, Tochigi 320-0002,
Japan
| | - Makoto Kihara
- Sapporo Breweries Ltd.,
37-1 Kizaki, Oota, Gunma 370-0393,
Japan
| | - Takehiro Hoki
- Sapporo Breweries Ltd.,
37-1 Kizaki, Oota, Gunma 370-0393,
Japan
| | - Hideki Matsubara
- Asahi Breweries, Ltd.,
1-23-1 Azumabashi, Sumida, Tokyo 130-8602,
Japan
| | - Ryo Ohsawa
- Faculty of Life and Environmental Science, University of Tsukuba,
1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8572,
Japan
| |
Collapse
|
11
|
Molecular Approaches to Genetically Improve the Accumulation of Health-Promoting Secondary Metabolites in Staple Crops-A Case Study: The Lipoxygenase-B1 Genes and Regulation of the Carotenoid Content in Pasta Products. Int J Mol Sci 2016; 17:ijms17071177. [PMID: 27455242 PMCID: PMC4964548 DOI: 10.3390/ijms17071177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023] Open
Abstract
Secondary metabolites, also known as phytochemicals, represent a large subset of plant molecules that include compounds with health-promoting effects. Indeed, a number of epidemiological studies have shown that, when taken regularly and in adequate amounts, these molecules can have long-term beneficial effects on human health, through reduction of the incidence of degenerative diseases, such as cardiovascular diseases, obesity, diabetes, and cancer. As the dietary intake of these phytochemicals is often inadequate, various strategies are in use to improve their content in staple crops, and the end-products thereof. One of the most effective strategies is crop improvement through genetic approaches, as this is the only way to generate new cultivars in which the high accumulation of a given phytochemical is stably fixed. Efforts to genetically improve quality traits are rapidly evolving, from classical breeding to molecular-assisted approaches; these require sound understanding of the molecular bases underlying the traits, to identify the genes/alleles that control them. This can be achieved through global analysis of the metabolic pathway responsible for phytochemical accumulation, to identify the link between phytochemical content and the activities of key enzymes that regulate the metabolic pathway, and between the key enzymes and their encoding genes/alleles. Once these have been identified, they can be used as markers for selection of new improved genotypes through biotechnological approaches. This review provides an overview of the major health-promoting properties shown to be associated with the dietary intake of phytochemicals, and describes how molecular approaches provide means for improving the health quality of edible crops. Finally, a case study is illustrated, of the identification in durum wheat of the Lipoxygenase-B1 genes that control the final carotenoid content in semolina-based foods, such as pasta products.
Collapse
|
12
|
Nalam VJ, Alam S, Keereetaweep J, Venables B, Burdan D, Lee H, Trick HN, Sarowar S, Makandar R, Shah J. Facilitation of Fusarium graminearum Infection by 9-Lipoxygenases in Arabidopsis and Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1142-52. [PMID: 26075826 DOI: 10.1094/mpmi-04-15-0096-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fusarium graminearum causes Fusarium head blight, an important disease of wheat. F. graminearum can also cause disease in Arabidopsis thaliana. Here, we show that the Arabidopsis LOX1 and LOX5 genes, which encode 9-lipoxygenases (9-LOXs), are targeted during this interaction to facilitate infection. LOX1 and LOX5 expression were upregulated in F. graminearum-inoculated plants and loss of LOX1 or LOX5 function resulted in enhanced disease resistance in the corresponding mutant plants. The enhanced resistance to F. graminearum infection in the lox1 and lox5 mutants was accompanied by more robust induction of salicylic acid (SA) accumulation and signaling and attenuation of jasmonic acid (JA) signaling in response to infection. The lox1- and lox5-conferred resistance was diminished in plants expressing the SA-degrading salicylate hydroxylase or by the application of methyl-JA. Results presented here suggest that plant 9-LOXs are engaged during infection to control the balance between SA and JA signaling to facilitate infection. Furthermore, since silencing of TaLpx-1 encoding a 9-LOX with homology to LOX1 and LOX5, resulted in enhanced resistance against F. graminearum in wheat, we suggest that 9-LOXs have a conserved role as susceptibility factors in disease caused by this important fungus in Arabidopsis and wheat.
Collapse
Affiliation(s)
- Vamsi J Nalam
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
- 2 Department of Biology, Indiana University-Purdue University, Fort Wayne, IN 46805, U.S.A
| | - Syeda Alam
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Jantana Keereetaweep
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Barney Venables
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Dehlia Burdan
- 3 Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Hyeonju Lee
- 3 Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Harold N Trick
- 3 Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Sujon Sarowar
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Ragiba Makandar
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
- 4 Department of Plant Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Jyoti Shah
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| |
Collapse
|
13
|
Zhang F, Chen F, Wu P, Zhang N, Cui D. Molecular characterization of lipoxygenase genes on chromosome 4BS in Chinese bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1467-1479. [PMID: 25899305 DOI: 10.1007/s00122-015-2518-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
This study cloned two novel TaLox genes on chromosome of 4BS and developed a co-dominant marker, Lox-B23, in bread wheat that showed highly significant association with lipoxygenase activity. Lipoxygenase (Lox), a critical enzyme in the carotenoid biosynthetic pathway, significantly influences the color and processing quality of wheat-based products. Two novel Lox genes, designated TaLox-B2 and TaLox-B3, were cloned on chromosome 4BS of Chinese bread wheat. The deduced amino acid sequence showed that both TaLox-B2 and TaLox-B3 genes encoded an 861-aa protein and possessed a lipoxygenase superfamily domain at the 170-838 interval. Two different TaLox-B2 alleles, designated TaLox-B2a and TaLox-B2b, were subsequently discovered. A co-dominant marker, Lox-B23, was developed based on sequences of TaLox-B2a, TaLox-B2b, and TaLox-B3 genes to precisely distinguish these three alleles in Chinese bread cultivars. Among five allelic combinations of Lox genes at Lox-B1, Lox-B2, and Lox-B3 loci, wheat cultivars with TaLox-B1a/TaLox-B2a/TaLox-B3a combination exhibited the highest Lox activity, whereas those with TaLox-B1a/TaLox-B2b/TaLox-B3b combination significantly showed the lowest Lox activity. A RIL population was used to evaluate the influence of TaLox-B3a gene on Lox activity. Results showed that TaLox-B3a gene could significantly increase the Lox activity in bread wheat. Physical mapping indicated that both TaLox-B2 and TaLox-B3 genes were located on chromosome 4BS in bread wheat. This study provides useful information to further understand the molecular and genetic bases of Lox activity in bread wheat.
Collapse
Affiliation(s)
- Fuyan Zhang
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, 450002, China,
| | | | | | | | | |
Collapse
|
14
|
Guo G, Dondup D, Yuan X, Gu F, Wang D, Jia F, Lin Z, Baum M, Zhang J. Rare allele of HvLox-1 associated with lipoxygenase activity in barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2095-103. [PMID: 25212109 PMCID: PMC4180031 DOI: 10.1007/s00122-014-2362-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 07/13/2014] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE Identification and allele-specific marker development of a functional SNP of HvLox - 1 which associated with barley lipoxygenase activity. Improving the stability of the flavor of beer is one of the main objectives in breeding barley for malting, and lipoxygenase-1 (LOX-1) is a key enzyme controlling this trait. In this study, a modified LOX activity assay was used for null LOX-1 mutant screening. Four barley landraces with no detected level of LOX-1 activity were screened from 1,083 barley germplasm accessions from China. The genomic sequence diversity of the HvLox-1 gene of the four null LOX-1 Chinese landraces was compared with that of a further 76 accessions. A total of 104 nucleotide polymorphisms were found, which contained 83 single-nucleotide polymorphisms (SNPs), 7 multiple-nucleotide polymorphisms, and 14 insertions and deletions. Most notably, we found a rare C/G mutation (SNP-61) in the second intron which led to null LOX-1 activity through an altered splicing acceptor site. In addition, an allele-specific polymerase chain reaction marker was developed for the genotyping of SNP-61, which could be used in breeding programs for barley to be used for malting. The objective was to improve beer quality.
Collapse
Affiliation(s)
- Ganggang Guo
- Key Laboratory of Crop Germplasm Resources and Utilization (Ministry of Agriculture), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dawa Dondup
- Key Laboratory of Crop Germplasm Resources and Utilization (Ministry of Agriculture), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850032 China
| | - Xingmiao Yuan
- Key Laboratory of Crop Germplasm Resources and Utilization (Ministry of Agriculture), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fanghong Gu
- China National Research Institute of Food and Fermentation Industries, Beijing, 100027 China
| | - Deliang Wang
- China National Research Institute of Food and Fermentation Industries, Beijing, 100027 China
| | - Fengchao Jia
- Technical Research Center of Beijing Yanjing Brewery Group Co. Ltd, Beijing, 101300 China
| | - Zhiping Lin
- Technical Research Center of Beijing Yanjing Brewery Group Co. Ltd, Beijing, 101300 China
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas, Amman, 11195 Jordan
| | - Jing Zhang
- Key Laboratory of Crop Germplasm Resources and Utilization (Ministry of Agriculture), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
15
|
Ye H, Harasymow S, Zhang XQ, Paynter B, Wu D, Jones M, Shu X, Li C. Sequence variation and haplotypes of lipoxygenase gene LOX-1 in the Australian barley varieties. BMC Genet 2014; 15:36. [PMID: 24641784 PMCID: PMC4003807 DOI: 10.1186/1471-2156-15-36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/10/2014] [Indexed: 11/12/2022] Open
Abstract
Background Lipoxygenases are a family of enzymes which catalyse the hydroperoxidation of polyunsaturated fatty acids with a cis, cis-1,4-pentadiene to form conjugated hydroperoxydienes. Lipoxygenase-1 (LOX-1) in barley worsens the flavour and foam stability of beer. It has become a major selection criteria for malting quality in the last few years. Results Lipoxygenase activity was investigated in 41 Australian barley cultivars and advanced breeding lines released since the 1950s; the cultivars differed markedly, ranging from 22.3 to 46.5 U/g. The structural gene and its promoter of lipoxygenase-1 were sequenced from the barley varieties representing different levels of LOX. Based on the analysis of nucleotide and deduced amino acid sequences, two major haplotypes were identified. Barley varieties with lower LOX were classified into three categories based on their pedigrees and sequence variations in the structural gene: (1) barley varieties derived from Canadian varieties with the pre-harvest sprouting susceptible allele, (2) Skiff and Hindmarsh with unique haplotype in the structural gene, and (3) Gairdner and Onslow with an unknown mechanism. Conclusion Lipoxygenase activity has been reduced in the malting barley cultivars in the last 60 years although it is only recognized as a malting quality trait recently. There are clear haplotypes of the lipoxygenase structual gene. The polymorphisms detected in the structural gene can be used to design molecular markers for selection of low LOX haplotype. Other mechanisms also existed for controlling lipoxygenase activity. The results suggest that it is possible to develop barley varieties with lower LOX by combination of low LOX-1 haplotype and other trans-regulation factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoli Shu
- State Key Lab of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, P,R, Chin.
| | | |
Collapse
|
16
|
Identification, mapping and evolutionary course of wheat lipoxygenase-1 genes located on the A genome. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2013.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Liptáková Ľ, Huttová J, Mistrík I, Tamás L. Enhanced lipoxygenase activity is involved in the stress response but not in the harmful lipid peroxidation and cell death of short-term cadmium-treated barley root tip. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:646-52. [PMID: 23395539 DOI: 10.1016/j.jplph.2012.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/07/2012] [Accepted: 12/07/2012] [Indexed: 05/22/2023]
Abstract
Root growth inhibition and radial root swelling were the characteristic symptoms of barley root tips after the short-term exposure of roots to 15 and 30μM Cd. Higher Cd concentrations caused extensive cell death and root growth arrest. Enhanced lipid peroxidation was observed as early as 1h after the short-term treatment in a Cd concentration-dependent manner. In contrast to lipid peroxidation, the induction of lipoxygenase activity was detected only 3h after the exposure of roots to 15 or 30μM Cd. In addition, it was not observed in 60μM Cd-treated root tips. The highest lipoxygenase activity was detected 6h after 15μM Cd treatment in the meristematic and elongation zone of root tip and was probably associated with the radial expansion of cells. Our results indicate that the upregulation of lipoxygenase is an important component of stress response in barley roots to toxic Cd. It is probably involved in the morphological stress response of root tips or/and in the alleviation of Cd-induced toxic alterations in plant cell membranes, but it is not responsible for the Cd-induced harmful lipid peroxidation and cell death.
Collapse
Affiliation(s)
- Ľubica Liptáková
- Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523 Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
18
|
QTLs for malting flavour component associated with pre-harvest sprouting susceptibility in barley (Hordeum vulgare L.). J Cereal Sci 2011. [DOI: 10.1016/j.jcs.2010.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Verlotta A, De Simone V, Mastrangelo AM, Cattivelli L, Papa R, Trono D. Insight into durum wheat Lpx-B1: a small gene family coding for the lipoxygenase responsible for carotenoid bleaching in mature grains. BMC PLANT BIOLOGY 2010; 10:263. [PMID: 21110856 PMCID: PMC3017847 DOI: 10.1186/1471-2229-10-263] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/26/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND The yellow colour of pasta products is one of the main criteria used by consumers to assess pasta quality. This character is due to the presence of carotenoid pigments in semolina. During pasta processing, oxidative degradation of carotenoid pigments occurs mainly due to lipoxygenase (LOX). In durum wheat (Triticum durum Desf.), two Lpx-1 genes have been identified on chromosome 4B, Lpx-B1.1 and Lpx-B1.2, and evidences have been reported that the deletion of Lpx-B1.1 is associated with a strong reduction in LOX activity in semolina. In the present study, we characterised the Lpx-B1 gene family identified in a durum wheat germplasm collection and related the distribution and expression of the Lpx-B1 genes and alleles to variations in LOX activity in the mature grains. RESULTS In addition to the already known Lpx-B1.1 and Lpx-B1.2 genes, a new gene was identified, Lpx-B1.3, along with three different Lpx-B1.1 alleles, Lpx-B1.1a, Lpx-B1.1b and the partially deleted Lpx-B1.1c. Screening of the germplasm collection showed that all of the genotypes have one of the three Lpx-B1.1 alleles, associated with either Lpx-B1.2 or Lpx-B1.3, thus showing that in this collection the two genes are alternatives. Therefore, based on Lpx-B1 distribution, three different haplotypes were distinguished: haplotype I, carrying Lpx-B1.3 and the Lpx-B1.1b allele; haplotype II carrying Lpx-B1.2 and the Lpx-B1.1a allele; and haplotype III carrying Lpx-B1.2 and the Lpx-B1.1c allele. Determination of Lpx-B1 transcript abundance and total LOX activity in mature grains revealed differences among these three haplotypes: haplotypes I, II and III showed high, intermediate and low levels, respectively, of functional Lpx-B1 transcripts and enzymatic activity. CONCLUSIONS In this germplasm collection, the Lpx-B1 gene family accounts for most of the total LOX activity in the mature grains. Information on these Lpx-B1 haplotypes provides significant improvement for prediction of LOX-1 activity levels in mature grains, and will therefore help in breeding programmes aimed at selection of new durum wheat genotypes with higher carotenoid contents in their end products.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Base Sequence
- Biocatalysis
- Carotenoids/metabolism
- Chromosome Mapping
- Chromosomes, Plant/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Edible Grain/genetics
- Edible Grain/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genotype
- Haplotypes
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Kinetics
- Lipoxygenase/genetics
- Lipoxygenase/metabolism
- Molecular Sequence Data
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Triticum/enzymology
- Triticum/genetics
- beta Carotene/metabolism
Collapse
Affiliation(s)
- Angelo Verlotta
- CRA-Cereal Research Centre, S.S. 16, Km 675 - 71122 Foggia, Italy
| | | | | | - Luigi Cattivelli
- CRA-Cereal Research Centre, S.S. 16, Km 675 - 71122 Foggia, Italy
| | - Roberto Papa
- CRA-Cereal Research Centre, S.S. 16, Km 675 - 71122 Foggia, Italy
| | - Daniela Trono
- CRA-Cereal Research Centre, S.S. 16, Km 675 - 71122 Foggia, Italy
| |
Collapse
|
20
|
Molecular analysis of lipoxygenase (LOX) genes in common wheat and phylogenetic investigation of LOX proteins from model and crop plants. J Cereal Sci 2010. [DOI: 10.1016/j.jcs.2010.06.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
De Simone V, Menzo V, De Leonardis AM, Maria Ficco DB, Trono D, Cattivelli L, De Vita P. Different mechanisms control lipoxygenase activity in durum wheat kernels. J Cereal Sci 2010. [DOI: 10.1016/j.jcs.2010.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Park YS, Kunze S, Ni X, Feussner I, Kolomiets MV. Comparative molecular and biochemical characterization of segmentally duplicated 9-lipoxygenase genes ZmLOX4 and ZmLOX5 of maize. PLANTA 2010; 231:1425-1437. [PMID: 20349083 DOI: 10.1007/s00425-010-1143-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/03/2010] [Indexed: 05/29/2023]
Abstract
Lipoxygenases (LOXs) catalyze hydroperoxidation of polyunsaturated fatty acids (PUFAs) to form structurally and functionally diverse oxylipins. Precise physiological and biochemical functions of individual members of plant multigene LOX families are largely unknown. Herein we report on molecular and biochemical characterization of two closely related maize 9-lipoxygenase paralogs, ZmLOX4 and ZmLOX5. Recombinant ZmLOX5 protein displayed clear 9-LOX regio-specificity at both neutral and slightly alkaline pH. The genes were differentially expressed in various maize organs and tissues as well as in response to diverse stress treatments. The transcripts of ZmLOX4 accumulated predominantly in roots and shoot apical meristem, whereas ZmLOX5 was expressed in most tested aboveground organs. Both genes were not expressed in untreated leaves, but displayed differential induction by defense-related hormones. While ZmLOX4 was only induced by jasmonic acid (JA), the transcripts of ZmLOX5 were increased in response to JA and salicylic acid treatments. ZmLOX5 was transiently induced both locally and systemically by wounding, which was accompanied by increased levels of 9-oxylipins, and fall armyworm herbivory, suggesting a putative role for this gene in defense against insects. Surprisingly, despite of moderate JA- and wound-inducibility of ZmLOX4, the gene was not responsive to insect herbivory. These results suggest that the two genes may have distinct roles in maize adaptation to diverse biotic and abiotic stresses. Both paralogs were similarly induced by virulent and avirulent strains of the fungal leaf pathogen Cochliobolus carbonum. Putative physiological roles for the two genes are discussed in the context of their biochemical and molecular properties.
Collapse
Affiliation(s)
- Yong-Soon Park
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA.
| | | | | | | | | |
Collapse
|
23
|
Garbus I, Carrera AD, Dubcovsky J, Echenique V. Physical mapping of durum wheat lipoxygenase genes. J Cereal Sci 2009. [DOI: 10.1016/j.jcs.2009.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Tamás L, Dudíková J, Durceková K, Halusková L, Huttová J, Mistrík I. Effect of cadmium and temperature on the lipoxygenase activity in barley root tip. PROTOPLASMA 2009; 235:17-25. [PMID: 19067105 DOI: 10.1007/s00709-008-0027-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 11/19/2008] [Indexed: 05/20/2023]
Abstract
An analysis of different cell fractions isolated from barley roots revealed that lipoxygenase (LOX) activity occurred both extra- and intracellulary. Cadmium (Cd)-induced LOX activity was observed in the fraction containing cell walls, plasma membrane and the cytoplasm. High temperature-induced root growth inhibition and elevated LOX activity did not induce lipid peroxidation. In contrast, Cd inhibited root growth and caused both enhanced lipid peroxidation and elevated LOX activity at each of the temperatures analyzed. Spatial distribution studies revealed that the patterns of apoplastic LOX activity were different from those of cytoplasmic activity. Cd-induced intracellular LOX activity increased equally along the barley root tip, while Cd-induced apoplastic LOX activity was associated mainly with the differentiation zone of the barley root tip. Our results suggest the involvement of Cd-induced LOX activity in the premature differentiation of the barley root tip during Cd stress. We hypothesize that the role of LOX in plant metabolic processes in the root may depend on the level of reactive oxygen species in the roots: at physiological concentrations of ROS, LOX may be involved in the processes of root growth, while at the elevated harmful concentrations of ROS induced by different stress conditions, it may be involved in root growth inhibition through ectopic differentiation.
Collapse
Affiliation(s)
- Ladislav Tamás
- Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, 84523, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
25
|
Ghiglione HO, Gonzalez FG, Serrago R, Maldonado SB, Chilcott C, Curá JA, Miralles DJ, Zhu T, Casal JJ. Autophagy regulated by day length determines the number of fertile florets in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:1010-24. [PMID: 18547393 DOI: 10.1111/j.1365-313x.2008.03570.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The wheat spikelet meristem differentiates into up to 12 floret primordia, but many of them fail to reach the fertile floret stage at anthesis. We combined microarray, biochemical and anatomical studies to investigate floret development in wheat plants grown in the field under short or long days (short days extended with low-fluence light) after all the spikelets had already differentiated. Long days accelerated spike and floret development and greening, and the expression of genes involved in photosynthesis, photoprotection and carbohydrate metabolism. These changes started while the spike was in the light-depleted environment created by the surrounding leaf sheaths. Cell division ceased in the tissues of distal florets, which interrupted their normal developmental progression and initiated autophagy, thus decreasing the number of fertile florets at anthesis. A massive decrease in the expression of genes involved in cell proliferation, a decrease in soluble carbohydrate levels, and an increase in the expression of genes involved in programmed cell death accompanied anatomical signs of cell death, and these effects were stronger under long days. We propose a model in which developmentally generated sugar starvation triggers floret autophagy, and long days intensify these processes due to the increased carbohydrate consumption caused by the accelerated plant development.
Collapse
Affiliation(s)
- Hernán O Ghiglione
- Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Av San Martín 4453, 1417 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Martinez-Godoy MA, Mauri N, Juarez J, Marques MC, Santiago J, Forment J, Gadea J. A genome-wide 20 K citrus microarray for gene expression analysis. BMC Genomics 2008; 9:318. [PMID: 18598343 PMCID: PMC2483987 DOI: 10.1186/1471-2164-9-318] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 07/03/2008] [Indexed: 11/24/2022] Open
Abstract
Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database [1] was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability. Conclusion This new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global studies in citrus by using it to catalogue genes expressed in citrus globular embryos.
Collapse
Affiliation(s)
- M Angeles Martinez-Godoy
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Laboratorio de Genomica (Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas), Avenida de los Naranjos s/n, E46022 Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang R, Shen W, Liu L, Jiang L, Liu Y, Su N, Wan J. A novel lipoxygenase gene from developing rice seeds confers dual position specificity and responds to wounding and insect attack. PLANT MOLECULAR BIOLOGY 2008; 66:401-14. [PMID: 18185911 DOI: 10.1007/s11103-007-9278-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 12/19/2007] [Indexed: 05/20/2023]
Abstract
OsLOX1 is a novel full-length cDNA isolated from developing rice seeds. We have examined its biochemical properties and expression patterns. The protein has dual positional specificity, as it releases both C-9 and C-13 oxidized products in a 4:3 ratio. OsLOX1 transcripts were detected at low abundance in immature seeds and newly germinated seedlings, but accumulate rapidly and transiently in response to wounding or brown planthopper (BPH) attack, reaching a peak 3 h after wounding and 6 h after insect feeding. We produced transgenic rice lines carrying either sense or antisense constructs under the control of a cauliflower mosaic virus 35S promoter, and these rice lines showed altered OsLOX1 activity. In all of the antisense lines and more than half of the sense lines the expression levels of OsLOX1, the levels of enzyme activity, and the levels of the endogenous OsLOX1 products (jasmonic acid, (Z)-3-hexenal and colneleic acid) at 6, 48, and 48 h after BPH feeding respectively, were below the levels found in non-transgenic control plants; yet, the levels in the remaining sense transformants were enhanced relative to controls. Transformants with a lower level of OsLOX1 expression were less able to tolerate BPH attack, while those with enhanced OsLOX1 expression were more resistant. Our data suggest that the OsLOX1 product is involved in tolerance of the rice plant to wounding and BPH attack.
Collapse
Affiliation(s)
- Ren Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University; Research Center of Plant Gene Engineering, Nanjing, Jiangsu Province 210095, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Mashiguchi K, Urakami E, Hasegawa M, Sanmiya K, Matsumoto I, Yamaguchi I, Asami T, Suzuki Y. Defense-related signaling by interaction of arabinogalactan proteins and beta-glucosyl Yariv reagent inhibits gibberellin signaling in barley aleurone cells. PLANT & CELL PHYSIOLOGY 2008; 49:178-190. [PMID: 18156132 DOI: 10.1093/pcp/pcm175] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins present at the plasma membrane and in extracellular spaces. A synthetic chemical, beta-glucosyl Yariv reagent (beta-GlcY), binds specifically to AGPs. We previously reported that gibberellin signaling is specifically inhibited by beta-GlcY treatment in barley aleurone protoplasts. In the present study, we found that beta-GlcY also inhibited gibberellin-induced programmed cell death (PCD) in aleurone cells. We examined the universality and specificity of the inhibitory effect of beta-GlcY on gibberellin signaling using microarray analysis and found that beta-GlcY was largely effective in repressing gibberellin-induced gene expression. In addition, >100 genes were up-regulated by beta-GlcY in a gibberellin-independent manner, and many of these were categorized as defense-related genes. Defense signaling triggered by several defense system inducers such as jasmonic acid and a chitin elicitor could inhibit gibberellin-inducible events such as alpha-amylase secretion, PCD and expression of some gibberellin-inducible genes in aleurone cells. Furthermore, beta-GlcY repressed the gibberellin-inducible Ca2+-ATPase gene which is important for gibberellin-dependent gene expression, and induced known repressors of gibberellin signaling, two WRKY genes and a NAK kinase gene. These effects of beta-GlcY were also phenocopied by the chitin elicitor and/or jasmonic acid. These results indicate that gibberellin signaling is under the regulation of defense-related signaling in aleurone cells. It is also probable that AGPs are involved in the perception of stimuli causing defense responses.
Collapse
Affiliation(s)
- Kiyoshi Mashiguchi
- Department of Applied Biological Chemistry, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Marmey P, Jalloul A, Alhamdia M, Assigbetse K, Cacas JL, Voloudakis AE, Champion A, Clerivet A, Montillet JL, Nicole M. The 9-lipoxygenase GhLOX1 gene is associated with the hypersensitive reaction of cotton Gossypium hirsutum to Xanthomonas campestris pv malvacearum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:596-606. [PMID: 17611116 DOI: 10.1016/j.plaphy.2007.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 05/16/2023]
Abstract
Hypersensitive reaction (HR) cell death of cotton to the incompatible race 18 from Xanthomonas campestris pathovar malvacearum (Xcm) is associated with 9S-lipoxygenase activity (LOX) responsible for lipid peroxidation. Here, we report the cloning of cotton (Gossypium hirsutum L.) LOX gene (GhLOX1) and the sequencing of its promoter. GhLOX1 was found to be highly expressed during Xcm induced HR. Sequence analysis showed that GhLOX1 is a putative 9-LOX, and GhLOX1 promoter contains SA and JA responsive elements. Investigation on LOX signalisation on cotyledons infiltrated with salicylic acid (SA), or incubated with methyl-jasmonate (MeJA) revealed that both treatments induced LOX activity and GhLOX1 gene expression. HR-like symptoms were observed when LOX substrates were then injected in treated (MeJA and SA) cotyledons or when Xcm compatible race 20 was inoculated on MeJA treated cotyledons. Together these results support the fact that GhLOX1 encodes a 9 LOX whose activity would be involved in cell death during cotton HR.
Collapse
Affiliation(s)
- Philippe Marmey
- IRD, UMR RPB Résistance des Plantes aux Bioagresseurs, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Carrera A, Echenique V, Zhang W, Helguera M, Manthey F, Schrager A, Picca A, Cervigni G, Dubcovsky J. A deletion at the Lpx-B1 locus is associated with low lipoxygenase activity and improved pasta color in durum wheat (Triticum turgidum ssp. durum). J Cereal Sci 2007. [DOI: 10.1016/j.jcs.2006.07.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Hirota N, Kuroda H, Takoi K, Kaneko T, Kaneda H, Yoshida I, Takashio M, Ito K, Takeda K. Brewing Performance of Malted Lipoxygenase-1 Null Barley and Effect on the Flavor Stability of Beer. Cereal Chem 2006. [DOI: 10.1094/cc-83-0250] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- N. Hirota
- Bioresources Research and Development Laboratories, Sapporo Breweries, Ltd., 37-1 Nitta-Kizaki, Ota, Gunma 370-0393, Japan
- Corresponding author. Phone: +81276561455. Fax: +81276561605. E-mail:
| | - H. Kuroda
- Frontier Laboratories of Value Creation, Sapporo Breweries, Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan
| | - K. Takoi
- Production & Technology Development Center, Sapporo Breweries, Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan
| | - T. Kaneko
- Bioresources Research and Development Laboratories, Sapporo Breweries, Ltd., 37-1 Nitta-Kizaki, Ota, Gunma 370-0393, Japan
| | - H. Kaneda
- Frontier Laboratories of Value Creation, Sapporo Breweries, Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan
| | - I. Yoshida
- Production & Technology Development Center, Sapporo Breweries, Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan
| | - M. Takashio
- Frontier Laboratories of Value Creation, Sapporo Breweries, Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan
| | - K. Ito
- Bioresources Research and Development Laboratories, Sapporo Breweries, Ltd., 37-1 Nitta-Kizaki, Ota, Gunma 370-0393, Japan
| | - K. Takeda
- Research Institute for Bioresources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
32
|
Garbe LA, Barbosa de Almeida R, Nagel R, Wackerbauer K, Tressl R. Dual positional and stereospecificity of lipoxygenase isoenzymes from germinating barley (green malt): biotransformation of free and esterified linoleic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:946-55. [PMID: 16448207 DOI: 10.1021/jf051993t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The lipoxygenase isoenzymes LOX1 and LOX2 from green malt were separated by isoelectric focusing, and their catalytic properties regarding complex lipids as substrates were characterized. The regio- and stereoisomers of hydroperoxy octadecadienoates (HPODE) resulting from LOX1 and LOX2 enzymatic transformations of linoleic acid, methyl linoleate, linoleic acid glycerol esters monolinolein, dilinolein, and trilinolein, and 1-palmitoyl-2-linoleoyl-glycero-3-phosphocholine (PamLinGroPCho) were determined. In addition, biotransformations of polar and nonpolar lipids extracted from malt were performed with LOX1 and LOX2. The results show that LOX2 catalyzes the oxidation of esterified fatty acids at a higher rate and is more regioselective than LOX1. The dual position specificity of LOX2 (9-HPODE:13-HPODE) with trilinolein as the substrate (6:94) was higher than the resultant ratio (13:87) when free linoleic acid was transformed. A high (S)-enantiomeric excess of 13-HPODE was analyzed with all esterified substrates confirming the formation of 13-HPODE through the LOX2 enzyme; however, 9-HPODE detected after LOX2 biotransformations showed (R)-enantiomeric excesses. PamLinGroPCho was oxygenated by LOX1 with the highest regio- and stereoselectivities among the applied substrates.
Collapse
Affiliation(s)
- Leif-Alexander Garbe
- Institut für Biotechnologie, Molekularanalytik, Technische Universität Berlin, Seestrasse 13, D-13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
33
|
Hambraeus G, Nyberg N. Enzymatic hydrogenation of trans-2-nonenal in barley. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:8714-21. [PMID: 16248576 DOI: 10.1021/jf050696l] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Conversion of undesirable, taste-active compounds is crucial for using barley as a suitable raw material for beer production. Here, ALH1, a barley alkenal hydrogenase enzyme that reduced the alpha,beta-unsaturated double bond of aldehydes and ketones, was found to convert trans-2-nonenal (T2N), a major contributor to the cardboard-like flavor of aged beer. Although the physiological function of ALH1 in barley development remains elusive, it exhibited high specificity with NADPH as a cofactor in the conversion of several oxylipins-including T2N, trans-2-hexenal, traumatin, and 1-octen-3-one. ALH1 action represents a previously unknown mechanism for T2N conversion in barley. Additional experimental results resolved the genomic sequence for barley ALH1, as well as the identification of a paralog gene encoding ALH2. Interestingly, T2N was not converted by purified, recombinant ALH2. The possibility to enhance ALH1 activity in planta is discussed--not only with respect to the physiological consequences thereof--but also in relation to improved beer quality.
Collapse
Affiliation(s)
- Gustav Hambraeus
- Carlsberg Research Center, Gamle Carlsberg Vej 10, DK-2500 Copenhagen, Denmark.
| | | |
Collapse
|
34
|
Hirota N, Kaneko T, Kuroda H, Kaneda H, Takashio M, Ito K, Takeda K. Characterization of lipoxygenase-1 null mutants in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1580-4. [PMID: 16228190 DOI: 10.1007/s00122-005-0088-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 08/10/2005] [Indexed: 05/04/2023]
Abstract
This study describes the discovery and characterization of lipoxygenase-1 (LOX-1) null mutants in barley. Six lines did not exhibit any significant LOX activity in the silenced seed extract. Immunological analysis showed that these lines lacked the authentic LOX-1 protein. Genetic analysis of the F2 population revealed that this trait was governed by a single recessive gene located at the LoxA locus on chromosome 4H. The six LOX-1 null mutants shared similar features and the same unique polymorphism in a structural gene region, implying that these mutants might be derived from the same ancestral origin.
Collapse
Affiliation(s)
- N Hirota
- Bioresources Research and Development Laboratories, Sapporo Breweries Ltd., 37-1 Nitta-Kizaki, Ota, Gunma 370-0393, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Watson L, Henry RJ. Microarray analysis of gene expression in germinating barley embryos (Hordeum vulgare L.). Funct Integr Genomics 2005; 5:155-62. [PMID: 15714320 DOI: 10.1007/s10142-005-0133-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 01/10/2005] [Accepted: 01/12/2005] [Indexed: 12/01/2022]
Abstract
A cDNA library containing approximately 5,000 clones from germinating barley embryos was constructed and used to examine the variation in gene expression patterns during the first 4 days postimbibition. The expression profiles of embryos (including scutellum) from 4 to 96 h postimbibition were compared to a reference profile from 24 h postimbibition using microarray analysis. A subset of clones exhibiting tenfold or greater differential expression patterns was sequenced to elucidate function. All of the sequenced clones could be identified to at least EST level with 64% exhibiting homology to published protein sequences. Almost 95% of the library exhibited similar expression levels at the 4 h time point as at the 24 h reference point. From 24 to 96 h, however, considerable fluctuations in gene expression occurred. The observed patterns of gene expression for the classified genes are consistent with the expected genetic changes required to prepare an embryo for germinative development. A replicate set of clones for the 23-kDa jasmonate-induced protein was identified. The current data not only provides conclusive evidence for the expression patterns of this abundant stress-response protein in germinating embryos, but also serves to validate previous research into JIP-23 isoforms, function and the relationship between timing of mRNA upregulation and protein abundance.
Collapse
Affiliation(s)
- Loraine Watson
- Molecular Plant Breeding CRC, Centre for Plant Conservation Genetics, Southern Cross University, Lismore, NSW, Australia
| | | |
Collapse
|
36
|
Mizuno K, Iida T, Takano A, Yokoyama M, Fujimura T. A new 9-lipoxygenase cDNA from developing rice seeds. PLANT & CELL PHYSIOLOGY 2003; 44:1168-1175. [PMID: 14634153 DOI: 10.1093/pcp/pcg142] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We isolated a novel C9 position specific lipoxygenase (r9-LOX1) cDNA from developing rice seeds. The enzymatic features of r9-LOX1 resembled those of rice LOX-L3 known to be contained in rice germ and to have C9-specific LOX activity. However, the expression level of the r9-LOX1 gene was higher in imbibed seeds rather than developing seeds. A homology search against the rice nucleotide database revealed the r9-LOX1 gene to be on rice chromosome 3 (accession number AC093017). The restriction enzyme map of the reported genomic sequence agreed with the result of the Southern blot analysis for the r9-LOX1. The enzyme could be useful for in vitro synthesis of 9,10-ketol-octadecadienoic acid.
Collapse
Affiliation(s)
- Kouichi Mizuno
- Institute of Agricultural and Forest Engineering, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8572, Japan.
| | | | | | | | | |
Collapse
|
37
|
Steiner-Lange S, Fischer A, Boettcher A, Rouhara I, Liedgens H, Schmelzer E, Knogge W. Differential defense reactions in leaf tissues of barley in response to infection by Rhynchosporium secalis and to treatment with a fungal avirulence gene product. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:893-902. [PMID: 14558691 DOI: 10.1094/mpmi.2003.16.10.893] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Expression of defense-associated genes was analyzed in leaf tissues of near-isogenic resistant and susceptible barley cultivars upon infection by Rhynchosporium secalis. The genes encoding pathogenesis-related (PR) proteins PR-1, PR-5, and PR-9 are specifically expressed in the mesophyll of resistant plants, whereas a germin-like protein (OxOLP) is synthesized in the epidermis irrespective of the resistance genotype. Restriction-mediated differential display was employed to identify additional epidermis-specific genes. This resulted in the detection of another PR gene, PR-10, along with a lipoxygenase gene, LoxA, and a gene of unknown function, pI2-4, which are specifically induced in the epidermis of resistant plants. The gene encoding a putative protease inhibitor, SD10, is preferentially but not exclusively expressed in the epidermis. The fungal avirulence gene product NIP1 triggers the induction of the four PR genes only. At least two additional elicitors, therefore, must be postulated, one for the unspecific induction of OxOLP and one for the resistance-specific induction of LoxA, pI2-4, and SD10. PR-10 expression can be assumed to be the consequence of NIP1 perception by epidermis cells. In contrast, gene expression in the mesophyll is likely to be triggered by an as yet unknown signal that appears to originate in the epidermis and that is strongly amplified in the mesophyll.
Collapse
Affiliation(s)
- Sabine Steiner-Lange
- Department of Biochemistry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Wilson RA, Gardner HW, Keller NP. Cultivar-dependent expression of a maize lipoxygenase responsive to seed infesting fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:980-7. [PMID: 11497470 DOI: 10.1094/mpmi.2001.14.8.980] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Maize kernels are highly susceptible to Aspergillus spp. infection and aflatoxin (AF) contamination. Fatty acid signaling molecules appear to mediate the plant-fungal interaction by affecting the growth, development, and AF production of the fungus. In particular, fatty acid derivatives of the plant lipoxygenase (LOX) pathway are implicated in the Aspergillus spp.-seed interaction. The 9(S)-hydroperoxide derivative of linoleic acid promotes transcription of AF genes, whereas the 13(S)-hydroperoxide derivative decreases AF gene expression and production; both are sporulation factors. Our goal was to identify LOX genes responsive to Aspergillus spp. colonization and determine their specificities, 9(S)- or 13(S)-. Screening maize LOX expressed sequence tags (ESTs) identified one clone, cssap 92, which is highly expressed in Aspergillus spp.-infected seed susceptible to AF contamination and repressed in lines with resistance to AF contamination. The accumulation of cssap 92 transcript was similar during Fusarium spp. infection. The cDNA clone has 94% identity to the previously described L2 LOX gene from maize. Product-specificity analysis of the CSSAP 92 protein shows that it preferentially adds oxygen to carbon 9 of linoleic acid. Because 9(S)-hydroperoxy linoleic acid has been implicated as an aflatoxin-signaling molecule, it is possible that cssap 92 could be used as a biomarker that is indicative of AF resistance in maize lines.
Collapse
Affiliation(s)
- R A Wilson
- Department of Plant Pathology and Microbiology, Texas A & M University, College Station 77843-2132, USA
| | | | | |
Collapse
|
39
|
Schaffrath U, Zabbai F, Dudler R. Characterization of RCI-1, a chloroplastic rice lipoxygenase whose synthesis is induced by chemical plant resistance activators. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5935-42. [PMID: 10998053 DOI: 10.1046/j.1432-1327.2000.01660.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A full-length lipoxygenase cDNA (RCI-1) has been cloned from rice (Oryza sativa) whose corresponding transcripts accumulate in response to treatment of the plants with chemical inducers of acquired resistance such as benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH), 2,6-dichloroisonicotinic acid (INA), and probenazole. In contrast, RCI-1 transcript levels did not increase after inoculation with compatible and incompatible races of the rice blast fungus Magnaporthe grisea and the nonhost pathogen Pseudomonas syringae pv. syringae. RCI-1 transcript levels also increased after exogenous application of jasmonic acid, but not upon wounding. Dose-response and time course experiments revealed a similar pattern of transcript accumulation and lipoxygenase activity in BTH-treated rice leaves. Enzymatic analysis of recombinant RCI-1 protein produced in Escherichia coli revealed that 13-hydroperoxy-octadecanoic acids were the predominant reaction products when either linoleic or linolenic acid used as a substrate. The RCI-1 sequence features a putative chloroplast targeting sequence at its N-terminus. Indeed, a protein consisting of the putative chloroplast transit peptide fused to green fluorescent protein was exclusively localized in chloroplasts, indicating that RCI-1 is a chloroplastic enzyme.
Collapse
Affiliation(s)
- U Schaffrath
- Institute of Biology III, RWTH Aachen, Germany; Institute of Plant Biology, University of Zurich, Switzerland
| | | | | |
Collapse
|